1
|
Wang K, Yang Z, Zhang B, Gong S, Wu Y. Adipose-Derived Stem Cell Exosomes Facilitate Diabetic Wound Healing: Mechanisms and Potential Applications. Int J Nanomedicine 2024; 19:6015-6033. [PMID: 38911504 PMCID: PMC11192296 DOI: 10.2147/ijn.s466034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024] Open
Abstract
Wound healing in diabetic patients is frequently hampered. Adipose-derived stem cell exosomes (ADSC-eoxs), serving as a crucial mode of intercellular communication, exhibit promising therapeutic roles in facilitating wound healing. This review aims to comprehensively outline the molecular mechanisms through which ADSC-eoxs enhance diabetic wound healing. We emphasize the biologically active molecules released by these exosomes and their involvement in signaling pathways associated with inflammation modulation, cellular proliferation, vascular neogenesis, and other pertinent processes. Additionally, the clinical application prospects of the reported ADSC-eoxs are also deliberated. A thorough understanding of these molecular mechanisms and potential applications is anticipated to furnish a theoretical groundwork for combating diabetic wound healing.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zihui Yang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Duarte EG, Lopes CF, Gaio DRF, Mariúba JVDO, Cerqueira LDO, Manhanelli MAB, Navarro TP, Castro AA, de Araujo WJB, Pedrosa H, Galli J, de Luccia N, de Paula C, Reis F, Bohatch MS, de Oliveira TF, da Silva AFV, de Oliveira JCP, Joviliano EÉ. Brazilian Society of Angiology and Vascular Surgery 2023 guidelines on the diabetic foot. J Vasc Bras 2024; 23:e20230087. [PMID: 38803655 PMCID: PMC11129855 DOI: 10.1590/1677-5449.202300872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/12/2023] [Indexed: 05/29/2024] Open
Abstract
The diabetic foot interacts with anatomical, vascular, and neurological factors that challenge clinical practice. This study aimed to compile the primary scientific evidence based on a review of the main guidelines, in addition to articles published on the Embase, Lilacs, and PubMed platforms. The European Society of Cardiology system was used to develop recommendation classes and levels of evidence. The themes were divided into six chapters (Chapter 1 - Prevention of foot ulcers in people with diabetes; Chapter 2 - Pressure relief from foot ulcers in people with diabetes; Chapter 3 -Classifications of diabetic foot ulcers; Chapter 4 - Foot and peripheral artery disease; Chapter 5 - Infection and the diabetic foot; Chapter 6 - Charcot's neuroarthropathy). This version of the Diabetic Foot Guidelines presents essential recommendations for the prevention, diagnosis, treatment, and follow-up of patients with diabetic foot, offering an objective guide for medical practice.
Collapse
Affiliation(s)
- Eliud Garcia Duarte
- Hospital Estadual de Urgência e Emergência do Estado do Espírito Santo – HEUE, Departamento de Cirurgia Vascular, Vitória, ES, Brasil.
| | - Cicero Fidelis Lopes
- Universidade Federal da Bahia – UFBA, Departamento de Cirurgia Vascular, Salvador, BA, Brasil.
| | | | | | | | | | - Tulio Pinho Navarro
- Universidade Federal de Minas Gerais – UFMG, Faculdade de Medicina, Belo Horizonte, MG, Brasil.
| | - Aldemar Araújo Castro
- Universidade Estadual de Ciências da Saúde de Alagoas – UNCISAL, Departamento de Cirurgia Vascular, Maceió, AL, Brasil.
| | - Walter Jr. Boim de Araujo
- Sociedade Brasileira de Angiologia e de Cirurgia Vascular – SBACV-PR, Curitiba, PR, Brasil.
- Universidade Federal do Paraná – UFPR, Hospital das Clínicas – HC, Curitiba, PR, Brasil.
| | - Hermelinda Pedrosa
- Hospital Regional de Taguatinga – HRT, Departamento de Cirurgia Vascular, Brasília, DF, Brasil.
| | - Júnio Galli
- Universidade Federal do Paraná – UFPR, Hospital das Clínicas – HC, Curitiba, PR, Brasil.
| | - Nelson de Luccia
- Universidade de São Paulo – USP, Faculdade de Medicina, Hospital das Clínicas – HC, São Paulo, SP, Brasil.
| | - Clayton de Paula
- Rede D’or São Luiz, Departamento de Cirurgia Vascular, São Paulo, SP, Brasil.
| | - Fernando Reis
- Faculdade de Medicina de São José do Rio Preto – FAMERP, Hospital de Base, São José do Rio Preto, SP, Brasil.
| | - Milton Sérgio Bohatch
- Faculdade de Medicina de São José do Rio Preto – FAMERP, Hospital de Base, São José do Rio Preto, SP, Brasil.
| | | | | | - Júlio Cesar Peclat de Oliveira
- Sociedade Brasileira de Angiologia e de Cirurgia Vascular – SBACV-SP, São Paulo, SP, Brasil.
- Universidade Federal do Estado do Rio de Janeiro – UNIRIO, Departamento de Cirurgia Vascular, Rio de Janeiro, RJ, Brasil.
| | - Edwaldo Édner Joviliano
- Sociedade Brasileira de Angiologia e de Cirurgia Vascular – SBACV-SP, São Paulo, SP, Brasil.
- Universidade de São Paulo – USP, Faculdade de Medicina de Ribeirão Preto – FMRP, Departamento de Cirurgia Vascular, Ribeirão Preto, SP, Brasil.
| |
Collapse
|
3
|
Raspovic KM, Schaper NC, Gooday C, Bal A, Bem R, Chhabra A, Hastings M, Holmes C, Petrova NL, Santini Araujo MG, Senneville E, Wukich DK. Diagnosis and treatment of active charcot neuro-osteoarthropathy in persons with diabetes mellitus: A systematic review. Diabetes Metab Res Rev 2024; 40:e3653. [PMID: 37179484 DOI: 10.1002/dmrr.3653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND There are uncertainties regarding the diagnostic criteria, optimal treatment methods, interventions, monitoring and determination of remission of Charcot neuro-osteoarthropathy (CNO) of the foot and ankle in people with diabetes mellitus (DM). The aims of this systematic review are to investigate the evidence for the diagnosis and subsequent treatment, to clarify the objective methods for determining remission and to evaluate the evidence for the prevention of re-activation in people with CNO, DM and intact skin. METHODS We performed a systematic review based on clinical questions in the following categories: Diagnosis, Treatment, Identification of Remission and Prevention of Re-Activation in people with CNO, DM and intact skin. Included controlled studies were assessed for methodological quality and key data from all studies were extracted. RESULTS We identified 37 studies for inclusion in this systematic review. Fourteen retrospective and observational studies relevant to the diagnosis of active CNO with respect to clinical examination, imaging and blood laboratory tests in patients with DM and intact skin were included. We identified 18 studies relevant to the treatment of active CNO. These studies included those focused on offloading (total contact cast, removable/non-removable knee high devices), medical treatment and surgical treatment in the setting of active CNO. Five observational studies were identified regarding the identification of remission in patients who had been treated for active CNO. We did not identify any studies that met our inclusion criteria for the prevention of re-activation in patients with DM and intact skin who had been previously treated for active CNO and were in remission. CONCLUSIONS There is a paucity of high-quality data on the diagnosis, treatment, and prognosis of active CNO in people with DM and intact skin. Further research is warranted to address the issues surrounding this complex disease.
Collapse
Affiliation(s)
- Katherine M Raspovic
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicolaas C Schaper
- Division of Endocrinology, MUMC+, CARIM and CAPHRI Institute, Maastricht, The Netherlands
| | - Catherine Gooday
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Arun Bal
- Secretary, International Association of Diabetic Foot Surgeons, Mumbai, India
| | - Robert Bem
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Hastings
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Crystal Holmes
- The Division of Metabolism, Endocrinology and Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nina L Petrova
- Department of Diabetes, Diabetic Foot Clinic, King's College Hospital NHS Foundation Trust, London, UK
| | | | | | - Dane K Wukich
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Wukich DK, Schaper NC, Gooday C, Bal A, Bem R, Chhabra A, Hastings M, Holmes C, Petrova NL, Santini Araujo MG, Senneville E, Raspovic KM. Guidelines on the diagnosis and treatment of active Charcot neuro-osteoarthropathy in persons with diabetes mellitus (IWGDF 2023). Diabetes Metab Res Rev 2024; 40:e3646. [PMID: 37218537 DOI: 10.1002/dmrr.3646] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
The International Working Group on the Diabetic Foot (IWGDF) has published evidence-based guidelines on the prevention and management of diabetic foot disease since 1999. This is the first guideline on the diagnosis and treatment of active Charcot neuro-osteoarthropathy in persons with diabetes published by the IWGDF. We followed the GRADE Methodology to devise clinical questions in the PACO (Population, Assessment, Comparison, Outcome) and PICO (Population, Intervention, Comparison, Outcome) format, conducted a systematic review of the medical literature, and developed recommendations with the rationale. The recommendations are based on the evidence from our systematic review, expert opinion when evidence was not available, and also taking into account weighing of the benefits and harms, patient preferences, feasibility and applicability, and costs related to an intervention. We here present the 2023 Guidelines on the diagnosis and treatment of active Charcot neuro-osteoarthropathy in persons with diabetes mellitus and also suggest key future topics of research.
Collapse
Affiliation(s)
- Dane K Wukich
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicolaas C Schaper
- Division of Endocrinology, MUMC+, CARIM and CAPHRI Institute, Maastricht, The Netherlands
| | - Catherine Gooday
- Elsie Bertram Diabetes Centre, Norfolk & Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Arun Bal
- Secretary, International Association of Diabetic Foot Surgeons, Mumbai, India
| | - Robert Bem
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Hastings
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Crystal Holmes
- The Division of Metabolism, Endocrinology and Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nina L Petrova
- Department of Diabetes, Diabetic Foot Clinic, King's College Hospital NHS Foundation Trust, London, UK
| | | | | | - Katherine M Raspovic
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
6
|
Sun Y, Tao Q, Wu X, Zhang L, Liu Q, Wang L. The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Front Endocrinol (Lausanne) 2021; 12:756581. [PMID: 34764939 PMCID: PMC8576340 DOI: 10.3389/fendo.2021.756581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus and the associated complications are metabolic diseases with high morbidity that result in poor quality of health and life. The lack of diagnostic methods for early detection results in patients losing the best treatment opportunity. Oral hypoglycemics and exogenous insulin replenishment are currently the most common therapeutic strategies, which only yield temporary glycemic control rather than curing the disease and its complications. Exosomes are nanoparticles containing bioactive molecules reflecting individual physiological status, regulating metabolism, and repairing damaged tissues. They function as biomarkers of diabetes mellitus and diabetic complications. Considering that exosomes are bioactive molecules, can be obtained from body fluid, and have cell-type specificity, in this review, we highlight the multifold effects of exosomes in the pathology and therapy of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xueqin Wu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Ling Zhang
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qi Liu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Dardari D. An overview of Charcot's neuroarthropathy. J Clin Transl Endocrinol 2020; 22:100239. [PMID: 33251117 PMCID: PMC7677697 DOI: 10.1016/j.jcte.2020.100239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022] Open
Abstract
Charcot's neuroarthropathy is a destructive complication of the joints, which is often found in people with diabetes with peripheral neuropathy. Despite the fact that its description was published almost 130 years ago, its pathophysiology, diagnosis, and treatment remain areas that need to be described. Thanks to the use of bone remodelling, new therapeutic classes have emerged, we hope that this review will shed light on the pathology from its discovery through to the current state of knowledge on its classification, diagnosis and treatment methods.
Collapse
Affiliation(s)
- Dured Dardari
- Diabetology Department, Centre Hopitalier Sud Francilien, Corbeil Essonnes, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| |
Collapse
|
8
|
Božič D, Hočevar M, Kononenko V, Jeran M, Štibler U, Fiume I, Pajnič M, Pađen L, Kogej K, Drobne D, Iglič A, Pocsfalvi G, Kralj-Iglič V. Pursuing mechanisms of extracellular vesicle formation. Effects of sample processing. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Hohendorff J, Drozdz A, Borys S, Ludwig-Slomczynska AH, Kiec-Wilk B, Stepien EL, Malecki MT. Effects of Negative Pressure Wound Therapy on Levels of Angiopoetin-2 and Other Selected Circulating Signaling Molecules in Patients with Diabetic Foot Ulcer. J Diabetes Res 2019; 2019:1756798. [PMID: 31781660 PMCID: PMC6855047 DOI: 10.1155/2019/1756798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIMS Diabetic foot ulcers (DFUs) are linked to amputations and premature deaths. Negative pressure wound therapy (NPWT) has been used for DFUs. The mechanism of NPWT's action may be associated with its influence on circulating molecules. We assessed NPWT's effect on the plasma levels of angiopoietin-2 (Ang2), a key regulator of angiogenesis, and its microvesicular receptors (Tie2) as well as the microvesicles (MVs) themselves in DFU patients. MATERIALS AND METHODS We included 69 patients with type 2 diabetes mellitus (T2DM) and neuropathic, noninfected DFUs-49 were treated with NPWT and 20 were treated with standard therapy (ST). Assigning patients to the NPWT group was not random but based on DFU characteristics, especially wound area. Ang2 was measured by ELISA in the entire group, while in a subgroup of 19 individuals on NPWT and 10 on ST, flow cytometry was used to measure Tie2+ and the corresponding isotype control (Iso+) and annexin V (AnnV+) as well as total MVs. Measurements were performed at the beginning and after 8 ± 1 days of therapy. RESULTS Treatment groups were similar for basic characteristics but differed by their median DFU areas (10.3 (4.2-18.9) vs. 1.3 (0.9-3.4) cm2, p = 0.0001). At day 0, no difference was observed in Ang2 levels, total MVs, MV Tie+, and MV AnnV+ between the groups. Ang2 decreased after 8 days in the NPWT group, unlike in the ST group (3.54 (2.40-5.40) vs. 3.32 (2.33-4.61), p = 0.02, and 3.19 ± 1.11 vs. 3.19 ± 1.29 ng/mL, p = 0.98, respectively). No other parameters were identified that may have been influenced by the NPWT treatment. CONCLUSION NPWT in T2DM patients with neuropathic, noninfected DFU seems to lead to reduction of the Ang2 level. Influencing the level of Ang2 may constitute one of NPWT-related mechanisms to accelerate wound healing.
Collapse
Affiliation(s)
- Jerzy Hohendorff
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Clinic of Metabolic Diseases, University Hospital, Krakow, Poland
| | - Anna Drozdz
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
- Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sebastian Borys
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Clinic of Metabolic Diseases, University Hospital, Krakow, Poland
| | | | - Beata Kiec-Wilk
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Clinic of Metabolic Diseases, University Hospital, Krakow, Poland
| | - Ewa L. Stepien
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Maciej T. Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- Clinic of Metabolic Diseases, University Hospital, Krakow, Poland
| |
Collapse
|
10
|
What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochim Biophys Acta Rev Cancer 2019; 1871:109-116. [DOI: 10.1016/j.bbcan.2018.11.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
|
11
|
Abstract
Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration. Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy. It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis. Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumour necrosis factor α) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14). Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process. An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking. Cite this article: S. E. Johnson-Lynn, A. W. McCaskie, A. P. Coll, A. H. N. Robinson. Neuroarthropathy in diabetes: pathogenesis of Charcot arthropathy. Bone Joint Res 2018;7:373–378. DOI: 10.1302/2046-3758.75.BJR-2017-0334.R1.
Collapse
Affiliation(s)
- S E Johnson-Lynn
- Department of Trauma and Orthopaedics, Addenbrookes Hospital, Cambridge, UK
| | - A W McCaskie
- Department of Trauma and Orthopaedics, University of Cambridge, Cambridge, UK
| | - A P Coll
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - A H N Robinson
- Department of Trauma and Orthopaedics, Addenbrookes Hospital, Cambridge, UK
| |
Collapse
|