1
|
Yang Y, Yang S, Zhang B, Wang J, Meng D, Cui L, Zhang L. Hybrid Liposome-MSN System with Co-Delivering Potential Effective Against Multidrug-Resistant Tumor Targets in Mice Model. Int J Nanomedicine 2024; 19:8949-8970. [PMID: 39246424 PMCID: PMC11378800 DOI: 10.2147/ijn.s472276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction RNA interference (RNAi) stands as a widely employed gene interference technology, with small interfering RNA (siRNA) emerging as a promising tool for cancer treatment. However, the inherent limitations of siRNA, such as easy degradation and low bioavailability, hamper its efficacy in cancer therapy. To address these challenges, this study focused on the development of a nanocarrier system (HLM-N@DOX/R) capable of delivering both siRNA and doxorubicin for the treatment of breast cancer. Methods The study involved a comprehensive investigation into various characteristics of the nanocarrier, including shape, diameter, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), encapsulation efficiency, and drug loading. Subsequently, in vitro and in vivo studies were conducted on cytotoxicity, cellular uptake, cellular immunofluorescence, lysosome escape, and mouse tumor models to evaluate the efficacy of the nanocarrier in reversing tumor multidrug resistance and anti-tumor effects. Results The results showed that HLM-N@DOX/R had a high encapsulation efficiency and drug loading capacity, and exhibited pH/redox dual responsive drug release characteristics. In vitro and in vivo studies showed that HLM-N@DOX/R inhibited the expression of P-gp by 80%, inhibited MDR tumor growth by 71% and eliminated P protein mediated multidrug resistance. Conclusion In summary, HLM-N holds tremendous potential as an effective and targeted co-delivery system for DOX and P-gp siRNA, offering a promising strategy for overcoming MDR in breast cancer.
Collapse
MESH Headings
- Animals
- Doxorubicin/pharmacology
- Doxorubicin/chemistry
- Doxorubicin/pharmacokinetics
- Doxorubicin/administration & dosage
- Female
- Liposomes/chemistry
- Mice
- Drug Resistance, Neoplasm/drug effects
- Humans
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/pharmacokinetics
- Drug Resistance, Multiple/drug effects
- Breast Neoplasms/drug therapy
- Cell Line, Tumor
- MCF-7 Cells
- Mice, Inbred BALB C
- Drug Carriers/chemistry
- Drug Carriers/pharmacokinetics
- Nanoparticles/chemistry
- Drug Liberation
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yanan Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Shuoye Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, People's Republic of China
| | - Beibei Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Jinpeng Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Di Meng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Lan Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, People's Republic of China
| | - Lu Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Design and Validation of Nanofibers Made of Self-Assembled Peptides to Become Multifunctional Stimuli-Sensitive Nanovectors of Anticancer Drug Doxorubicin. Pharmaceutics 2022; 14:pharmaceutics14081544. [PMID: 35893800 PMCID: PMC9331957 DOI: 10.3390/pharmaceutics14081544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/21/2022] Open
Abstract
Self-assembled peptides possess remarkable potential as targeted drug delivery systems and key applications dwell anti-cancer therapy. Peptides can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions (pH, temperature, ionic strength). Herein, we investigated the development of self-assembled peptide-based nanofibers (NFs) with the inclusion of a cell-penetrating peptide (namely gH625) and a matrix metalloproteinase-9 (MMP-9) responsive sequence, which proved to enhance respectively the penetration and tumor-triggered cleavage to release Doxorubicin in Triple Negative Breast Cancer cells where MMP-9 levels are elevated. The NFs formulation has been optimized via critical micelle concentration measurements, fluorescence, and circular dichroism. The final nanovectors were characterized for morphology (TEM), size (hydrodynamic diameter), and surface charge (zeta potential). The Doxo loading and release kinetics were studied in situ, by optical microspectroscopy (fluorescence and surface-enhanced Raman scattering–SERS). Confocal spectral imaging of the Doxo fluorescence was used to study the TNBC models in vitro, in cells with various MMP-9 levels, the drug delivery to cells as well as the resulting cytotoxicity profiles. The results confirm that these NFs are a promising platform to develop novel nanovectors of Doxo, namely in the framework of TNBC treatment.
Collapse
|
3
|
Analysis of therapeutic nucleic acids by capillary electrophoresis. J Pharm Biomed Anal 2022; 219:114928. [PMID: 35853263 DOI: 10.1016/j.jpba.2022.114928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/04/2022] [Accepted: 07/02/2022] [Indexed: 12/19/2022]
Abstract
Nucleic acids are getting increased attention to fulfill unmet medical needs. The past five years have seen more than ten FDA approvals of nucleic acid based therapeutics. New analytical challenges have been posed in discovery, characterization, quality control and bioanalysis of therapeutic nucleic acids. Capillary electrophoresis (CE) has proven to be an efficient separation technique and has been widely used for analyzing oligonucleotides and nucleic acids. This review discusses the recent technical advances of CE in nucleic acid analysis such as polymeric matrices, separation conditions and detection methods, and the applications of CE to various therapeutic nucleic acids including antisense oligonucleotide (ASO), small interfering ribonucleic acid (siRNA), messenger RNA (mRNA), gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)-based gene and cell therapy, and other nucleic acid related therapeutics.
Collapse
|
4
|
Kamalzare S, Iranpur Mobarakeh V, Mirzazadeh Tekie FS, Hajiramezanali M, Riazi-Rad F, Yoosefi S, Normohammadi Z, Irani S, Tavakoli M, Rahimi P, Atyabi F. Development of a T Cell-targeted siRNA Delivery System Against HIV-1 Using Modified Superparamagnetic Iron Oxide Nanoparticles: An In Vitro Study. J Pharm Sci 2021; 111:1463-1469. [PMID: 34673092 DOI: 10.1016/j.xphs.2021.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
In spite of the promising properties of small interfering RNAs (siRNAs) in the treatment of infectious diseases, safe and efficient siRNA delivery to target cells is still a challenge. In this research, an effective siRNA delivery approach (against HIV-1) has been reported using targeted modified superparamagnetic iron oxide nanoparticles (SPIONs). Trimethyl chitosan-coated SPION (TMC-SPION) containing siRNA was synthesized and chemically conjugated to a CD4-specific monoclonal antibody (as a targeting moiety). The prepared nanoparticles exhibited a high siRNA loading efficiency with a diameter of about 85 nm and a zeta potential of +28 mV. The results of the cell viability assay revealed the low cytotoxicity of the optimized nanoparticles. The cellular delivery of the targeted nanoparticles (into T cells) and the gene silencing efficiency of the nanoparticles (containing anti-nef siRNA) were dramatically improved compared to those of nontargeted nanoparticles. In conclusion, this study offers a promising targeted delivery platform to induce gene silencing in target cells. Our approach may find potential use in the design of effective vehicles for many therapeutic applications, particularly for HIV treatment.
Collapse
Affiliation(s)
- Sara Kamalzare
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Maliheh Hajiramezanali
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Riazi-Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Normohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamadreza Tavakoli
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Rahimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Tuttolomondo M, Ditzel HJ. Non-covalent Encapsulation of siRNA with Cell-Penetrating Peptides. Methods Mol Biol 2021; 2282:353-376. [PMID: 33928584 DOI: 10.1007/978-1-0716-1298-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
SiRNAs may act as selective and potent therapeutics, but poor deliverability in vivo is a limitation. Among the recently proposed vectors, cell-penetrating peptides (CPPs), also referred as protein transduction domains (PTDs), allow siRNA stabilization and increased cellular uptake. This chapter aims to guide scientists in the preparation and characterization of CPP-siRNA complexes, particularly the evaluation of novel CPPs variants for siRNA encapsulation and delivery. Herein, we present a collection of methods to determine CPP-siRNA interaction, encapsulation, stability, conformation, transfection, and silencing efficiency.
Collapse
Affiliation(s)
- Martina Tuttolomondo
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Oncology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
6
|
Zheng QC, Jiang S, Wu YZ, Shang D, Zhang Y, Hu SB, Cheng X, Zhang C, Sun P, Gao Y, Song ZF, Li M. Dual-Targeting Nanoparticle-Mediated Gene Therapy Strategy for Hepatocellular Carcinoma by Delivering Small Interfering RNA. Front Bioeng Biotechnol 2020; 8:512. [PMID: 32587849 PMCID: PMC7297947 DOI: 10.3389/fbioe.2020.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
As a gene therapy strategy, RNA interference (RNAi) offers tremendous tumor therapy potential. However, its therapeutic efficacy is restricted by its inferior ability for targeted delivery and cellular uptake of small interfering RNA (siRNA). This study sought to develop a dual-ligand nanoparticle (NP) system loaded with siRNA to promote targeted delivery and therapeutic efficacy. We synthesized a dual receptor-targeted chitosan nanosystem (GCGA), whose target function was controlled by the ligands of galactose of lactobionic acid (LA) and glycyrrhetinic acid (GA). By loading siPAK1, an siRNA targeting P21-activated kinase 1 (PAK1), a molecular-targeted therapeutic dual-ligand NP (GCGA-siPAK1) was established. We investigated the synergistic effect of these two targeting units in hepatocellular carcinoma (HCC). In particular, GCGA-siPAK1 enhanced the NP targeting ability and promoted siPAK1 cell uptake. Subsequently, dramatic decreases in cell proliferation, invasion, and migration, with an apparent increase in cell apoptosis, were observed in treated cells. Furthermore, this dual-ligand NP gene delivery system demonstrated significant anti-tumor effects in tumor-bearing mice. Finally, we illuminated the molecular mechanism, whereby GCGA-siPAK1 promotes endogenous cell apoptosis through the PAK1/MEK/ERK pathway. Thus, the dual-target property effectively promotes the HCC therapeutic effect and provides a promising gene therapy strategy for clinical applications.
Collapse
Affiliation(s)
- Qi Chang Zheng
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Jiang
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhe Wu
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Shang
- Department of Vascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shao Bo Hu
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zi Fang Song
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Shafabakhsh R, Reiner Ž, Hallajzadeh J, Mirsafaei L, Asemi Z. Are anti-inflammatory agents and nutraceuticals - novel inhibitors of PCSK9? Crit Rev Food Sci Nutr 2020; 61:325-336. [PMID: 32090592 DOI: 10.1080/10408398.2020.1731678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease which increases the lysosomal degradation of low density lipoprotein receptor (LDLR) resulting in elevated serum LDL-cholesterol levels. Elevated LDL-cholesterol is the main risk factor for cardiovascular disease (CVD). Antibodies to PCSK9 decrease LDL-cholesterol. Recent studies have suggested a direct relationship between PCSK9 and inflammation and the potential inhibitory effects of anti-inflammatory agents against this enzyme. Nutraceuticals are natural compounds, which have numerous anti-inflammatory and lipid-lowering effects. In this review we focus on anti-inflammatory substances and nutraceuticals, which are beneficial in treatment of dyslipidemia. We also reviewed the recent findings concerning the role of PCSK9 as the main target for molecular mechanisms of these substances.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Villar-Alvarez E, Leal BH, Cambón A, Pardo A, Martínez-Gonzalez R, Fernández-Vega J, Al-Qadi S, Mosquera VX, Bouzas A, Barbosa S, Taboada P. Triggered RNAi Therapy Using Metal Inorganic Nanovectors. Mol Pharm 2019; 16:3374-3385. [PMID: 31188622 DOI: 10.1021/acs.molpharmaceut.9b00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The administration of small interfering RNA (siRNA) is a very interesting therapeutic option to treat genetic diseases such as Alzheimer's or some types of cancer, but its effective delivery still remains a challenge. Herein, Au nanorod (GNR)-based platforms functionalized with polyelectrolyte layers were developed and analyzed as potential siRNA nanocarriers. The polymeric layers were successfully assembled on the particle surfaces by means of the layer-by-layer assembly technique through the alternating deposition of oppositely charged poly(styrene)sulfonate, PSS, poly(lysine), PLL, and siRNA biopolymers, with a final hyaluronic acid layer in order to provide the nanoconstructs with a potential targeting ability as well as colloidal stability in physiological medium. Once the hybrid nanocarriers were obtained, the cargo release, their colloidal stability in physiological-relevant media, cytotoxicity, cellular internalization and uptake, and knockdown activity were studied. The present hybrid particles release the genetic material inside cells by means of a protease-assisted and/or a light-triggered release mechanism in order to control the delivery of the oligonucleotides on demand. In addition, the hybrid nanovectors were observed to be nontoxic to cells and could efficiently deliver the genetic material in the cell cytoplasms. The GNR-based nanocarriers proposed here can provide a suitable environment to load and protect a sufficient amount of the genetic material to allow an efficient and sustained knockdown gene expression for long (up to 93% for 72 h), thanks to the slow degradation of PLL, without the observation of adverse side toxic effects. It was also found that the silencing activity was enhanced with the number of siRNA layers assembled in the nanoplatforms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Víctor X Mosquera
- Departamento de Cirugía Cardíaca, Complexo Hospitalario Universitario A Coruña , Instituto de Investigación Biomédica de A Coruña (INIBIC) , 15006 A Coruña , Spain
| | - Alberto Bouzas
- Departamento de Cirugía Cardíaca, Complexo Hospitalario Universitario A Coruña , Instituto de Investigación Biomédica de A Coruña (INIBIC) , 15006 A Coruña , Spain
| | | | | |
Collapse
|
9
|
Kamalzare S, Noormohammadi Z, Rahimi P, Atyabi F, Irani S, Tekie FSM, Mottaghitalab F. Carboxymethyl dextran‐trimethyl chitosan coated superparamagnetic iron oxide nanoparticles: An effective siRNA delivery system for HIV‐1 Nef. J Cell Physiol 2019; 234:20554-20565. [DOI: 10.1002/jcp.28655] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Sara Kamalzare
- Department of Biology, School of Basic Sciences Science and Research Branch, Islamic Azad University (IAU) Tehran Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences Science and Research Branch, Islamic Azad University (IAU) Tehran Iran
| | - Pooneh Rahimi
- Department of Hepatitis and AIDS Pasteur Institute of Iran Tehran Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics Tehran University of Medical Sciences Tehran Iran
- Nanotechnology Research Centre Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences Science and Research Branch, Islamic Azad University (IAU) Tehran Iran
| | | | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
10
|
Panir K, Schjenken JE, Robertson SA, Hull ML. Non-coding RNAs in endometriosis: a narrative review. Hum Reprod Update 2019; 24:497-515. [PMID: 29697794 DOI: 10.1093/humupd/dmy014] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disorder, which affects 10% of reproductive-aged women and is characterized by endometrial cells from the lining of the uterus being found outside the uterine cavity. However, the pathophysiological mechanisms causing the development of this heterogeneous disease remain enigmatic, and a lack of effective biomarkers necessitates surgical intervention for diagnosis. There is international recognition that accurate non-invasive diagnostic tests and more effective therapies are urgently needed. Non-coding RNA (ncRNA) molecules, which are important regulators of cellular function, have been implicated in many chronic conditions. In endometriosis, transcriptome profiling of tissue samples and functional in vivo and in vitro studies demonstrate that ncRNAs are key contributors to the disease process. OBJECTIVE AND RATIONALE In this review, we outline the biogenesis of various ncRNAs relevant to endometriosis and then summarize the evidence indicating their roles in regulatory pathways that govern disease establishment and progression. SEARCH METHODS Articles from 2000 to 2016 were selected for relevance, validity and quality, from results obtained in PubMed, MEDLINE and Google Scholar using the following search terms: ncRNA and reproduction; ncRNA and endometriosis; miRNA and endometriosis; lncRNA and endometriosis; siRNA and endometriosis; endometriosis; endometrial; cervical; ovary; uterus; reproductive tract. All articles were independently screened for eligibility by the authors. OUTCOMES This review integrates extensive information from all relevant published studies focusing on microRNAs, long ncRNAs and short inhibitory RNAs in endometriosis. We outline the biological function and synthesis of microRNAs, long ncRNAs and short inhibitory RNAs and provide detailed findings from human research as well as functional studies carried out both in vitro and in vivo, including animal models. Although variability in findings between individual studies exists, collectively, the extant literature justifies the conclusion that dysregulated ncRNAs are a significant element of the endometriosis condition. WIDER IMPLICATIONS There is a compelling case that microRNAs, long non-coding RNAs and short inhibitory RNAs have the potential to influence endometriosis development and persistence through modulating inflammation, proliferation, angiogenesis and tissue remodelling. Rapid advances in ncRNA biomarker discovery and therapeutics relevant to endometriosis are emerging. Unravelling the significance of ncRNAs in endometriosis will pave the way for new diagnostic tests and identify new therapeutic targets and treatment approaches that have the potential to improve clinical options for women with this disabling condition.
Collapse
Affiliation(s)
- Kavita Panir
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - M Louise Hull
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Fertility SA, Adelaide, South Australia, Australia.,Department of Obstetrics and Gynaecology, Women's and Children's Hospital Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Fathi M, Majidi S, Zangabad PS, Barar J, Erfan-Niya H, Omidi Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev 2018; 38:2110-2136. [DOI: 10.1002/med.21506] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sima Majidi
- Faculty of Chemical and Petroleum Engineering; University of Tabriz; Tabriz Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Pharmaceutics, Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering; University of Tabriz; Tabriz Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Pharmaceutics, Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
12
|
Maheshwari R, Tekade M, Gondaliya P, Kalia K, D'Emanuele A, Tekade RK. Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers. Nanomedicine (Lond) 2017; 12:2653-2675. [DOI: 10.2217/nnm-2017-0210] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) therapeutics (siRNA, miRNA, etc.) represent an emerging medicinal remedy for a variety of ailments. However, their low serum stability and low cellular uptake significantly restrict their clinical applications. Exosomes are biologically derived nanodimensional vesicle ranging from a few nanometers to a hundred. In the last few years, several reports have been published demonstrating the emerging applications of these exogenous membrane vesicles, particularly in carrying different RNAi therapeutics to adjacent or distant targeted cells. In this report, we explored the numerous aspects of exosomes from structure to clinical implications with special emphasis on their application in delivering RNAi-based therapeutics. siRNA and miRNA have attracted great interest in recent years due to their specific application in treating many complex diseases including cancer. We highlight strategies to obviate the challenges of their low bioavailability for gene therapy.
Collapse
Affiliation(s)
- Rahul Maheshwari
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Muktika Tekade
- TIT College of Pharmacy, Technocrats Institute of Technology Campus, Anand Nagar, Raisen Road, Bhopal 462021, Madhya Pradesh, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Antony D'Emanuele
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
13
|
Sun Y, Zhao Y, Zhao X, Lee RJ, Teng L, Zhou C. Enhancing the Therapeutic Delivery of Oligonucleotides by Chemical Modification and Nanoparticle Encapsulation. Molecules 2017; 22:E1724. [PMID: 29027965 PMCID: PMC6158866 DOI: 10.3390/molecules22101724] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022] Open
Abstract
Oligonucleotide (ON) drugs, including small interfering RNA (siRNA), microRNA (miRNA) and antisense oligonucleotides, are promising therapeutic agents. However, their low membrane permeability and sensitivity to nucleases present challenges to in vivo delivery. Chemical modifications of the ON offer a potential solution to improve the stability and efficacy of ON drugs. Combined with nanoparticle encapsulation, delivery at the site of action and gene silencing activity of chemically modified ON drugs can be further enhanced. In the present review, several types of ON drugs, selection of chemical modification, and nanoparticle-based delivery systems to deliver these ON drugs are discussed.
Collapse
Affiliation(s)
- Yating Sun
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yarong Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xiuting Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun 130012, China.
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | | |
Collapse
|