1
|
Rahimi E, Li C, Zhong X, Shi GH, Ardekani AM. The role of initial lymphatics in the absorption of monoclonal antibodies after subcutaneous injection. Comput Biol Med 2024; 183:109193. [PMID: 39423704 DOI: 10.1016/j.compbiomed.2024.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
The subcutaneous injection is the most common method of administration of monoclonal antibodies (mAbs) due to the patient's comfort and cost-effectiveness. However, the available knowledge about the transport and absorption of this type of biotherapeutics after subcutaneous injection is limited. Here, a mathematical framework to study the subcutaneous drug delivery of mAbs from injection to lymphatic uptake is presented. A poro-hyperelastic model of the tissue is exploited to find the biomechanical response of the tissue together with a transport model based on an advection-diffusion equation in large-deformation poro-hyperelastic Media. The process of mAbs transport to the lymphatic system has two major parts. First is the initial phase, where mAbs are dispersed in the tissue due to momentum exerted by injection. This stage lasts for only a few minutes after the injection. Then there is the second stage, which can take tens of hours, and as a result, mAb molecules are transported from the subcutaneous layer towards initial lymphatics in the dermis to enter the lymphatic system. In this study, we investigate both stages. The process of plume formation, interstitial pressure, and velocity development is explored. Then, the effect of the injection delivery parameters, injection site, and sensitivity of long-term lymphatic uptake due to variability in permeability, diffusivity, viscosity, and binding of mAbs are investigated. Finally, we study two different injection scenarios with variable injection volume and drug concentration inside the syringe and evaluate them based on the rate of lymphatic uptake. We use our results to find an equivalent lymphatic uptake coefficient similar to the coefficient widely used in pharmacokinetic (PK) models to study the absorption of mAbs. Ultimately, we validate our computational model against available experiments in the literature.
Collapse
Affiliation(s)
- Ehsan Rahimi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chenji Li
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoxu Zhong
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Gresham J, Bruin G, Picci M, Bechtold-Peters K, Dimke T, Davies E, Błażejczyk K, Willekens W, Fehervary H, Velde GV. Visualisation and quantification of subcutaneous injections of different volumes, viscosities and injection rates: An ex-vivo micro-CT study. J Pharm Sci 2024:S0022-3549(24)00344-7. [PMID: 39306036 DOI: 10.1016/j.xphs.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 10/11/2024]
Abstract
The effects of subcutaneous (SC) injection parameters such as drug formulation volume, viscosity and injection rate on therapeutic performance and tolerability have not been established for any drug product. In this study four groups of SC injections were performed on fresh ex vivo minipig abdominal tissue samples, varying volume (0.5-1 mL), viscosity (1-11 cP) and rate (0.02-0.1 mL/s). Micro-CT provided high resolution (50 micron) imaging of the SC tissues before and after injection, enabling a detailed 3D visualisation and analysis of how both injection parameters and tissue microstructure influence spatial distribution of injectables. We found that volume was the only significant factor for spatial distribution of injectate within our design space, and there were no significant factors for tissue backpressure. Variability within test groups was typically greater than differences between group means. Accordingly, whilst the higher viscosity formulations consistently exhibited reduced spatial distribution, the sample size was not large enough to establish confidence in this result. Comparing our findings to clinical evidence, we conclude that injection site and depth are more likely to influence PK and bioavailability than volume, viscosity and rate within our experimental space.
Collapse
Affiliation(s)
| | - Gerard Bruin
- Pharmacokinetic Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Marie Picci
- Clinical Development Excellence, Global Drug Development, Novartis Pharma AG, Switzerland
| | | | - Thomas Dimke
- Pharmacokinetic Sciences, Novartis Biomedical Research, Basel, Switzerland
| | | | - Kasia Błażejczyk
- Molecular Small Animal Imaging Center (MoSAIC), Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Willekens
- FIBER, KU Leuven Core Facility for Biomechanical Experimentation, Leuven, Belgium
| | - Heleen Fehervary
- FIBER, KU Leuven Core Facility for Biomechanical Experimentation, Leuven, Belgium; Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Molecular Small Animal Imaging Center (MoSAIC), Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium; Biomedical MRI, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
de Lucio M, Leng Y, Wang H, Vlachos PP, Gomez H. Modeling drug transport and absorption in subcutaneous injection of monoclonal antibodies: Impact of tissue deformation, devices, and physiology. Int J Pharm 2024; 661:124446. [PMID: 38996825 DOI: 10.1016/j.ijpharm.2024.124446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
The pharmaceutical industry has experienced a remarkable increase in the use of subcutaneous injection of monoclonal antibodies (mAbs), attributed mainly to its advantages in reducing healthcare-related costs and enhancing patient compliance. Despite this growth, there is a limited understanding of how tissue mechanics, physiological parameters, and different injection devices and techniques influence the transport and absorption of the drug. In this work, we propose a high-fidelity computational model to study drug transport and absorption during and after subcutaneous injection of mAbs. Our numerical model includes large-deformation mechanics, fluid flow, drug transport, and blood and lymphatic uptake. Through this computational framework, we analyze the tissue material responses, plume dynamics, and drug absorption. We analyze different devices, injection techniques, and physiological parameters such as BMI, flow rate, and injection depth. Finally, we compare our numerical results against the experimental data from the literature.
Collapse
Affiliation(s)
- Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA.
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA; Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Hao Wang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Hakim MH, Brindise MC, Ahmadzadegan A, Buno KP, Dos Santos ACF, Cragg KR, Dou Z, Ladisch MR, Ardekani AM, Vlachos PP, Solorio L. Rose Bengal Labeled Bovine Serum Albumin for Protein Transport Imaging in Subcutaneous Tissues Using Computed Tomography and Fluorescence Microscopy. Bioconjug Chem 2024; 35:1044-1052. [PMID: 38875443 DOI: 10.1021/acs.bioconjchem.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Subcutaneous (SC) injection of protein-based therapeutics is a convenient and clinically established drug delivery method. However, progress is needed to increase the bioavailability. Transport of low molecular weight (Mw) biotherapeutics such as insulin and small molecule contrast agents such as lipiodol has been studied using X-ray computed tomography (CT). This analysis, however, does not translate to the investigation of higher Mw therapeutics, such as monoclonal antibodies (mAbs), due to differences in molecular and formulation properties. In this study, an iodinated fluorescein analog rose bengal (RB) was used as a radiopaque and fluorescent label to track the distribution of bovine serum albumin (BSA) compared against unconjugated RB and sodium iodide (NaI) via CT and confocal microscopy following injection into ex vivo porcine SC tissue. Importantly, the high concentration BSA-RB exhibited viscosities more like that of viscous biologics than the small molecule contrast agents, suggesting that the labeled protein may serve as a more suitable formulation for the investigation of injection plumes. Three-dimensional (3D) renderings of the injection plumes showed that the BSA-RB distribution was markedly different from unconjugated RB and NaI, indicating the need for direct visualization of large protein therapeutics using conjugated tags rather than using small molecule tracers. Whereas this proof-of-concept study shows the novel use of RB as a label for tracking BSA distribution, our experimental approach may be applied to high Mw biologics, including mAbs. These studies could provide crucial information about diffusion in SC tissue and the influence of injection parameters on distribution, transport, and downstream bioavailability.
Collapse
Affiliation(s)
- Mazin H Hakim
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Melissa C Brindise
- School of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Adib Ahmadzadegan
- School of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Kevin P Buno
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Antonio C F Dos Santos
- Laboratory of Renewable Resources Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Kevin R Cragg
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Zhongwang Dou
- School of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Michael R Ladisch
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- Laboratory of Renewable Resources Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Pavlos P Vlachos
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Gomes C, Gridley K, Anastasiou I, Sinkó B, Mrsny RJ. Hydrogel formats to model potential drug interactions occurring at the subcutaneous injection site. Eur J Pharm Biopharm 2024; 199:114308. [PMID: 38688439 DOI: 10.1016/j.ejpb.2024.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Abstract
We have previously developed an in vitro instrument, termed subcutaneous injection site simulator (SCISSOR), that can be used to monitor release properties of an active pharmaceutical ingredient (API) and formulation components of a medicine designed for SC injection. Initial studies to validate the SCISSOR instrument applications used a simple hyaluronic acid (HA) hydrogel to monitor early release events. We now report a type of cross-linked HA that can, when combined with HA, provide a hydrogel (HA-XR) with optical clarity and rheological properties that remain stable for at least 6 days. Incorporation of 0.05-0.1 mg/mL of collagens isolated from human fibroblasts (Col F), bovine type I collagen (Col I), chicken collagen type II (Col II), or chondroitin sulphate (CS) produced HA or HA-XR hydrogel formats with optical clarity and rheological properties comparable to HA or HA-XR alone. HA + Col F hydrogel had a much greater effect on release rates of 70 kDa compared to 4 kDa dextran, while Col F incorporated into the HA-XR hydrogel accentuated differences in release rates of prandial and basal forms of insulin as well as decreased the release rate of denosumab. A hydrogel format of HA + Col I was used to examine the complex events for bevacizumab release under conditions where a target ligand (vascular endothelial growth factor) can interact with extracellular matrix (ECM). Together, these data have demonstrated the feasibility of using a cross-linked HA format to examine API release over multiple days and incorporation of specific ECM elements to prepare more biomimetic hydrogels that allow for tractable examination of their potential impact of API release.
Collapse
Affiliation(s)
| | - Kate Gridley
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | | | | | - Randall J Mrsny
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
6
|
Staples ASM, Poulsen M, Præstmark KAF, Sparre T, Sand Traberg M. The Needle Shield Size and Applied Force of Subcutaneous Autoinjectors Significantly Influence the Injection Depth. J Diabetes Sci Technol 2024:19322968241231996. [PMID: 38388411 DOI: 10.1177/19322968241231996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
BACKGROUND This study examines how shield-triggered autoinjectors (AIs), for subcutaneous drug delivery, affect injection depth. It focuses on shield size and applied force, parameters that could potentially lead to inadvertent intramuscular (IM) injections due to tissue compression. METHOD A blinded ex-vivo study was performed to assess the impact of shield size and applied force on injection depth. Shields of 15, 20, and 30 mm diameters and forces from 2 to 10 N were investigated. The study involved 55 injections in three Landrace, Yorkshire, and Duroc (LYD) pigs, with injection depths measured with computed tomography (CT). An in-vivo study, involving 20 injections in three LYD pigs, controlled the findings, using fluoroscopy (FS) videos for depth measurement. RESULTS The CT study revealed that smaller shield sizes significantly increased injection depth. With a 15 mm diameter shield, 10 N applied force, and 5 mm needle protrusion, the injection depth exceeded the needle length by over 3 mm. Injection depth increased with higher applied forces until a plateau was reached around 8 N. Both applied force and size were significant factors for injection depth (analysis of variance [ANOVA], P < .05) in the CT study. The FS study confirmed the ex-vivo findings in an in-vivo setting. CONCLUSIONS The study demonstrates that shield size has a greater impact on injection depth than the applied force. While conducted in porcine tissue, the study provides useful insights into the relative effects of shield size and applied force. Further investigations in humans are needed to confirm the predicted injection depths for AIs.
Collapse
Affiliation(s)
- Anne-Sofie Madsen Staples
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk A/S, Device and Delivery Solutions, Hillerød, Denmark
| | - Mette Poulsen
- Novo Nordisk A/S, Device and Delivery Solutions, Hillerød, Denmark
| | | | | | - Marie Sand Traberg
- Novo Nordisk A/S, Device and Delivery Solutions, Hillerød, Denmark
- Department of Health Technology Ultrasound and Biomechanics, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Imaging of large volume subcutaneous deposition using MRI: exploratory clinical study results. Drug Deliv Transl Res 2023:10.1007/s13346-023-01318-7. [PMID: 36913105 PMCID: PMC10382358 DOI: 10.1007/s13346-023-01318-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Subcutaneous (SC) delivery is a preferred route of administration for biotherapeutics but has predominantly been limited to volumes below 3 mL. With higher volume drug formulations emerging, understanding large volume SC (LVSC) depot localization, dispersion, and impact on the SC environment has become more critical. The aim of this exploratory clinical imaging study was to assess the feasibility of magnetic resonance imaging (MRI) to identify and characterize LVSC injections and their effect on SC tissue as a function of delivery site and volume. Healthy adult subjects received incremental injections of normal saline up to 5 mL total volume in the arm and up to 10 mL in the abdomen and thigh. MRI images were acquired after each incremental SC injection. Post-image analysis was performed to correct imaging artifacts, identify depot tissue location, create 3-dimensional (3D) SC depot rendering, and estimate in vivo bolus volumes and SC tissue distention. LVSC saline depots were readily achieved, imaged using MRI, and quantified via subsequent image reconstructions. Imaging artifacts occurred under some conditions, necessitating corrections applied during image analysis. 3D renderings were created for both the depot alone and in relation to the SC tissue boundaries. LVSC depots remained predominantly within the SC tissue and expanded with increasing injection volume. Depot geometry varied across injection sites and localized physiological structure changes were observed to accommodate LVSC injection volumes. MRI is an effective means to clinically visualize LVSC depots and SC architecture allowing assessment of deposition and dispersion of injected formulations.Trial Registration: Not applicable for this exploratory clinical imaging study.
Collapse
|
8
|
Hakim MH, Jun BH, Ahmadzadegan A, Babiak PM, Xu Q, Buno KP, Liu JC, Ardekani AM, Vlachos PP, Solorio L. Investigation of macromolecular transport through tunable collagen hyaluronic acid matrices. Colloids Surf B Biointerfaces 2023; 222:113123. [PMID: 36640539 DOI: 10.1016/j.colsurfb.2023.113123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Therapeutic macromolecules possess properties such as size and electrostatic charge that will dictate their transport through subcutaneous (SC) tissue and ultimate bioavailability and efficacy. To improve therapeutic design, platforms that systematically measure the transport of macromolecules as a function of both drug and tissue properties are needed. We utilize a Transwell chamber with tunable collagen-hyaluronic acid (ColHA) hydrogels as an in vitro model to determine mass transport of macromolecules using non-invasive UV spectroscopy. Increasing hyaluronic acid (HA) concentration from 0 to 2 mg/mL within collagen gels decreases the mass transport of five macromolecules independent of size and charge and results in a maximum decrease in recovery of 23.3% in the case of bovine immunoglobulin G (IgG). However, in a pure 10 mg/mL HA solution, negatively-charged macromolecules bovine serum albumin (BSA), β-lactoglobulin (BLg), dextran (Dex), and IgG had drastically increased recovery by 20-40% compared to their performance in ColHA matrices. This result was different from the positively-charged macromolecule Lysozyme (Lys), which, despite its small size, showed reduced recovery by 3% in pure HA. These results demonstrate two distinct regimes of mass transport within our tissue model. In the presence of both collagen and HA, increasing HA concentrations decrease mass transport; however, in the absence of collagen, the high negative charge of HA sequesters and increases residence time of positively-charged macromolecules and decreases residence time of negatively-charged macromolecules. Through our approach, ColHA hydrogels serve as a platform for the systematic evaluation of therapeutic macromolecule transport as a function of molecular characteristics.
Collapse
Affiliation(s)
- Mazin H Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Brian H Jun
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Adib Ahmadzadegan
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kevin P Buno
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Julie C Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Pavlos P Vlachos
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Leng Y, Wang H, de Lucio M, Gomez H. Mixed-dimensional multi-scale poroelastic modeling of adipose tissue for subcutaneous injection. Biomech Model Mechanobiol 2022; 21:1825-1840. [PMID: 36057050 PMCID: PMC9440471 DOI: 10.1007/s10237-022-01622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Subcutaneous injection of therapeutic monoclonal antibodies (mAbs) has gained increasing interest in the pharmaceutical industry. The transport, distribution and absorption of mAbs in the skin after injection are not yet well-understood. Experiments have shown that fibrous septa form preferential channels for fluid flow in the tissue. The majority of mAbs can only be absorbed through lymphatics which follow closely the septa network. Therefore, studying drug transport in the septa network is vital to the understanding of drug absorption. In this work, we present a mixed-dimensional multi-scale (MDMS) poroelastic model of adipose tissue for subcutaneous injection. More specifically, we model the fibrous septa as reduced-dimensional microscale interfaces embedded in the macroscale tissue matrix. The model is first verified by comparing numerical results against the full-dimensional model where fibrous septa are resolved using fine meshes. Then, we apply the MDMS model to study subcutaneous injection. It is found that the permeability ratio between the septa and matrix, volume capacity of the septa network, and concentration-dependent drug viscosity are important factors affecting the amount of drug entering the septa network which are paths to lymphatics. Our results show that septa play a critical role in the transport of mAbs in the subcutaneous tissue, and this role was previously overlooked.
Collapse
Affiliation(s)
- Yu Leng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Hao Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
10
|
Rahimi E, Gomez H, Ardekani AM. Transport and distribution of biotherapeutics in different tissue layers after subcutaneous injection. Int J Pharm 2022; 626:122125. [PMID: 35988855 DOI: 10.1016/j.ijpharm.2022.122125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
The subcutaneous injection is the main route of administration for monoclonal antibodies (mAbs) and several other biotherapeutics due to the patient comfort and cost-effectiveness. However, their transport and distribution after subcutaneous injection is poorly understood. Here, we exploit a three-dimensional poroelastic model to find the biomechanical response of the tissue, including interstitial pressure and tissue deformation during the injection. We quantify the drug concentration inside the tissue. We start with a single-layer model of the tissue. We show that during injection, the difference between the permeability of the solvent and solute will result in a higher drug concentration proportional to the inverse permeability ratio. Then we study the role of tissue layered properties with primary layers, including epidermis, dermis, subcutaneous (SQ), and muscle layers, on tissue biomechanical response to injection and drug transport. We show that the drug will distribute mainly in the SQ layer due to its lower elastic moduli. Finally, we study the effect of secondary tissue elements like the deep fascia layer and the network of septa fibers inside the SQ tissue. We use the Voronoi algorithm to create random geometry of the septa network. We show how drugs accumulate around these tissue components as observed in experimental SQ injection. Next, we study the effect of injection rate on drug concentration. We show how higher injection rates will slightly increase the drug concentration around septa fibers. Finally we demonstrate how the concentration dependent viscosity will increase the concentration of biotherapeutics in the direction of septa fibers. .
Collapse
Affiliation(s)
- Ehsan Rahimi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
Magnetic Resonance Imaging Used to Define the Optimum Needle Length in Pigs of Different Ages. Animals (Basel) 2022; 12:ani12151936. [PMID: 35953925 PMCID: PMC9367419 DOI: 10.3390/ani12151936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Intramuscular injections result in tissue destruction and alteration. Therefore, it is necessary to evaluate the optimum injection point for intramuscular injections. As animals—especially pigs—vary in size and explicit information about injection depth is not available. To determine the predicted optimum injection depth, magnetic resonance imaging was used in pigs of different ages and weight groups. In total, 730 magnetic resonance images of 136 pigs were used to calculate the optimum injection depth for intramuscular injections. Four age groups were evaluated: <29 days of age, 29−70 days of age, 71−117 days of age and >170 days of age. For fattening pigs (71−117 days of age), the present study recommends a needle length of 20 mm (range: 40−58 mm). For younger pigs (<70 days of age), a needle length of 12 to 14 mm (range: 10−18 mm), and for older pigs (>170 days of age), a needle length of 30 mm (range: 25−37 mm) is recommended. However, more data are needed. Therefore, further studies are necessary, especially in the youngest (suckling pigs) and oldest (sows) age groups, as these are the groups mainly injected/vaccinated. Additionally, age and weight should be examined in more detail compared to fat distribution in the neck, genetics and the sex of the animal.
Collapse
|
12
|
Evaluation of Loco-Regional Skin Toxicity Induced by an In Situ Forming Depot after a Single Subcutaneous Injection at Different Volumes and Flow Rates in Göttingen Minipigs. Int J Mol Sci 2021; 22:ijms22179250. [PMID: 34502155 PMCID: PMC8431084 DOI: 10.3390/ijms22179250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
The present study aims to investigate the loco-regional tolerability and injection parameters (i.e., flow rate and administration volume) of an in situ forming depot (ISFD) in Göttingen minipigs, to secure both the therapeutic procedure and compliance in chronic medical prescriptions. The ISFD BEPO® technology (MedinCell S.A.) is investigated over 10 days, after a single subcutaneous injection of test item based on a DMSO solution of diblock and triblock polyethylene glycol-polylactic acid copolymers. Injection sites are systematically observed for macroscopic loco-regional skin reactions as well as ultrasound scanning, enabling longitudinal in vivo imaging of the depot. Observations are complemented by histopathological examinations at 72 h and 240 h post-injection. Overall, no treatment-emergent adverse effects are macroscopically or microscopically observed at the subcutaneous injection sites, for the tested injection flow rates of 1 and 8 mL/min and volumes of 0.2 and 1 mL. The histopathology examination confirms an expected foreign body reaction, with an intensity depending on the injected volume. The depot morphology is similar irrespective of the administration flow rates. These results indicate that the ISFD BEPO® technology can be considered safe when administered subcutaneously in Göttingen minipigs, a human-relevant animal model for subcutaneous administrations, in the tested ranges.
Collapse
|
13
|
Shahriar M, Rewanwar A, Rohilla P, Marston J. Understanding the effect of counterpressure buildup during syringe injections. Int J Pharm 2021; 602:120530. [PMID: 33811964 DOI: 10.1016/j.ijpharm.2021.120530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022]
Abstract
The pain felt during injection, typically delivered via a hypodermic needle as a single bolus, is associated with the pressure build-up around the site of injection. It is hypothesized that this counterpressure is a function of the target tissue as well as fluid properties. Given that novel vaccines target different tissues (muscle, adipose, and skin) and can exhibit a wide range of fluid properties, we conducted a study of the effect of volumetric flow rate, needle size, viscosity and rheology of fluid, and hyaluronidase as an adjuvant on counterpressure build-up in porcine skin and muscle tissues. In particular, we found a significant increase in counterpressure for intradermal (ID) injections compared to intramuscular (IM) injections, by an order of magnitude in some cases. We also showed that the addition of adjuvant affected the tissue back pressure only in case of subcutaneous (SC) injections. We observed that the volumetric flow rate plays an important role along with the needle size. This study aims to improve the current understanding and limitations of liquid injectability via hypodermic needles, however, the results also have implications for other technologies, such as intradermal jet injection where a liquid bleb is formed under the skin.
Collapse
Affiliation(s)
- Md Shahriar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Ankit Rewanwar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Pankaj Rohilla
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Jeremy Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
14
|
Boone CE, Wang C, Lopez-Ramirez MA, Beiss V, Shukla S, Chariou PL, Kupor D, Rueda R, Wang J, Steinmetz NF. Active Microneedle Administration of Plant Virus Nanoparticles for Cancer in situ Vaccination Improves Immunotherapeutic Efficacy. ACS APPLIED NANO MATERIALS 2020; 3:8037-8051. [PMID: 33969278 PMCID: PMC8101548 DOI: 10.1021/acsanm.0c01506] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The solid tumor microenvironment (TME) poses a significant structural and biochemical barrier to immunotherapeutic agents. To address the limitations of tumor penetration and distribution, and to enhance antitumor efficacy of immunotherapeutics, we present here an autonomous active microneedle (MN) system for the direct intratumoral (IT) delivery of a potent immunoadjuvant, cowpea mosaic virus nanoparticles (CPMV) in vivo. In this active delivery system, magnesium (Mg) microparticles embedded into active MNs react with the interstitial fluid in the TME, generating a propulsive force to drive the nanoparticle payload into the tumor. Active delivery of CPMV payload into B16F10 melanomas in vivo demonstrated substantially more pronounced tumor regression and prolonged survival of tumor-bearing mice compared to that of passive MNs and conventional needle injection. Active MN administration of CPMV also enhanced local innate and systemic adaptive antitumor immunity. Our approach represents an elaboration of conventional CPMV in situ vaccination, highlighting substantial immune-mediated antitumor effects and improved therapeutic efficacy that can be achieved through an active and autonomous delivery system-mediated CPMV in situ vaccination.
Collapse
Affiliation(s)
- Christine E. Boone
- Department of Radiology, UC San Diego Health, University of California, San Diego, La Jolla California 92093, United States
| | - Chao Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Miguel Angel Lopez-Ramirez
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Veronique Beiss
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Sourabh Shukla
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Paul L. Chariou
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Daniel Kupor
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ricardo Rueda
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering (nanoIE), University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F. Steinmetz
- Department of Radiology, UC San Diego Health, University of California, San Diego, La Jolla California 92093, United States
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, UC San Diego Health, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering (nanoIE), University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Novel application of synchrotron x-ray computed tomography for ex-vivo imaging of subcutaneously injected polymeric microsphere suspension formulations. Pharm Res 2020; 37:97. [PMID: 32409985 PMCID: PMC7225200 DOI: 10.1007/s11095-020-02825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 11/13/2022]
Abstract
Purpose Subcutaneously or intramuscularly administered biodegradable microsphere formulations have been successfully exploited in the management of chronic conditions for over two decades, yet mechanistic understanding of the impact of formulation attributes on in vivo absorption rate from such systems is still in its infancy. Methods Suspension formulation physicochemical attributes may impact particulate deposition in subcutaneous (s.c.) tissue. Hence, the utility of synchrotron X-ray micro-computed tomography (μCT) for assessment of spatial distribution of suspension formulation components (PLG microspheres and vehicle) was evaluated in a porcine s.c. tissue model. Optical imaging of dyed vehicle and subsequent microscopic assessment of microsphere deposition was performed in parallel to compare the two approaches. Results Our findings demonstrate that synchrotron μCT can be applied to the assessment of microsphere and vehicle distribution in s.c. tissue, and that microspheres can also be visualised in the absence of contrast agent using this approach. The technique was deemed superior to optical imaging of macrotomy for the characterisation of microsphere deposition owing to its non-invasive nature and relatively rapid data acquisition time. Conclusions The method outlined in this study provides a proof of concept feasibility for μCT application to determining the vehicle and suspended PLG microspheres fate following s.c. injection. A potential application for our findings is understanding the impact of injection, device and formulation variables on initial and temporal depot geometry in pre-clinical or ex-vivo models that can inform product design. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11095-020-02825-9) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Eisler G, Kastner JR, Torjman MC, Khalf A, Diaz D, Dinesen AR, Loeum C, Thakur ML, Strasma P, Joseph JI. In vivo investigation of the tissue response to commercial Teflon insulin infusion sets in large swine for 14 days: the effect of angle of insertion on tissue histology and insulin spread within the subcutaneous tissue. BMJ Open Diabetes Res Care 2019; 7:e000881. [PMID: 31875136 PMCID: PMC6904176 DOI: 10.1136/bmjdrc-2019-000881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 11/04/2022] Open
Abstract
Objective This study investigated the effects of the inflammatory tissue response (ITR) to an insulin infusion set (IIS) on insulin bolus spread over wear time, as well as the effect of cannula insertion angle on the ITR, bolus shape, and pump tubing pressure. Research design and methods Angled or straight IISs were inserted every other day for 14 days into the subcutaneous tissue of 11 swine and insulin was delivered continuously. Prior to euthanasia, a 70 µL bolus of insulin/X-ray contrast agent was infused while recording a pressure profile (peak tubing pressure, pmax; area under the pressure curve, AUC), followed by the excision of the tissue-catheter specimen. Bolus surface area (SA) and volume (V) were assessed via micro-CT. Tissue was stained to analyze total area of inflammation (TAI) and inflammatory layer thickness (ILT) surrounding the cannula. Results A bolus delivered through an angled IIS had a larger mean SA than a bolus delivered through a straight cannula (314.0±84.2 mm2 vs 229.0±99.7 mm2, p<0.001) and a larger volume (198.7±66.9 mm3 vs 145.0±65.9 mm3, p=0.001). Both decreased significantly over wear time, independent of angle. There was a significant difference in TAI (angled, 9.1±4.0 mm2 vs straight, 14.3±8.6 mm2, p<0.001) and ILT (angled, 0.7±0.4 vs straight, 1.2±0.7 mm, p<0.001). pmax (p=0.005) and AUC (p=0.014) were lower using angled IIS. As ILT increased, pmax increased, while SA and V decreased. Conclusions The progression of the ITR directly affected bolus shape and tubing pressure. Although straight insertion is clinically preferred, our data suggest that an angled IIS elicits lower grades of ITR and delivers a bolus with lower tubing pressure and greater SA and V. The subcutaneous environment plays a crucial role in IIS longevity, and the insertion angle needs to be considered in future IIS designs and clinical trials.
Collapse
Affiliation(s)
- Gabriella Eisler
- Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jasmin R Kastner
- Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Marc C Torjman
- Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdurizzagh Khalf
- Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David Diaz
- Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alek R Dinesen
- Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Channy Loeum
- Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mathew L Thakur
- Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paul Strasma
- Capillary Biomedical, Inc, Irvine, California, USA
| | - Jeffrey I Joseph
- Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Gradel AKJ, Porsgaard T, Brockhoff PB, Seested T, Lykkesfeldt J, Refsgaard HHF. Delayed insulin absorption correlates with alterations in subcutaneous depot kinetics in rats with diet-induced obesity. Obes Sci Pract 2019; 5:281-288. [PMID: 31275602 PMCID: PMC6587326 DOI: 10.1002/osp4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Obesity is associated with delayed insulin absorption upon subcutaneous (s.c.) dosing in humans. The aim of this study was to investigate whether alterations in depot structure and kinetics of the s.c. injection depot contribute to this delay. METHODS Rats fed a high-fat diet (HFD) and low-fat diet (LFD) were included in a series of insulin pharmacokinetic and imaging studies. Injection depots were visualized with micro X-ray computed tomography imaging upon s.c. administration of insulin aspart mixed with the contrast agent iomeprol, and insulin aspart exposure was measured by means of luminescent oxygen channelling immunoassay. RESULTS Body weight and fat mass were increased in rats fed an HFD vs. LFD (p < 0.05), whereas the lean mass was not. The HFD group exhibited delayed insulin absorption from the s.c. tissue (p < 0.001). This delay was associated with smaller injection depots upon s.c. dosing (p < 0.05) and correlated with a slower depot disappearance from the s.c. tissue (p < 0.05) compared with the LFD group. Depot disappearance from the s.c. tissue was inversely correlated with body fat mass (p < 0.05). CONCLUSIONS Alterations in s.c. injection depot structure and kinetics may play a role in the obesity-associated delay in insulin absorption.
Collapse
Affiliation(s)
- A. K. J. Gradel
- Department of Veterinary and Animal Sciences, Section of Experimental Animal Models, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - T. Porsgaard
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - P. B. Brockhoff
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKgs. LyngbyDenmark
| | - T. Seested
- Global Drug Discovery, Novo Nordisk A/SMåløvDenmark
| | - J. Lykkesfeldt
- Department of Veterinary and Animal Sciences, Section of Experimental Animal Models, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | |
Collapse
|
18
|
Rini C, Roberts BC, Morel D, Klug R, Selvage B, Pettis RJ. Evaluating the Impact of Human Factors and Pen Needle Design on Insulin Pen Injection. J Diabetes Sci Technol 2019; 13:533-545. [PMID: 30880448 PMCID: PMC6501541 DOI: 10.1177/1932296819836987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Limited published data exists quantifying the influence of human factors (HF) and pen needle (PN) design on delivery outcomes of pen injection systems. This preclinical in vivo study examines the impact of PN hub design and applied force against the skin during injection on needle penetration depth (NPD). METHOD To precisely locate injection depth, PN injections (20 µl; 2 IU, U-100 volume equivalent) of iodinated contrast agent were administered to the flank of Yorkshire swine across a range of clinically relevant application forces against the skin (0.25, 0.75, 1.25, and 2.0 lbf). The NPD, representing in vivo needle tip depth in SC tissue, from four 32 G × 4 mm PN devices (BD Nano™ 2nd Gen and three commercial posted-hub PN devices; n = 75/device/force, 1200 total) was measured by fluoroscopic imaging of the resulting depot. RESULTS The reengineered hub design more closely achieved the 4 mm target NPD with significantly less variability ( P = .006) than commercial posted-hub PN devices across the range of applied injection forces. Calculations of IM (intramuscular) injection risk completed through in silico probability model, using NPD and average human tissue thickness measurements, displayed a commensurate reduction (~2-8x) compared to conventional PN hub designs. CONCLUSIONS Quantifiable differences in injection depth were observed between identical labeled length PN devices indicating that hub design features, coupled with aspects of variable injection technique, may influence injection depth accuracy and consistency. The reengineered hub design may reduce the impact of unintended individual technique differences by improving target injection depth consistency and reducing IM injection potential.
Collapse
Affiliation(s)
- Christopher Rini
- BD Technologies and Innovation, Research Triangle Park, NC, USA
- Christopher Rini, MS, BD Technologies and Innovation, 21 Davis Dr, Research Triangle Park, NC 27709, USA.
| | | | | | - Rick Klug
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | | | | |
Collapse
|
19
|
Zijlstra E, Jahnke J, Fischer A, Kapitza C, Forst T. Impact of Injection Speed, Volume, and Site on Pain Sensation. J Diabetes Sci Technol 2018; 12:163-168. [PMID: 28990437 PMCID: PMC5761988 DOI: 10.1177/1932296817735121] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Painful subcutaneous insulin injections may decrease treatment compliance. Improving injection comfort therefore represents a particular area of technological research in which steady progress has been made since the introduction of the insulin pen in 1985. Injection pain can be influenced by many variables, but relatively little is known about their impact. This study investigated the impact of injection volume (range 0-2250 µL), speed (range 0-800 µL/sec), and site (abdomen vs thigh) on pain sensation. METHOD In random order, patients (n = 80) with type 1 or type 2 diabetes received 24 saline injections subcutaneously through a 27G ultra-thin-wall needle. Injections were performed in the abdomen (n = 19) and thigh (n = 5) with predefined speed-volume combinations. For each injected speed-volume combination, patients scored their pain sensation on a 100 mm visual analog scale (VAS). RESULTS The mean pain scores for speed-volume combinations were all in the lower part (<20 mm) of the VAS, indicating zero to mild pain. Pain sensation was statistically higher ( P < .05) with the 2250 µL volume compared to other injection volumes (range 4.3-5.1 mm) and with thigh compared to abdomen injections (2.1 mm). Pain sensation did not change with increasing injection speed. Patient acceptance of the injection pain was high for all injections (range 93.7-98.7%). CONCLUSIONS In summary, large volume and thigh injections are rated more painful, but the clinical impact of these findings is likely marginal considering the low absolute pain levels and high patient acceptance rates. Injection speed does not influence pain sensation.
Collapse
Affiliation(s)
- Eric Zijlstra
- Profil, Neuss, Germany
- Eric Zijlstra, PhD, Profil, Hellersbergstrasse 9, Neuss, 41460, Germany.
| | | | | | | | | |
Collapse
|
20
|
Kim H, Park H, Lee SJ. Effective method for drug injection into subcutaneous tissue. Sci Rep 2017; 7:9613. [PMID: 28852051 PMCID: PMC5575294 DOI: 10.1038/s41598-017-10110-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/03/2017] [Indexed: 11/09/2022] Open
Abstract
Subcutaneous injection of drug solution is widely used for continuous and low dose drug treatment. Although the drug injections have been administered for a long time, challenges in the design of injection devices are still needed to minimize the variability, pain, or skin disorder by repeated drug injections. To avoid these adverse effects, systematic study on the effects of injection conditions should be conducted to improve the predictability of drug effect. Here, the effects of injection conditions on the drug permeation in tissues were investigated using X-ray imaging technique which provides real-time images of drug permeation with high spatial resolution. The shape and concentration distribution of the injected drug solution in the porcine subcutaneous and muscle tissues are visualized. Dynamic movements of the wetting front (WF) and temporal variations of water contents in the two tissues are quantitatively analyzed. Based on the quantitative analysis of the experimental data, the permeability of drug solution through the tissues are estimated according to permeation direction, injection speed, and tissue. The present results would be helpful for improving the performance of drug injection devices and for predicting the drug efficacy in tissues using biomedical simulation.
Collapse
Affiliation(s)
- Hyejeong Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Gyeongsangbuk, Republic of Korea
| | - Hanwook Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Gyeongsangbuk, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Gyeongsangbuk, Republic of Korea.
| |
Collapse
|