1
|
Horrocks MS, Zhurenkov KE, Malmström J. Conducting polymer hydrogels for biomedical application: Current status and outstanding challenges. APL Bioeng 2024; 8:031503. [PMID: 39323539 PMCID: PMC11424142 DOI: 10.1063/5.0218251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Conducting polymer hydrogels (CPHs) are composite polymeric materials with unique properties that combine the electrical capabilities of conducting polymers (CPs) with the excellent mechanical properties and biocompatibility of traditional hydrogels. This review aims to highlight how the unique properties CPHs have from combining their two constituent materials are utilized within the biomedical field. First, the synthesis approaches and applications of non-CPH conductive hydrogels are discussed briefly, contrasting CPH-based systems. The synthesis routes of hydrogels, CPs, and CPHs are then discussed. This review also provides a comprehensive overview of the recent advancements and applications of CPHs in the biomedical field, encompassing their applications as biosensors, drug delivery scaffolds (DDSs), and tissue engineering platforms. Regarding their applications within tissue engineering, a comprehensive discussion of the usage of CPHs for skeletal muscle prosthetics and regeneration, cardiac regeneration, epithelial regeneration and wound healing, bone and cartilage regeneration, and neural prosthetics and regeneration is provided. Finally, critical challenges and future perspectives are also addressed, emphasizing the need for continued research; however, this fascinating class of materials holds promise within the vastly evolving field of biomedicine.
Collapse
|
2
|
Rahimnejad M, Jahangiri S, Zirak Hassan Kiadeh S, Rezvaninejad S, Ahmadi Z, Ahmadi S, Safarkhani M, Rabiee N. Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting. Crit Rev Biotechnol 2024; 44:860-891. [PMID: 37442771 DOI: 10.1080/07388551.2023.2213398] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023]
Abstract
3D bioprinting is an advanced technology combining cells and bioactive molecules within a single bioscaffold; however, this scaffold cannot change, modify or grow in response to a dynamic implemented environment. Lately, a new era of smart polymers and hydrogels has emerged, which can add another dimension, e.g., time to 3D bioprinting, to address some of the current approaches' limitations. This concept is indicated as 4D bioprinting. This approach may assist in fabricating tissue-like structures with a configuration and function that mimic the natural tissue. These scaffolds can change and reform as the tissue are transformed with the potential of specific drug or biomolecules released for various biomedical applications, such as biosensing, wound healing, soft robotics, drug delivery, and tissue engineering, though 4D bioprinting is still in its early stages and more works are required to advance it. In this review article, the critical challenge in the field of 4D bioprinting and transformations from 3D bioprinting to 4D phases is reviewed. Also, the mechanistic aspects from the chemistry and material science point of view are discussed too.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montréal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, Canada
| | | | | | - Zarrin Ahmadi
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- School of Engineering, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Liang S, Chen H, Chen Y, Ali A, Yao S. Multi-dynamic-bond cross-linked antibacterial and adhesive hydrogel based on boronated chitosan derivative and loaded with peptides from Periplaneta americana with on-demand removability. Int J Biol Macromol 2024; 273:133094. [PMID: 38878926 DOI: 10.1016/j.ijbiomac.2024.133094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
The design and development of a bio-adhesive hydrogel with on-demand removability and excellent antibacterial activities are meaningful to achieve high wound closure effectiveness and post-wound-closure care, which is desirable in clinical applications. In this work, a series of adhesive antioxidant antibacterial hydrogels containing peptides from Periplaneta americana (PAP) were prepared through multi-dynamic-bond cross-linking among 3,4-dihydroxybenzaldehyde (DBA) containing catechol and aldehyde groups and chitosan grafted with 3-carboxy-4-fluorophenylboronic acid (CS-FPBA) to enable the effective adhesion of skin tissues and prevention of bacterial infection of wound. PAP was derived from alcohol-extracted residues generated during the pharmaceutical process, aiming to minimize resource wastage and achieve the high-value development of such a medicinal insect. The hydrogel was prepared by freezing-thawing with no toxic crosslinkers. The multi-dynamic-bond cross-linking of dynamic borate ester bonds and dynamic Schiff base bonds can achieve reversible breakage and re-formation and the adhesive strength of CS-FPBA-DBA-P-gel treated with a 20 % glucose solution dramatically decreased from 3.79 kPa to 0.35 kPa within 10 s. Additionally, the newly developed hydrogel presents ideal biocompatibility, hemostasis and antibacterial activity against Staphylococcus aureus and Escherichia coli compared to commercial chitosan gel (approximately 50 % higher inhibition rate), demonstrating its great potential in dealing with infected full-thickness skin wounds.
Collapse
Affiliation(s)
- Siwei Liang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ahamd Ali
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Lin C, Chen L, He Y, Xiang W, Nie Y, Cai B, Guo Z. Injectable, self-healing and degradable dynamic hydrogels with tunable mechanical properties and stability by thermal-induced micellization. RSC Adv 2024; 14:16207-16217. [PMID: 38769971 PMCID: PMC11103349 DOI: 10.1039/d4ra02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Dynamic hydrogels possessing injectable, degradable and self-healing abilities have attracted considerable attention in the biomedical field in recent years, but it is difficult to tune the mechanical properties and stability of conventional dynamic hydrogels. In this work, we synthesized ABA-triblock copolymers via RAFT polymerization, where the A block consisted of thermo-sensitive poly(N-isopropylacrylamide-co-diacetone acrylamide) and the B block was hydrophilic poly(acrylamide). Subsequently, dynamic hydrogels were obtained based on the acylhydrazone bonds between the triblock copolymers and adipic acid dihydrazide (ADH). The obtained hydrogels exhibited injectable and self-healable abilities. In response to the thermal-induced micellization of their temperature-responsive blocks, the mechanical strength of the hydrogels not only increased, but also they exhibited high stability even at pH 2.0. Moreover, the hydrogel in the stable state could be degraded by the fracture of its trithiocarbonate groups. In addition, the hydrogels exhibited good cytocompatibility and controlled release behavior for doxorubicin (DOX). Considering these attractive tunable properties, these dynamic hydrogels show various potential applications in the biomedical field, such as drug carriers and cell or tissue engineering scaffolds.
Collapse
Affiliation(s)
- Chunqing Lin
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| | - Leniu Chen
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| | - Yuan He
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| | - Wenlong Xiang
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| | - Yujing Nie
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| | - Baixue Cai
- Chongqing Academy of Metrology and Quality Inspection Chongqing 401120 PR China
| | - Zanru Guo
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| |
Collapse
|
5
|
Kapoor DU, Garg R, Gaur M, Pareek A, Prajapati BG, Castro GR, Suttiruengwong S, Sriamornsak P. Pectin hydrogels for controlled drug release: Recent developments and future prospects. Saudi Pharm J 2024; 32:102002. [PMID: 38439951 PMCID: PMC10910345 DOI: 10.1016/j.jsps.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Pectin hydrogels have emerged as a highly promising medium for the controlled release of pharmaceuticals in the dynamic field of drug delivery. The present review sheds light on the broad range of applications and potential of pectin-based hydrogels in pharmaceutical formulations. Pectin, as a biopolymer, is a versatile candidate for various drug delivery systems because of its wide range of properties and characteristics. The information provided on formulation strategies and crosslinking techniques provides researchers with tools to improve drug entrapment and controlled release. Furthermore, this review provides a more in-depth understanding of the complex factors influencing drug release from pectin hydrogels, such as the impact of environmental conditions and drug-specific characteristics. Pectin hydrogels demonstrate adaptability across diverse domains, ranging from applications in oral and transdermal drug delivery to contributions in wound healing, tissue engineering, and ongoing clinical trials. While standardization and regulatory compliance remain significant challenges, the future of pectin hydrogels appears to be bright, opening up new possibilities for advanced drug delivery systems.
Collapse
Affiliation(s)
- Devesh U. Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat 394601, India
| | - Rahul Garg
- Department of Pharmacy, Asian College of Pharmacy, Udaipur, Rajasthan 313001, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302020, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| | - Bhupendra G. Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat 384012, India
| | - Guillermo R. Castro
- Nanomedicine Research Unit, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo 09210-580, Brazil
| | - Supakij Suttiruengwong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
6
|
Maiti S, Maji B, Yadav H. Progress on green crosslinking of polysaccharide hydrogels for drug delivery and tissue engineering applications. Carbohydr Polym 2024; 326:121584. [PMID: 38142088 DOI: 10.1016/j.carbpol.2023.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/25/2023]
Abstract
Natural polysaccharides are being studied for their biocompatibility, biodegradability, low toxicity, and low cost in the fabrication of various hydrogel devices. However, due to their insufficient physicochemical and mechanical qualities, polysaccharide hydrogels alone are not acceptable for biological applications. Various synthetic crosslinkers have been tested to overcome the drawbacks of standalone polysaccharide hydrogels; however, the presence of toxic residual crosslinkers, the generation of toxic by-products following biodegradation, and the requirement of toxic organic solvents for processing pose challenges in achieving the desired non-toxic biomaterials. Natural crosslinkers such as citric acid, tannic acid, vanillin, gallic acid, ferulic acid, proanthocyanidins, phytic acid, squaric acid, and epigallocatechin have been used to generate polysaccharide-based hydrogels in recent years. Various polysaccharides, including cellulose, alginate, pectin, hyaluronic acid, and chitosan, have been hydrogelized and investigated for their potential in drug delivery and tissue engineering applications using natural crosslinkers. We attempted to provide an overview of the synthesis of polysaccharide-based hydrogel systems (films, complex nanoparticles, microspheres, and porous scaffolds) based on green crosslinkers, as well as a description of the mechanism of crosslinking and properties with a special emphasis on drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India
| |
Collapse
|
7
|
Sakunpongpitiporn P, Morarad R, Naeowong W, Niamlang S, Sirivat A. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as an insulin carrier in silk fibroin hydrogels for transdermal delivery via iontophoresis. RSC Adv 2024; 14:1549-1562. [PMID: 38179091 PMCID: PMC10763702 DOI: 10.1039/d3ra06857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
In this study, silk fibroin (SF) was utilized as the starting material to fabricate physically crosslinked hydrogels. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) was synthesized and characterized as a drug carrier, with insulin as the model drug. PEDOT:PSS, with a high electrical conductivity of 1666 ± 49 S cm-1, interacted with insulin molecules via electrostatic interaction by replacing the dopant PSS molecules. Insulin-loaded PEDOT:PSS embedded in the SF hydrogel resulted in an increase in the degree of swelling, pore size, and mesh size of the hydrogel. In the in vitro release and release-permeation experiments, the amounts of insulin release and release-permeation were investigated using a modified Franz diffusion cell, under the effects of SF concentrations, electric fields, and pH values. The amounts of insulin release and release-permeation from the pristine SF hydrogel and the PEDOT:PSS/SF hydrogel followed the power laws with the scaling exponents close to 0.5, indicating the Fickian diffusion or the concentration gradient. Under electric fields, with or without PEDOT:PSS used as the drug carrier, the insulin amount and diffusion coefficient were shown to increase with the increasing electric field due to the electro-repulsive forces between the cathode and insulin molecules and SF chains, electroosmosis, and SF matrix swelling. The SF hydrogel and PEDOT:PSS as the drug carrier are demonstrated herein as new components in the transdermal delivery system for the iontophoretically controlled insulin basal release applicable to diabetes patients.
Collapse
Affiliation(s)
- Phimchanok Sakunpongpitiporn
- The Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University Bangkok 10330 Thailand
| | - Rawita Morarad
- The Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University Bangkok 10330 Thailand
| | - Witthawat Naeowong
- Division of Perioperative and Ambulatory Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University Bangkok 10330 Thailand
| | - Sumonman Niamlang
- Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi Pathumthani 12110 Thailand
| | - Anuvat Sirivat
- The Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
8
|
Martínez-Sabando J, Coin F, Melillo JH, Goyanes S, Cerveny S. A Review of Pectin-Based Material for Applications in Water Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062207. [PMID: 36984087 PMCID: PMC10055932 DOI: 10.3390/ma16062207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/12/2023]
Abstract
Climate change and water are inseparably connected. Extreme weather events cause water to become more scarce, polluted, and erratic than ever. Therefore, we urgently need to develop solutions to reduce water contamination. This review intends to demonstrate that pectin-based materials are an excellent route to detect and mitigate pollutants from water, with several benefits. Pectin is a biodegradable polymer, extractable from vegetables, and contains several hydroxyl and carboxyl groups that can easily interact with the contaminant ions. In addition, pectin-based materials can be prepared in different forms (films, hydrogels, or beads) and cross-linked with several agents to change their molecular structure. Consequently, the pectin-based adsorbents can be tuned to remove diverse pollutants. Here, we will summarize the existing water remediation technologies highlighting adsorption as the ideal method. Then, the focus will be on the chemical structure of pectin and, from a historical perspective, on its structure after applying different cross-linking methods. Finally, we will review the application of pectin as an adsorbent of water pollutants considering the pectin of low degree methoxylation.
Collapse
Affiliation(s)
- Javier Martínez-Sabando
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Francesco Coin
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Jorge H. Melillo
- Donostia International Physics Center (DIPC), 20018 San Sebastián, Spain
| | - Silvia Goyanes
- Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Física de Buenos Aires (IFIBA), CONICET—Universidad de Buenos Aires, Ciudad Universitaria (C1428EGA), Buenos Aires 1113, Argentina
| | - Silvina Cerveny
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 San Sebastián, Spain
| |
Collapse
|
9
|
Metformin delivery via iontophoresis based on κ-carrageenan cryogels. Int J Biol Macromol 2022; 223:702-712. [PMID: 36395633 DOI: 10.1016/j.ijbiomac.2022.11.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Transdermal drug delivery system (TDDS) is the system for transmitting a drug through the skin into the blood circulation. In this work, κ-Carrageenan (κC) was used as the drug matrix material. The porous κC matrices were fabricated by dissolving the κC in deionized water to obtain hydrogels and then using the freeze-dryer to obtain cryogels. The porous (κC) matrices showed interconnected pore sizes varying between 6.05 to 25.8 nm. In the drug release experiments, the drug diffusion coefficient increased and the drug release duration was reduced with decreasing κC concentration due to the larger κC pore sizes. The diffusion coefficient increased with a shorter release time under the applied electric strength of +1.0 V due to the electro-repulsive force between the Metformin and the anode. For the drug release-permeation of the κC 0.8 % v/v cryogel through the pig skin under applied positive electrical potentials, the amounts of drug release-permeation and diffusion coefficients were enhanced with shorter durations relative to without electrical potential. The κC 0.8 % v/v matrix at the applied electric strength of +6.0 V has been shown here to be potential to be used as the Metformin transdermal controlled delivery patch for abdominal obesity and diabetes.
Collapse
|
10
|
Sakunpongpitiporn P, Naeowong W, Sirivat A. Enhanced transdermal insulin basal release from silk fibroin (SF) hydrogels via iontophoresis. Drug Deliv 2022; 29:2234-2244. [PMID: 35848994 PMCID: PMC9848418 DOI: 10.1080/10717544.2022.2096717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023] Open
Abstract
Insulin is the peptide hormone used to treat the diabetes patient. The hormone is normally taken by injection. The transdermal drug delivery system (TDDS) is an alternative route. The silk fibroin (SF) hydrogels were fabricated via solution casting as the insulin matrix. The release and release-permeation experiments of the insulin loaded SF hydrogels were carried out using a modified Franz-diffusion cell at 37 °C for 36 h, under the effects of SF concentrations, pH, and electric field. The release-permeation mechanism through the pig skin was from the Case-II transport with the constant release rate. The diffusion coefficient (D) increased with decreasing SF concentration due to a larger mesh size, and with increasing electric field due to the electroreplusive forces between the insulin and the SF hydrogels against the negatively-charged electrode, and the induced SF hydrogel expansion. The rate and amount of insulin release-permeation became relatively lower as it required a longer time to generate aqueous pathways through the pig skin. The present SF hydrogels are demonstrated here deliver insulin with the required constant release rate, and the suitable amount within a prescribed duration.
Collapse
Affiliation(s)
- Phimchanok Sakunpongpitiporn
- The Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - Witthawat Naeowong
- Division of Perioperative and Ambulatory Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anuvat Sirivat
- The Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Comparative Study of Polysaccharide-Based Hydrogels: Rheological and Texture Properties and Ibuprofen Release. Gels 2022; 8:gels8030168. [PMID: 35323281 PMCID: PMC8951473 DOI: 10.3390/gels8030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Polysaccharides are attractive gelling agents in pharmacy due to their safety, biocompatibility, biodegradability, relatively easy way of preparation, and low price. Due to their variable physical-chemical properties, polysaccharides have potentialities to be used for designing new drug delivery systems for controlled drug release. In this comparative study, rheological and texture properties as well as the in vitro release of model drug ibuprofen (IBU) with 11 polysaccharide-based hydrogels were investigated. The in vitro release of IBU significantly differed between (i) neutral (hydroxy/alkylcelluloses), (ii) anionic (carboxyalkylcellulose and its sodium salt, tragacanth, carrageenan, xanthan gum), and (iii) cationic (chitosans) hydrogels due to different contribution of provided interactions and viscosity within the hydrogel groups. The drug release kinetics of each hydrogel system was evaluated for five kinetic models. Several combinations of cationic hydrogels with neutral or anionic ones were performed to illustrate possibilities of providing modified IBU release profiles. In this context, chitosan was presented as an effective modifier of diffusion profiles for negatively charged drugs formulated into combined polymeric systems, providing their prolonged release. The most appropriate hydrogel for the topical application (i.e., providing favorable rheological and texture properties along with the highest drug release) was selected from a studied series of polysaccharide-based hydrogels.
Collapse
|
12
|
Li S, Yu X, Li Y, Zhang T. Conductive polypyrrole-coated electrospun chitosan nanoparticles/poly(D,L-lactide) fibrous mat: influence of drug delivery and Schwann cells proliferation. Biomed Phys Eng Express 2022; 8. [PMID: 35168214 DOI: 10.1088/2057-1976/ac5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Abstract
For nerve tissue engineering (NTE), scaffolds with the ability to release drugs under control and support the rapid proliferation of cells are very important for the repair of nerve defects. This study aimed to fabricate a conductive drug-loaded fiber mat by electrospinning and assess its potential as a scaffold for Schwann cells proliferation. The conductive polypyrrole (PPy) was coated on an electrospun poly (D, L-lactide) (PLA) fibrous mat, which was simultaneously embedded with protein-loaded chitosan nanoparticles and ibuprofen as a model small molecule drug. The fibrous mat shows suitable conductivity, mechanical properties, and hydrophilicity for NTE. For drug release and degradation studies, the fibrous mat can achieve sustained release of bovine serum albumin (BSA) and ibuprofen, and the PPy coating can increase the surface wettability and conductivity while slowing down the degradation of the fibrous mat. The application of electrical stimulation (ES) to the fibrous mat can accelerate the release of ibuprofen, but there was no significant effect on the release rate of the protein. The fibrous mat showed no cytotoxicityin vitro, and Schwann cells (SCs) can adhere, grow, and proliferate well on mats. At the 120th hour of culturein vitro, the relative growth rate of SCs on the conductive drug-loaded fibrous mat reached 198.22 ± 2.34%, which was an increase of 37.93% compared to the SCs on the drug-loaded fibrous mat with ES. The density and elongation of SCs on the conductive drug-loaded fibrous mat were greater than those on the PLA fibrous mat, indicating that the conductive polypyrrole-coated electrospun chitosan nanoparticles/PLA fibrous mat has good potential for application in nerve regeneration.
Collapse
Affiliation(s)
- Siqi Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xiaoling Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Wuhan University of Technology Sanya Science and Education Innovation Park, Sanya 572024, People's Republic of China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Wuhan University of Technology Sanya Science and Education Innovation Park, Sanya 572024, People's Republic of China.,State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
13
|
On-demand release of the small-molecule TrkB agonist improves neuron-Schwann cell interactions. J Control Release 2022; 343:482-491. [DOI: 10.1016/j.jconrel.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
|
14
|
Hyaluronic Acid and Graphene Oxide-incorporated Hyaluronic Acid Hydrogels for Electrically Stimulated Release of Anticancer Tamoxifen Citrate. J Pharm Sci 2021; 111:1633-1641. [PMID: 34756869 DOI: 10.1016/j.xphs.2021.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 01/14/2023]
Abstract
Transdermal drug delivery is the transport of drug across the skin and into the systemic circulation. Patch is a one of transdermal device that is used to attach on skin and contains drug. The drug matrices from hyaluronic acid (HA) and graphene oxide (GO) incorporated HA hydrogel were fabricated for the release of tamoxifen citrate (TMX) as the anticancer drug under applied electrical field. The pristine HA hydrogels as the matrix and GO as the drug encapsulation host were fabricated for transdermal patch by the solution casting using citric acid as the chemical crosslinker. In vitro drug release experiment was investigated by utilizing the modified Franz-diffusion cell under the effects of crosslinking ratio, electric potential, and GO. The TMX release behaviors from the hydrogels were found to be from the three mechanisms: the pure Fickian diffusion; the anomalous or non-Fickian diffusion; and Super case II transport depending on the crosslinking conditions. The TMX diffusion and release amount from the pristine HA hydrogels were increased with smaller crosslinking ratios. With applied electrical potential, the enhanced TMX diffusion and release amount were observed when compared to that without due to the electro-repulsive force. Furthermore, the TMX diffusion from the HA hydrogel with GO as the drug encapsulation host was higher by two orders of magnitude than without GO.
Collapse
|
15
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
16
|
Ruangmak K, Paradee N, Niamlang S, Sakunpongpitiporn P, Sirivat A. Electrically controlled transdermal delivery of naproxen and indomethacin from porous cis-1,4-polyisoprene matrix. J Biomed Mater Res B Appl Biomater 2021; 110:478-488. [PMID: 34399032 DOI: 10.1002/jbm.b.34926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022]
Abstract
This study is focused on the inquiry of using a porous polymeric structure to absorb and release transdermally two drugs through a skin from deproteinized natural rubber latex (DPNR). The porous DPNR films were fabricated from the internal formation of surfactant micelles and their subsequent leaching out to generate porous structures. The pore size of DPNR films increased with increasing surfactant amount. The model drugs were naproxen and indomethacin; their releases and release-permeations were investigated under the effects of surfactant amount, electrical potential, and drug size. Without electric field, the drug release mechanism was mainly driven by concentration gradient. The higher amount of drug released was obtained from the matrix with a larger pore size. Under electric field, the higher amounts of drug release were obtained in the shorter drug release durations, via the electrorepulsive force between the negatively charged drugs and the cathode electrode. The molecular drug size was a factor for the drug absorption, release rate and amount. For the drug release-permeation experiment through the pig skin, there were two release-permeation periods as governed by the combination of concentration gradient and swelling in the first period, and the matrix erosion in the second period. The fabricated porous DPNR films have been shown here to be potential to be used as a transdermal patch with electrically controllable drug release rate, amount and duration along with the facile drug-matrix loading and absorption.
Collapse
Affiliation(s)
- Kamonpan Ruangmak
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - Nophawan Paradee
- Sustainable Polymer & Innovative Composite Materials Research Group, Faculty of Science, Department of Chemistry, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sumonman Niamlang
- Advanced Materials Research Group, Faculty of Engineering, Department of Materials and Metallurgical Engineering, Rajamangala University of Technology Thanyaburi, Pathumthani, Thailand
| | | | - Anuvat Sirivat
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Yu T, Lei X, Zhou Y, Chen H. Ti
3
C
2
Tx MXenes
reinforced
PAA
/
CS
hydrogels with self‐healing function as flexible supercapacitor electrodes. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ting Yu
- College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China
| | - Xiping Lei
- College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China
- Shaanxi Key Laboratory of Nano Materials and Technology Xi'an China
| | - Yali Zhou
- College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China
| | - Haonan Chen
- College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China
| |
Collapse
|
18
|
Cashew apple pectin as a carrier matrix for mangiferin: Physicochemical characterization, in vitro release and biological evaluation in human neutrophils. Int J Biol Macromol 2021; 171:275-287. [PMID: 33422511 DOI: 10.1016/j.ijbiomac.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/03/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
In this work, cashew apple pectin (CP) of the species Anacardium occidentale L. was used as an encapsulation matrix for hydrophobic drugs. The model drug chosen was mangiferin (Mf), a glycosylated C-xanthone which has antioxidant properties but low solubility in aqueous medium. CP (1-100 μg mL-1) was not toxic to human neutrophils and also did not significantly interfere with the pro-inflammatory mechanism of these cells in the concentration range of 12.5 and 100 μg mL-1. The results are promising because they show that pectin encapsulated mangiferin after spray drying presented an efficiency of 82.02%. The results obtained in the dissolution test, simulating the release of mangiferin in the gastrointestinal tract (pH 1.2, 4.6 and 6.8) and using Franz diffusion cells (pH 7.4), showed that cashew pectin may be a promising vehicle in prolonged drug delivery systems for both oral and dermal applications.
Collapse
|
19
|
Ahmadian M, Khoshfetrat AB, Khatami N, Morshedloo F, Rahbarghazi R, Hassani A, Kiani S. Influence of gelatin and collagen incorporation on peroxidase-mediated injectable pectin-based hydrogel and bioactivity of fibroblasts. J Biomater Appl 2020; 36:179-190. [PMID: 33302758 DOI: 10.1177/0885328220977601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pectin has recently attracted increasing attention for biomedical and pharmaceutical applications. Due to the lack of adhesion molecules in polysaccharides, phenolic hydroxyl conjugated gelatin was added to enzymatically-gellable peroxidase-modified pectin derivative and compared with phenolic hydroxyl -pectin/collagen. Both pectin and gelatin were modified by tyramine hydrochloride in the presence of EDC/NHS. The phenolic hydroxyl -pectin/phenolic hydroxyl -gelatin, phenolic hydroxyl-pectin/collagen, and phenolic hydroxyl -pectin hydrogels were prepared using horseradish peroxidase and hydrogen peroxide. The hydrogels were characterized by gelation time analysis. Morphology, enzymatic biodegradation, mechanical and swelling properties as well as water vapor transmission rate were also evaluated. Fibroblasts were cultured for 7 days, and the survival rate was evaluated using conventional MTT assay. Hydrogels composed of Ph-pectin/Ph-gelatin showed decreased biodegradation rate, and WVTR and further improved mechanical performance in comparison with other groups. Both phenolic hydroxyl -pectin/collagen and phenolic hydroxyl -pectin/phenolic hydroxyl -gelatin hydrogels exhibited porous structures. The hydrogels composed of collagen promoted cell survival rate 1.4 and 3.5 times compared to phenolic hydroxyl -gelatin and phenolic hydroxyl -pectin based hydrogels at the end of 7 days, respectively (p < 0.001). The study demonstrated the potential of enzymatically-gellable pectin-based hydrogels as cost-effective frameworks for use in tissue engineering applications.
Collapse
Affiliation(s)
- Mehri Ahmadian
- Sahand University of Technology, Tabriz, Islamic Republic of Iran
| | | | - Neda Khatami
- Sahand University of Technology, Tabriz, Islamic Republic of Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran *These authors contributed equally to this work
| | - Ayla Hassani
- Sahand University of Technology, Tabriz, Islamic Republic of Iran
| | - Sahar Kiani
- Sahand University of Technology, Tabriz, Islamic Republic of Iran
| |
Collapse
|
20
|
Paradee N, Thanokiang J, Sirivat A. Conductive poly(2-ethylaniline) dextran-based hydrogels for electrically controlled diclofenac release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111346. [PMID: 33254969 DOI: 10.1016/j.msec.2020.111346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/14/2019] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Transdermal drug delivery systems (TDDS) are used as an alternative route to deliver drugs into the blood system for therapy. The matrix materials that have been widely used in TDDS are hydrogels. The dextran hydrogels were prepared by the solution casting using trisodium trimetaphosphate (STMP) as the crosslinking agent, and diclofenac sodium salt (Dcf) as the anionic model drug. Poly(2-ethylaniline) (PEAn) was successfully synthesized and embedded into the dextran hydrogel as the drug encapsulation host. The in-vitro release of Dcf from the hydrogels was investigated using a modified Franz-Diffusion cell in a phosphate-buffered saline (PBS) solution at the pH of 7.4 and at 37 °C for a period of 24 h, under the effects of crosslinking ratios, dextran molecular weights, electric potentials, and the conductive polymer PEAn. The release mechanism of Dcf from the dextran hydrogels and the composite without electrical potential was the diffusion controlled mechanism or the Fickian diffusion. Under applied electrical potentials, the release mechanism was a combination between the Fickian diffusion and the matrix swelling. The Dcf diffusion coefficients from the dextran hydrogels without electrical potential increased with decreasing crosslinking ratio and molecular weight. Under electrical potentials, the corresponding diffusion coefficients were much higher due mainly to the electro-repulsive force between the negatively charged electrode and the negatively charged dextran and the induced dextran expansion. For the Dcf-loaded PEAn/dextran composite, the diffusion coefficient was enhanced by two orders of magnitude when the electric potential was applied, specifically illustrating the unique features of PEAn as an efficient drug encapsulation host without electric field, and as a drug release enhancer under electric field through the reduction reaction.
Collapse
Affiliation(s)
- Nophawan Paradee
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirawat Thanokiang
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anuvat Sirivat
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
21
|
Bansal M, Dravid A, Aqrawe Z, Montgomery J, Wu Z, Svirskis D. Conducting polymer hydrogels for electrically responsive drug delivery. J Control Release 2020; 328:192-209. [DOI: 10.1016/j.jconrel.2020.08.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
|
22
|
Sangsuriyonk K, Paradee N, Sirivat A. Electrically controlled release of anticancer drug 5-fluorouracil from carboxymethyl cellulose hydrogels. Int J Biol Macromol 2020; 165:865-873. [DOI: 10.1016/j.ijbiomac.2020.09.228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023]
|
23
|
Zheng T, Huang J, Jiang Y, Tang Q, Liu Y, Xu Z, Wu X, Ren J. Sandwich-structure hydrogels implement on-demand release of multiple therapeutic drugs for infected wounds. RSC Adv 2019; 9:42489-42497. [PMID: 35542841 PMCID: PMC9076599 DOI: 10.1039/c9ra09412a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Wound infections bring huge challenges to clinical practice. A series of approaches are involved in the management of infected wounds including use of antibacterial agents, granulation tissue regeneration and scar prevention. In this study, we fabricated a sandwich-structure hydrogel dressing through layer-by-layer assembly of films and hydrogels. By pre-loading silver nanoparticles (AgNPs), vascular endothelial growth factors (VEGF) and ginsenoside Rg3 (Rg3) into each layer of the sandwich compound, this hydrogel could realize the sequential release of these drugs onto infected wound beds as demanded. Moreover, altering the thickness of middle layer could further change the drug delivery patterns characterized by delay at the initial releasing timepoint. When applying this dressing on infected wounds of rabbit ears, we found it could alleviate infection-induced inflammation, promote granulation tissue regeneration and inhibit scar formation. Collectively, the design of sandwich-structure hydrogels was facilitated to deliver specific drugs sequentially during their therapeutic time window for complicated diseases and has shown potential applications in infected wounds. Wound infections bring huge challenges to clinical practice.![]()
Collapse
Affiliation(s)
- Tao Zheng
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China
| | - Jinjian Huang
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China .,School of Medicine, Southeast University Nanjing 210009 China
| | - Yungang Jiang
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China .,School of Medicine, Southeast University Nanjing 210009 China
| | - Qinqing Tang
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China
| | - Ye Liu
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China .,School of Medicine, Southeast University Nanjing 210009 China
| | - Ziyan Xu
- School of Medicine, Nanjing University Nanjing 210093 China
| | - Xiuwen Wu
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China
| | - Jianan Ren
- Laboratory for Trauma and Surgical Infections, Research Institute of General Surgery, Jinling Hospital 305 East Zhongshan Road Nanjing 210002 China
| |
Collapse
|
24
|
Yeamsuksawat T, Liang J. Characterization and release kinetic of crosslinked chitosan film incorporated with α-tocopherol. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Functional Hydrogels and Their Application in Drug Delivery, Biosensors, and Tissue Engineering. INT J POLYM SCI 2019. [DOI: 10.1155/2019/3160732] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hydrogel is a new class of functional polymer materials with a promising potential in the biomedical field. The purpose of this article is to review recent advancements in several types of biomedical hydrogels, including conductive hydrogels, injectable hydrogels, double network hydrogels, responsive hydrogels, nanocomposite hydrogels, and sliding hydrogels. In comparison with traditional hydrogels, these advanced hydrogels exhibit significant advantages in structure, mechanical properties, and applications. The article focuses on different methods used to prepare advanced biomedical hydrogels and their diversified applications as drug delivery systems, wound dressings, biosensors, contact lenses, and tissue replacement. These advances are rapidly overcoming current limitations of hydrogels, and we anticipate that further research will lead to the development of advanced hydrogels with ubiquitous roles in biomedicine and tissue replacement and regeneration.
Collapse
|
26
|
Abstract
Polyacrylamide/polypyrrole (PAM/PPy) hydrogel was developed for the application in controlled drug delivery. PAM/PPy hydrogel was synthesized via free-radical polymerization of acrylamide using ammonium persulfate (APS) as initiator in the dispersion of PPy nanoparticle. N,N’-methylenebisacrylamide (MBA) and N,N,N’,N’-tetra-methylenediamine (TEMED) were utilized as cross-linker and accelerator, respectively. Salicylic acid (SA) was selected as a model drug in this work. The effect of PPy contents on SA-loading and releasing performances was investigated. The more PPy content was incorporated, the greater SA-loading and releasing were found. This is attributed to the increasing pore size of the PAM hydrogel when PPy nanoparticles were incorporated. Drug releasing performance from the SA-loaded PAM/PPy hydrogel were controllable under the applied potential of 1.0 volt. The research exhibits the potential of using conductive polymer hydrogel to control the drug release rate at an optimal desired level.
Collapse
|
27
|
Eroglu I, Gultekinoglu M, Bayram C, Erikci A, Ciftci SY, Ayse Aksoy E, Ulubayram K. Gel network comprising UV crosslinked PLGA-b-PEG-MA nanoparticles for ibuprofen topical delivery. Pharm Dev Technol 2019; 24:1144-1154. [PMID: 31298072 DOI: 10.1080/10837450.2019.1643880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ibuprofen is a non-steroidal anti-inflammatory drug for the treatment of Rheumatoid Arthritis and osteoarthritis. In this study, we prepared topical gel network for enhancement of ibuprofen penetration, maintenance of controlled release and increased patient compliance. Nanoparticles containing ibuprofen were prepared by means of emulsion formation/solvent diffusion method using synthesized copolymer. Nanoparticles were then conjugated with aminoethylmethacrylate, resulting in ibuprofen-loaded nanoparticles in PLGA-b-PEG-MA structure. Ibuprofen-loaded gel networks were developed by crosslinking nanoparticles via UV exposure. Suitability for topical application has been assessed through characterization of particle size, zeta potential, morphology, encapsulation efficiency, in vitro release, cytotoxicity and enhancement of in vitro wound healing. The mean diameter of nanoparticles was measured as 230 ± 20 nm. Gel network formulations with higher particle size (2800 ± 350 nm) and zeta potential (39.8 ± 9.2 mV), depending on conjugation of methacrylate within copolymeric structure, and having encapsulation efficacy of 73.6 ± 2.8% were prepared. The in vitro release of ibuprofen was sustained for more than 7 hours. Gel network improved collagen synthesis, type I collagen mRNA expression and fibrosis in dose dependent manner. Based on this, we can conclude that PLGA-b-PEG gel network might be a promising systems for the local delivery of ibuprofen in RA patients.
Collapse
Affiliation(s)
- Ipek Eroglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey.,Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University , Ankara , Turkey
| | - Cem Bayram
- Advanced Technologies Application and Research Center, Hacettepe University , Ankara , Turkey
| | - Acelya Erikci
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | | | - Eda Ayse Aksoy
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey.,Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University , Ankara , Turkey
| |
Collapse
|
28
|
Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA. Stimuli-Responsive Drug Release from Smart Polymers. J Funct Biomater 2019; 10:jfb10030034. [PMID: 31370252 PMCID: PMC6787590 DOI: 10.3390/jfb10030034] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Over the past 10 years, stimuli-responsive polymeric biomaterials have emerged as effective systems for the delivery of therapeutics. Persistent with ongoing efforts to minimize adverse effects, stimuli-responsive biomaterials are designed to release in response to either chemical, physical, or biological triggers. The stimuli-responsiveness of smart biomaterials may improve spatiotemporal specificity of release. The material design may be used to tailor smart polymers to release a drug when particular stimuli are present. Smart biomaterials may use internal or external stimuli as triggering mechanisms. Internal stimuli-responsive smart biomaterials include those that respond to specific enzymes or changes in microenvironment pH; external stimuli can consist of electromagnetic, light, or acoustic energy; with some smart biomaterials responding to multiple stimuli. This review looks at current and evolving stimuli-responsive polymeric biomaterials in their proposed applications.
Collapse
Affiliation(s)
- Carlos M Wells
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA.
| | - Michael Harris
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| | - Landon Choi
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| | - Vishnu Priya Murali
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| | | | - J Amber Jennings
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
29
|
Castiglione F, Casalegno M, Ferro M, Rossi F, Raos G, Mele A. Evidence of superdiffusive nanoscale motion in anionic polymeric hydrogels: Analysis of PGSE- NMR data and comparison with drug release properties. J Control Release 2019; 305:110-119. [PMID: 31121281 DOI: 10.1016/j.jconrel.2019.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/19/2019] [Accepted: 05/17/2019] [Indexed: 01/28/2023]
Abstract
Polymeric hydrogels are promising candidates for drug delivery applications, thanks to their ability to encapsulate, transport and release a wide range of chemicals. The successful application of these materials requires a deep understanding of the mechanisms governing solute transport at the nanoscale and its impact on release kinetics. In this work, we investigate the translational diffusion of ibuprofen loaded in anionic agarose-carbomer (AC) hydrogels by 1H high resolution magic angle spinning (HR-MAS) NMR spectroscopy, and compare it to its macroscopic release kinetics. The analysis of the experimental NMR data provides the first evidence of superdiffusion for ibuprofen in AC hydrogels. Superdiffusive transport is observed in the majority of our samples, especially those with the smallest mesh size (7 nm) and highest ibuprofen concentrations (90-120 mg/mL). This outcome is rationalized in terms of heavy-tailed distributions of spatial displacements (Lèvy flights) and of waiting times, which depend on the nanoscopic structural heterogeneity of the gels and the strong but reversible association between ibuprofen and the agarose matrix.
Collapse
Affiliation(s)
- Franca Castiglione
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Mosè Casalegno
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Monica Ferro
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Guido Raos
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; CNR Istituto di Chimica del Riconoscimento Molecolare, Via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
30
|
Oktay S, Alemdar N. Electrically controlled release of 5-fluorouracil from conductive gelatin methacryloyl-based hydrogels. J Appl Polym Sci 2018. [DOI: 10.1002/app.46914] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Salise Oktay
- Department of Chemical Engineering; Marmara University; 34722 Istanbul Turkey
| | - Neslihan Alemdar
- Department of Chemical Engineering; Marmara University; 34722 Istanbul Turkey
| |
Collapse
|