1
|
Trunov D, Francisco Wilson J, Ježková M, Šrom O, Beranek J, Dammer O, Šoóš M. Monitoring of particle sizes distribution during Valsartan precipitation in the presence of nonionic surfactant. Int J Pharm 2021; 600:120515. [PMID: 33774163 DOI: 10.1016/j.ijpharm.2021.120515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Particle size is a key parameter when dealing with drug particle formation, delivery or dissolution. The correct measurement of particle size depends on various factors, such as sample preparation or dilution, but also on the choice of method for its characterization. In this work, we study the process of precipitation of poorly water-soluble drug Valsartan from supersaturated solution in the presence of nonionic surfactant Tween 20. Several techniques including dynamic light scattering (DLS) operated in several measuring modes, optical microscope (OM) and static light scattering (SLS) were used to analyze the kinetics of particle formation. As concluded by the results, the increase in turbidity of the solution seriously limits the application of classical DLS to properly measure the particle size and polydispersity. One way to get around this restriction is by dilution, which however results in a decrease in the size of Valsartan particles in the studied population. In contrast, here we present for a first time technique based on modulated 3D cross correlation DLS equipped with the sample goniometer to determine size of submicron particles of the drug in highly turbid solutions. Additionally, a modified OM was used to measure micron-sized particles for samples without any dilution in a continuous mode. Measured particle sizes combined with measured Valsartan concentration allowed us to identify mechanism responsible for the particle formation from supersaturated solutions. The main mechanism, as it is shown in this work, is covering surface of precipitate particles by the amount of used Tween 20.
Collapse
Affiliation(s)
- Dan Trunov
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic.
| | - Jose Francisco Wilson
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic
| | - Martina Ježková
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic
| | - Ondřej Šrom
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic
| | - Josef Beranek
- Zentiva, k.s., U Kabelovny 130, 102 00 Prague 10, Czech Republic
| | - Ondřej Dammer
- Zentiva, k.s., U Kabelovny 130, 102 00 Prague 10, Czech Republic
| | - Miroslav Šoóš
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic.
| |
Collapse
|
2
|
Luo Y, Hong Y, Shen L, Wu F, Lin X. Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS PharmSciTech 2021; 22:34. [PMID: 33404984 DOI: 10.1208/s12249-020-01909-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Polyvinylpyrrolidone (PVP), a non-ionic polymer, has been employed in multifarious fields such as paper, fibers and textiles, ceramics, and pharmaceutics due to its superior properties. Especially in pharmacy, the properties of inertness, non-toxicity, and biocompatibility make it a versatile excipient for both conventional formulations and novel controlled or targeted delivery systems, serving as a binder, coating agent, suspending agent, pore-former, solubilizer, stabilizer, etc. PVP with different molecular weights (MWs) and concentrations is used in a variety of formulations for different purposes. In this review, PVP-related researches mainly in recent 10 years were collected, and its main pharmaceutical applications were summarized as follows: (i) improving the bioavailability and stability of drugs, (ii) improving the physicomechanical properties of preparations, (iii) adjusting the release rate of drugs, and (iv) prolonging the in vivo circulation time of liposomes. Most of these applications could be explained by the viscosity, solubility, hydrophilicity, and hydrogen bond-forming ability of PVP, and the specific action mechanisms for each application were also tried to figure out. The effect of PVP on bioavailability improvement establishes it as a promising polymer in the emerging controlled or targeted formulations, attracting growing interest on it. Therefore, given its irreplaceability and tremendous opportunities for future developments, this review aims to provide an informative reference about current roles of PVP in pharmacy for interested readers.
Collapse
|
3
|
Zheng C, Li Y, Peng Z, He X, Tao J, Ge L, Sun Y, Wu Y. A composite nanocarrier to inhibit precipitation of the weakly basic drug in the gastrointestinal tract. Drug Deliv 2020; 27:712-722. [PMID: 32397763 PMCID: PMC7269033 DOI: 10.1080/10717544.2020.1760402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For weakly basic drugs, the sharp decrease of drug solubility and the following drug precipitation after drugs transferring from the gastric fluid to the intestinal fluid in the gastrointestinal (GI) tract is a main reason for the poor oral bioavailability of drugs. Here, an anticoagulant dabigatran etexilate (DE) was used as a model drug, and a composite nanocarrier system of DE was developed to improve the drug dissolution by decreasing the drug leakage in the stomach and inhibiting the drug precipitation in the intestinal tract. With the encapsulation of drugs in nanocarriers, the precipitation percentage of DE in composite nanocarriers was 22.25 ± 3.88% in simulated intestinal fluid, which was far below that of the commercial formulation. Moreover, the relative bioavailability of DE-loaded composite nanocarriers (456.58%) was greatly enhanced and the peak of its activated partial thromboplastin time was also significantly prolonged (p < .01) compared with the commercial formulation, indicating that the anticoagulant effect of DE was effectively improved. Therefore, the designed composite nanocarrier system of DE presents great potentials in improving the therapeutic efficiency and expanding the clinical applications of poorly water-soluble weakly basic drugs.
Collapse
Affiliation(s)
- Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yun Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Zhen Peng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Xinyi He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Juan Tao
- School of Pharmacy and Traditional Chinese Pharmacy, Jiangsu College of Nursing, Huaian, China
| | - Liang Ge
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yixin Sun
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yunkai Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Boleslavská T, Světlík S, Žvátora P, Bosák J, Dammer O, Beránek J, Kozlík P, Křížek T, Kutinová Canová N, Šíma M, Slanař O, Štěpánek F. Preclinical evaluation of new formulation concepts for abiraterone acetate bioavailability enhancement based on the inhibition of pH-induced precipitation. Eur J Pharm Biopharm 2020; 151:81-90. [PMID: 32298757 DOI: 10.1016/j.ejpb.2020.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Abiraterone acetate is a potent drug used for the treatment of metastatic castration resistant prostate cancer. However, currently marketed product containing crystalline abiraterone acetate exhibits strong positive food effect which results in strict dosing regimen. In the present work, a rational approach towards design of novel abiraterone acetate formulations that would allow increased bioavailability on a fasting stomach and thus decreased food effect is presented. Precipitation experiments in biorelevant media were designed to assess pH induced precipitation of the drug and a pool of polymeric excipients was then screened for their potential to inhibit precipitation. The best performing polymeric excipients were subsequently used as carriers for the preparation of amorphous solid dispersions. Two main approaches were followed in order to formulate the drug. The first approach relies on the suppression of precipitation from a supersaturated solution whereas the second one is based on the hypothesis that when the release of the drug is tuned, optimal uptake of the drug can be reached. Optimized formulation prototypes were tested in a rat animal model in an incomplete block, randomized bioequivalence study to assess their relative bioavailability under fasting conditions. We show that both formulation approaches lead to increased bioavailability of abiraterone acetate on a fasting stomach with bioavailability in rats being enhanced up to 250% compared to the original drug product containing crystalline drug.
Collapse
Affiliation(s)
- Tereza Boleslavská
- Zentiva, k.s. U Kabelovny 130, 102 37 Prague, Czech Republic; Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Svatopluk Světlík
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Pavel Žvátora
- Zentiva, k.s. U Kabelovny 130, 102 37 Prague, Czech Republic
| | - Jan Bosák
- Zentiva, k.s. U Kabelovny 130, 102 37 Prague, Czech Republic
| | - Ondřej Dammer
- Zentiva, k.s. U Kabelovny 130, 102 37 Prague, Czech Republic
| | - Josef Beránek
- Zentiva, k.s. U Kabelovny 130, 102 37 Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nikolina Kutinová Canová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
5
|
Predicting the Changes in Oral Absorption of Weak Base Drugs Under Elevated Gastric pH Using an In Vitro–In Silico–In Vivo Approach: Case Examples—Dipyridamole, Prasugrel, and Nelfinavir. J Pharm Sci 2019; 108:584-591. [DOI: 10.1016/j.xphs.2018.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022]
|
6
|
Cho JH, Kim JC, Kim HS, Kim DS, Kim KS, Kim YI, Yong CS, Kim JO, Youn YS, Oh KT, Woo JS, Choi HG. Novel dabigatran etexilate hemisuccinate-loaded polycap: Physicochemical characterisation and in vivo evaluation in beagle dogs. Int J Pharm 2017; 525:60-70. [DOI: 10.1016/j.ijpharm.2017.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/20/2017] [Accepted: 04/09/2017] [Indexed: 01/05/2023]
|