1
|
Uygur E, Karatay KB, Derviş E, Evren V, Kılçar AY, Güldü ÖK, Sezgin C, Çinleti BA, Tekin V, Muftuler FZB. Synthesis of Novel Plant-Derived Encapsulated Radiolabeled Compounds for the Diagnosis of Parkinson's Disease and the Evaluation of Biological Effects with In Vitro/In Vivo Methods. Mol Neurobiol 2024; 61:8851-8871. [PMID: 38568418 PMCID: PMC11496352 DOI: 10.1007/s12035-024-04103-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/29/2024] [Indexed: 10/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of individuals globally. It is characterized by the loss of dopaminergic neurons in Substantia Nigra pars compacta (SNc) and striatum. Neuroimaging techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI) help diagnosing PD. In this study, the focus was on developing technetium-99 m ([99mTc]Tc) radiolabeled drug delivery systems using plant-derived compounds for the diagnosis of PD. Madecassoside (MA), a plant-derived compound, was conjugated with Levodopa (L-DOPA) to form MA-L-DOPA, which was then encapsulated using Poly Lactic-co-Glycolic Acid (PLGA) to create MA-PLGA and MA-L-DOPA-PLGA nanocapsules. Extensive structural analysis was performed using various methods such as Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), liquid chromatography-mass spectrometry (LC-MS), thin layer chromatography (TLC), high performance liquid chromatography (HPLC), dynamic light scattering (DLS), and scanning electron microscopy (SEM) to characterize the synthesized products. Radiochemical yields of radiolabeled compounds were determined using thin layer radio chromatography (TLRC) and high performance liquid radio chromatography (HPLRC) methods. In vitro cell culture studies were conducted on human neuroblastoma (SH-SY5Y) and rat pheochromocytoma (PC-12) cell lines to assess the incorporation of [99mTc]Tc radiolabeled compounds ([99mTc]Tc-MA, [99mTc]Tc-MA-L-DOPA, [99mTc]Tc-MA-PLGA and [99mTc]Tc-MA-L-DOPA-PLGA) and the cytotoxicity of inactive compounds (MA and MA-L-DOPA compounds and encapsulated compounds (MA-PLGA and MA-L-DOPA-PLGA). Additionally, the biodistribution studies were carried out on healthy male Sprague-Dawley rats and a Parkinson's disease experimental model to evaluate the compounds' bioactivity using the radiolabeled compounds. The radiochemical yields of all radiolabeled compounds except [99mTc]Tc-L-DOPA-PLGA were above 95% and had stability over 6 h. The cytotoxic effects of all substances on SH-SY5Y and PC-12 cells increase with increasing concentration values. The uptake values of PLGA-encapsulated compounds are statistically significant in SH-SY5Y and PC-12 cells. The biodistribution studies showed that [99mTc]Tc-MA is predominantly retained in specific organs and brain regions, with notable uptake in the prostate, muscle, and midbrain. PLGA-encapsulation led to higher uptake in certain organs, suggesting its biodegradable nature may enhance tissue retention, and surface modifications might further optimize brain penetration. Overall, the results indicate that radiolabeled plant-derived encapsulated drug delivery systems with [99mTc]Tc hold potential as diagnostic agents for PD symptoms. This study contributes to the advancement of drug delivery agents in the field of brain research.
Collapse
Affiliation(s)
- Emre Uygur
- Soma Vocational School, Department of Biomedical Device Technologies, Manisa Celal Bayar University, Nihat Danışman, Değirmen Cd. No. 2, Soma, 45500, Manisa, Turkey.
| | - Kadriye Büşra Karatay
- Institute of Nuclear Sciences, Ege University, Erzene, Ege Üniversitesi, Ege Ünv., 35100, Bornova, İzmir, Turkey
| | - Emine Derviş
- Institute of Nuclear Sciences, Ege University, Erzene, Ege Üniversitesi, Ege Ünv., 35100, Bornova, İzmir, Turkey
| | - Vedat Evren
- Faculty of Medicine, Department of Physiology, Ege University, Bornova, 35100, İzmir, Turkey
| | - Ayfer Yurt Kılçar
- Institute of Nuclear Sciences, Ege University, Erzene, Ege Üniversitesi, Ege Ünv., 35100, Bornova, İzmir, Turkey
| | - Özge Kozguş Güldü
- Institute of Nuclear Sciences, Ege University, Erzene, Ege Üniversitesi, Ege Ünv., 35100, Bornova, İzmir, Turkey
| | - Ceren Sezgin
- Department of Nuclear Medicine, Manisa City Hospital, Adnan Menderes Neighborhood, 132Nd Street Number 15 Şehzadeler, 45100, Manisa, Turkey
| | - Burcu Acar Çinleti
- Faculty of Medicine, Buca Seyfi Demirsoy Training and Research Hospital, Department of Neurology, Izmir Democracy University, Kozağaç Mah. Özmen Cad. No. 147, Buca, 35040, Izmir, Turkey
| | - Volkan Tekin
- Institute of Nuclear Sciences, Ege University, Erzene, Ege Üniversitesi, Ege Ünv., 35100, Bornova, İzmir, Turkey
| | | |
Collapse
|
2
|
Ghauri MS, Reddy AJ, Tabaie E, Issagholian L, Brahmbhatt T, Seo Y, Dang A, Nawathey N, Bachir A, Patel R. Evaluating the Utilization of Ethylenediaminetetraacetic Acid as a Treatment Supplement for Gliomas. Cureus 2022; 14:e31617. [DOI: 10.7759/cureus.31617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 11/18/2022] Open
|
3
|
Ailuno G, Iacobazzi RM, Lopalco A, Baldassari S, Arduino I, Azzariti A, Pastorino S, Caviglioli G, Denora N. The Pharmaceutical Technology Approach on Imaging Innovations from Italian Research. Pharmaceutics 2021; 13:1214. [PMID: 34452175 PMCID: PMC8402236 DOI: 10.3390/pharmaceutics13081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Many modern therapeutic approaches are based on precise diagnostic evidence, where imaging procedures play an essential role. To date, in the diagnostic field, a plethora of agents have been investigated to increase the selectivity and sensitivity of diagnosis. However, the most common drawbacks of conventional imaging agents reside in their non-specificity, short imaging time, instability, and toxicity. Moreover, routinely used diagnostic agents have low molecular weights and consequently a rapid clearance and renal excretion, and this represents a limitation if long-lasting imaging analyses are to be conducted. Thus, the development of new agents for in vivo diagnostics requires not only a deep knowledge of the physical principles of the imaging techniques and of the physiopathological aspects of the disease but also of the relative pharmaceutical and biopharmaceutical requirements. In this scenario, skills in pharmaceutical technology have become highly indispensable in order to respond to these needs. This review specifically aims to collect examples of newly developed diagnostic agents connoting the importance of an appropriate formulation study for the realization of effective products. Within the context of pharmaceutical technology research in Italy, several groups have developed and patented promising agents for fluorescence and radioactive imaging, the most relevant of which are described hereafter.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Ilaria Arduino
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Sara Pastorino
- Nuclear Medicine Unit, S. Andrea Hospital, via Vittorio Veneto 197, 19124 La Spezia, Italy;
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| |
Collapse
|
4
|
(S)-Ethyl 2-(tert-butoxycarbonylamino)-3-(2-iodo-4,5-methylenedioxyphenyl)propanoate. MOLBANK 2019. [DOI: 10.3390/m1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A multistep gram-scale synthesis of (S)-ethyl 2-(tert-butoxycarbonylamino)-3-(2-iodo-4,5-methylenedioxyphenyl)propanoate (2) has been developed. The title compound was prepared starting from commercially available l-DOPA which was O- and N-protected before undergoing iodination by CF3CO2Ag/I2. The structure of the target compound was confirmed using IR, 1H-NMR, 13C-NMR, 2D (COSY, HSQC) NMR spectroscopy, as well as ESI-MS and HRMS.
Collapse
|
5
|
Cassano T, Lopalco A, de Candia M, Laquintana V, Lopedota A, Cutrignelli A, Perrone M, Iacobazzi RM, Bedse G, Franco M, Denora N, Altomare CD. Oxazepam-Dopamine Conjugates Increase Dopamine Delivery into Striatum of Intact Rats. Mol Pharm 2017; 14:3178-3187. [PMID: 28780872 DOI: 10.1021/acs.molpharmaceut.7b00405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurotransmitter dopamine (DA) was covalently linked to oxazepam (OXA), a well-known positive allosteric modulator of γ-aminobutyric acid type-A (GABAA) receptor, through a carbamate linkage (4) or a succinic spacer (6). These conjugates were synthesized with the aim of improving the delivery of DA into the brain and enhancing GABAergic transmission, which may be useful for the long-term treatment of Parkinson disease (PD). Structure-based permeability properties, in vitro stability, and blood-brain barrier (BBB) permeability studies led to identify the OXA-DA carbamate conjugate 4a as the compound better combining sufficient stability and ability to cross BBB. Finally, in vivo microdialysis experiments in freely moving rats demonstrated that 4a (20 mg/kg, i.p.) significantly increases extracellular DA levels into striatum, with a peak (more than 15-fold increase over the baseline) at about 80 min after a single administration. The stability and delivery data proved that 4a may be a promising candidate for further pharmacological studies in animal models of PD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia 71100, Italy
| | - Antonio Lopalco
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Valentino Laquintana
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Angela Lopedota
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Mara Perrone
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Rosa M Iacobazzi
- Istituto tumori IRCCS "Giovanni Paolo II" , Flacco, St. 65, 70124 Bari, Italy
| | - Gaurav Bedse
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , 00185 Rome, Italy.,Department of Psychiatry, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Massimo Franco
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| |
Collapse
|