1
|
Silnitsky S, Rubin SJS, Zerihun M, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Int J Mol Sci 2023; 24:17600. [PMID: 38139428 PMCID: PMC10743896 DOI: 10.3390/ijms242417600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).
Collapse
Affiliation(s)
- Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| |
Collapse
|
2
|
Oh ES, Ryu HW, Kim MO, Lee JW, Song YN, Park JY, Kim DY, Ro H, Lee J, Kim TD, Hong ST, Lee SU, Oh SR. Verproside, the Most Active Ingredient in YPL-001 Isolated from Pseudolysimachion rotundum var. subintegrum, Decreases Inflammatory Response by Inhibiting PKCδ Activation in Human Lung Epithelial Cells. Int J Mol Sci 2023; 24:ijms24087229. [PMID: 37108390 PMCID: PMC10138391 DOI: 10.3390/ijms24087229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease which causes breathing problems. YPL-001, consisting of six iridoids, has potent inhibitory efficacy against COPD. Although YPL-001 has completed clinical trial phase 2a as a natural drug for COPD treatment, the most effective iridoid in YPL-001 and its mechanism for reducing airway inflammation remain unclear. To find an iridoid most effectively reducing airway inflammation, we examined the inhibitory effects of the six iridoids in YPL-001 on TNF or PMA-stimulated inflammation (IL-6, IL-8, or MUC5AC) in NCI-H292 cells. Here, we show that verproside among the six iridoids most strongly suppresses inflammation. Both TNF/NF-κB-induced MUC5AC expression and PMA/PKCδ/EGR-1-induced IL-6/-8 expression are successfully reduced by verproside. Verproside also shows anti-inflammatory effects on a broad range of airway stimulants in NCI-H292 cells. The inhibitory effect of verproside on the phosphorylation of PKC enzymes is specific to PKCδ. Finally, in vivo assay using the COPD-mouse model shows that verproside effectively reduces lung inflammation by suppressing PKCδ activation and mucus overproduction. Altogether, we propose YPL-001 and verproside as candidate drugs for treating inflammatory lung diseases that act by inhibiting PKCδ activation and its downstream pathways.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Jae-Won Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinhyuk Lee
- Disease Target Structure Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| |
Collapse
|
3
|
Li S, Huang Q, Zhou D, He B. PRKCD as a potential therapeutic target for chronic obstructive pulmonary disease. Int Immunopharmacol 2022; 113:109374. [DOI: 10.1016/j.intimp.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
4
|
Brunner J, Schvartz D, Gouiller A, Hainard A, Borchard G. Impact of peptide permeation enhancer on tight junctions opening cellular mechanisms. Biochem Biophys Rep 2022; 32:101375. [PMID: 36324528 PMCID: PMC9618981 DOI: 10.1016/j.bbrep.2022.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The myristoylated pentapeptide, L-R5, contains an amino acid sequence of the zeta inhibitory peptide (ZIP) portion (pseudosubstrate) of protein kinase C zeta (PKC ζ). As PKC ζ is involved in the modulation of epithelial tight junctions (TJs) through the phosphorylation of TJ proteins, L-R5 was suggested to interact with the enzyme resulting in the enhancement of paracellular permeability. This study shows that L-R5 does not bind to the enzyme but interacts directly with TJ proteins. We show here that the binding of PKC ζ to occludin and its successive phosphorylation is prevented by L-R5, which leads to TJ disruption and enhanced epithelial permeability. Although L-R5 did not show any in vitro cytotoxicity, a proteomics study revealed that L-R5 interferes with other regulatory pathways, e.g., apoptosis and immune response. We suggest that structural modification of the peptide may increase the specificity TJ protein-peptide interaction. Microscale thermophoresis (MST) showed robust results for protein bindings. The competitivity of L-R5 peptide for the binding of occludin-PKC zeta was shown. Tight junctions proteins expression was decreased due to L-R5 peptide. Multiple other mechanisms can be explored to use L-R5 for other therapies.
Collapse
Affiliation(s)
- Joël Brunner
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Domitille Schvartz
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Gouiller
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Alexandre Hainard
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland,Corresponding author.
| |
Collapse
|
5
|
Sun XW, Lin YN, Ding YJ, Li SQ, Li HP, Zhou JP, Zhang L, Shen JM, Li QY. Surfaxin attenuates PM2.5-induced airway inflammation via restoring surfactant proteins in rats exposed to cigarette smoke. ENVIRONMENTAL RESEARCH 2022; 203:111864. [PMID: 34389351 DOI: 10.1016/j.envres.2021.111864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/27/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Epidemiologic studies have shown that the fine particulate matter 2.5 (PM2.5) exaggerates chronic airway inflammation involving in acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Surfactant proteins (SPs) decreases significantly related to airflow limitation and airway inflammation. However, how to restore the reduction of SPs levels in airway inflammation exposed to PM2.5 has not been well understood. In the present study, the SPs including SPA, SPB, SPC and SPD levels in bronchoalveolar lavage fluid (BALF) were detected from patients with stable COPD. Rats were exposed to cigarette smoke and PM2.5. After given with Surfaxin, the expression of SPs, protein kinase C (PKC) and tight junction protein (ZO-1) in lung tissue and the levels of C-reactive protein (CRP) and fibrinogen (FIB) in plasma was observed. The results showed that SPA, SPB and SPD were significantly lower than those of the control group (p < 0.01). PM2.5 aggravated smoking-induced airway inflammation and oxidative stress demonstrated by pathological changes of lung tissue and increased levels of CRP and PKC in vivo. PM2.5 decreased the expression of all the SPs and ZO-1, which could be significantly restored by Surfaxin. These findings indicate that Surfaxin protects the alveolar epithelium from PM2.5 in airway inflammation through increasing SPs.
Collapse
Affiliation(s)
- Xian Wen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Ni Lin
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Jie Ding
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi Qi Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Peng Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Ping Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Min Shen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev 2021; 171:266-288. [PMID: 33617902 DOI: 10.1016/j.addr.2021.02.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Intercellular tight junctions represent a formidable barrier against paracellular drug absorption at epithelia (e.g., nasal, intestinal) and the endothelium (e.g., blood-brain barrier). In order to enhance paracellular transport of drugs and increase their bioavailability and organ deposition, active excipients modulating tight junctions have been applied. First-generation of permeation enhancers (PEs) acted by unspecific interactions, while recently developed PEs address specific physiological mechanisms. Such target specific tight junction modulators (TJMs) have the advantage of a defined specific mechanism of action. To date, merely a few of these novel active excipients has entered into clinical trials, as their lack in safety and efficiency in vivo often impedes their commercialisation. A stronger focus on the development of such active excipients would result in an economic and therapeutic improvement of current and future drugs.
Collapse
Affiliation(s)
- Joël Brunner
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Sakthikumar Ragupathy
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
7
|
Kasemsuk T, Phuagkhaopong S, Yubolphan R, Rungreangplangkool N, Vivithanaporn P. Cadmium induces CCL2 production in glioblastoma cells via activation of MAPK, PI3K, and PKC pathways. J Immunotoxicol 2020; 17:186-193. [DOI: 10.1080/1547691x.2020.1829211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Thitima Kasemsuk
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Suttinee Phuagkhaopong
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruedeemars Yubolphan
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
8
|
Schmitz C, Welck J, Tavernaro I, Grinberg M, Rahnenführer J, Kiemer AK, van Thriel C, Hengstler JG, Kraegeloh A. Mechanical strain mimicking breathing amplifies alterations in gene expression induced by SiO 2 NPs in lung epithelial cells. Nanotoxicology 2019; 13:1227-1243. [PMID: 31418614 DOI: 10.1080/17435390.2019.1650971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of engineered nanomaterials on human health are still intensively studied in order to facilitate their safe application. However, relatively little is known how mechanical strain as induced in alveolar epithelial cells by breathing movements modifies biological responses to nanoparticles (NPs). In this study, A549 cells as a model for alveolar epithelial cells were exposed to 25 nm amorphous colloidal silica NPs under dynamic and static culture conditions. Gene array data, qPCR, and ELISA revealed an amplified effect of NPs when cells were mechanically stretched in order to model the physiological mechanical deformation during breathing. In contrast, treatment of cells with either strain or NPs alone only led to minor changes in gene expression or interleukin-8 (IL-8) secretion. Confocal microscopy revealed that stretching does not lead to an increased internalization of NPs, indicating that elevated intracellular NP accumulation is not responsible for the observed effect. Gene expression alterations induced by combined exposure to NPs and mechanical strain showed a high similarity to those known to be induced by TNF-α. This study suggests that the inclusion of mechanical strain into in vitro models of the human lung may have a strong influence on the test results.
Collapse
Affiliation(s)
- Carmen Schmitz
- INM-Leibniz Institute for New Materials , Saarbrücken , Germany.,Department of Pharmacy, Pharmaceutical Biology, Saarland University , Saarbrücken , Germany
| | - Jennifer Welck
- INM-Leibniz Institute for New Materials , Saarbrücken , Germany
| | | | - Marianna Grinberg
- Department of Statistics, TU Dortmund University , Dortmund , Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University , Dortmund , Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University , Saarbrücken , Germany
| | - Christoph van Thriel
- IfADo-Leibniz Research Centre for Working Environment and Human Factors , Dortmund , Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors , Dortmund , Germany
| | | |
Collapse
|
9
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
10
|
Abdel-Halim M, Abadi AH, Engel M. Design and synthesis of novel 1,3,5-triphenyl pyrazolines as potential anti-inflammatory agents through allosteric inhibition of protein kinase Czeta (PKCζ). MEDCHEMCOMM 2018; 9:1076-1082. [PMID: 30108997 PMCID: PMC6072096 DOI: 10.1039/c8md00100f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023]
Abstract
Much light has been shed on the vital role of protein kinase Czeta (PKCζ) in NF-κB activation and the potential use of PKCζ inhibitors as anti-inflammatory agents. We previously reported a series of 1,3,5-trisubstituted pyrazolines as potent and selective allosteric inhibitors of PKCζ; in that series of compounds, the phenolic OH at the 5-phenyl was essential for binding to the PKCζ PIF pocket. In the present study, we surprisingly found that replacing it by a halogen and at the same time moving the OH to the 3-phenyl still resulted in active compounds. An extension of this class of compounds with a new focused library is presented herein, where the phenolic OH at the 5-phenyl, which was reported to be an irreplaceable feature for activity, was moved to the 3-phenyl and replaced by halogen. The new set of compounds maintained the same level of potency against PKCζ and selectivity against PKC isoforms, and showed reduced potency against the PIF pocket mutant PKCζ[Val297Leu]. Of note, the repositioning of the key functional groups resulted in a marked enhancement of cellular potency. One of the most potent new PKCζ inhibitors, 2h, was able to suppress NO production in RAW 264.7 macrophage cells with 8 times higher efficacy than the previous series, and inhibited the NF-κB transcriptional activity in U937 cells with a sub-micromolar IC50.
Collapse
Affiliation(s)
- Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy and Biotechnology , German University in Cairo , Cairo 11835 , Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy and Biotechnology , German University in Cairo , Cairo 11835 , Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3 , D-66123 Saarbrücken , Germany . ; http://www.pharmmedchem.de ; ; Tel: +49 681 302 70312
| |
Collapse
|
11
|
Cai X, Zhu H, Li Y. PKCζ, MMP‑2 and MMP‑9 expression in lung adenocarcinoma and association with a metastatic phenotype. Mol Med Rep 2017; 16:8301-8306. [PMID: 28983601 DOI: 10.3892/mmr.2017.7634] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate protein kinase C ζ type (PKCζ), matrix metalloproteinase (MMP)‑2 and MMP‑9 expression in lung adenocarcinoma and to define their association with in vitro invasion and metastatic capacity. PKCζ, MMP‑2 and MMP‑9 expression was assessed by immunohistochemistry in 110 cases of lung adenocarcinoma. PKCζ small interfering (si)RNA was transfected into A549 cells, and western blotting was used to confirm PKCζ‑knockdown in transfected cells and to measure MMP‑2 and MMP‑9 levels. A Transwell invasion assay was used to detect in vitro invasive capacity. The rates of positive PKCζ, MMP‑2 and MMP‑9 staining in lung adenocarcinoma tissues were 52.73, 55.45 and 61.82%, respectively. PKCζ expression was increased in malignant tissues compared with adjacent normal lung tissues and was associated with lymph node metastasis (P<0.05), although it was not associated with any other clinicopathological parameters, including sex, age, tumor size, smoking status or distant metastases (all P>0.05). PKCζ, MMP‑2 and MMP‑9 expression was markedly decreased in siPKCζ‑treated A549 cells, which exhibited a significantly decreased invasive capacity in the Transwell invasion assay (P<0.05). In conclusion, PKCζ promoted lung adenocarcinoma invasion and metastasis, and its expression was associated with MMP‑2 and MMP‑9 expression. PKCζ may be a potential target for gene therapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaoshan Cai
- Department of Pathology, Second People's Hospital of Weifang, Weifang, Shandong 261041, P.R. China
| | - Hongguang Zhu
- Department of Dentistry, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Ying Li
- Department of Pathology, Second People's Hospital of Weifang, Weifang, Shandong 261041, P.R. China
| |
Collapse
|