1
|
Morales-Becerril A, Aranda-Lara L, Isaac-Olive K, Ramírez-Villalva A, Ocampo-García B, Morales-Avila E. An Overview of Film-Forming Emulsions for Dermal and Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:259. [PMID: 39487372 DOI: 10.1208/s12249-024-02942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024] Open
Abstract
Drug delivery through the skin is a widely used therapeutic method for the treatment of local dermatologic conditions. Dermal and transdermal methods of drug delivery offer numerous advantages, but some of the most important aspects of drug absorption through the skin need to be considered. Film-forming systems (FFS) represent a new mode of sustained drug delivery that can be used to replace traditional topical formulations such as creams, ointments, pastes, or patches. They are available in various forms, including solutions, gels, and emulsions, and can be categorised as film-forming gels and film-forming emulsions. Film-forming emulsions (FFE) are designed as oil-in-water (O/W) emulsions that form a film with oil droplets encapsulated in a dry polymer matrix, thus maintaining their dispersed nature. They offer several advantages, including improved solubility, bioavailability and chemical stability of lipophilic drugs. In addition, they could improve the penetration and diffusion of drugs through the skin and enhance their absorption at the target site due to the nature of the components used in the formulation. The aim of this review is to provide an up-to-date compilation of the technologies used in film-forming emulsions to support their development and availability on the market as well as the development of new pharmaceutical forms.
Collapse
Affiliation(s)
- Aideé Morales-Becerril
- Facultad de Química, Universidad Autónoma del Estado de México, 50120, Toluca, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, 50180, Toluca, Estado de México, Mexico
| | - Keila Isaac-Olive
- Facultad de Medicina, Universidad Autónoma del Estado de México, 50180, Toluca, Estado de México, Mexico
| | - Alejandra Ramírez-Villalva
- Escuela Profesional en Química Farmacéutica Biológica-INIES, Universidad de Ixtlahuaca, CUI. Ixtlahuaca, San Pedro, 50740, Estado de México, México
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, 52750, Ocoyoacac, Estado de México, Mexico
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, 50120, Toluca, Estado de México, Mexico.
| |
Collapse
|
2
|
Racaniello GF, Pistone M, Meazzini C, Lopedota A, Arduino I, Rizzi R, Lopalco A, Musazzi UM, Cilurzo F, Denora N. 3D printed mucoadhesive orodispersible films manufactured by direct powder extrusion for personalized clobetasol propionate based paediatric therapies. Int J Pharm 2023; 643:123214. [PMID: 37423374 DOI: 10.1016/j.ijpharm.2023.123214] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The aim of this work is the development and production by Direct Powder Extrusion (DPE) 3D printing technique of novel oral mucoadhesive films delivering Clobetasol propionate (CBS), useful in paediatric treatment of Oral Lichen Planus (OLP), a rare chronic disease. The DPE 3D printing of these dosage forms can allow the reduction of frequency regimen, the therapy personalization, and reduction of oral cavity administration discomfort. To obtain suitable mucoadhesive films, different polymeric materials, namely hydroxypropylmethylcellulose or polyethylene oxide blended with chitosan (CS), were tested and hydroxypropyl-β-cyclodextrin was added to increase the CBS solubility. The formulations were tested in terms of mechanical, physico-chemical, and in vitro biopharmaceutical properties. The film showed a tenacious structure, with drug chemical-physical characteristics enhancement due to its partial amorphization during the printing stage and owing to cyclodextrins multicomponent complex formation. The presence of CS enhanced the mucoadhesive properties leading to a significant increase of drug exposure time on the mucosa. Finally, the printed films permeation and retention studies through porcine mucosae showed a marked retention of the drug inside the epithelium, avoiding drug systemic absorption. Therefore, DPE-printed films could represent a suitable technique for the preparation of mucoadhesive film potentially usable for paediatric therapy including OLP.
Collapse
Affiliation(s)
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Chiara Meazzini
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Angela Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Rosanna Rizzi
- Institute of Crystallography-CNR, Amendola St. 122/o, Bari 70126, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy.
| |
Collapse
|
3
|
Orodispersible films — Pharmaceutical development for improved performance: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Liu X, Huang S, Ma L, Ye H, Lin J, Cai X, Shang Q, Zheng C, Xu R, Zhang D. Recent advances in wearable medical diagnostic sensors and new therapeutic dosage forms for fever in children. J Pharm Biomed Anal 2022; 220:115006. [PMID: 36007307 DOI: 10.1016/j.jpba.2022.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Fever in children is one of the most common symptoms of pediatric diseases and the most common complaint in pediatric clinics, especially in the emergency department. Diseases such as pneumonia, sepsis, and meningitis are leading causes of death in children, and the early manifestations of these diseases are accompanied by fever symptoms. Accurate diagnosis and real-time monitoring of the status of febrile children, rapid and effective identification of the cause, and treatment can have a positive impact on relieving their symptoms and improving their quality of life. In recent years, wearable diagnostic sensors have attracted special attention for their high flexibility, real-time monitoring, and sensitivity. Temperature sensors and heart rate sensors have provided new advances in detecting children's body temperature and heart rate. Furthermore, some novel formulations have also received wide attention for addressing bottlenecks in medication administration for febrile children, such as difficulty in swallowing and inaccurate dosing. In this context, the present review provides recent advances of novel wearable medical sensor devices for diagnosing fever. Moreover, the application progress of innovative dosage forms of classical antipyretic drugs for children is presented. Finally, challenges and prospects of wearable sensor-based diagnostics and novel agent-based treatment of fever in children are discussed in brief.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Lele Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Xinfu Cai
- Sichuan Guangda Pharmaceutical Co. Ltd., Pengzhou 611930, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou 611930, PR China
| | - Qiang Shang
- Sichuan Guangda Pharmaceutical Co. Ltd., Pengzhou 611930, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou 611930, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
5
|
Olechno K, Basa A, Winnicka K. "Success Depends on Your Backbone"-About the Use of Polymers as Essential Materials Forming Orodispersible Films. MATERIALS 2021; 14:ma14174872. [PMID: 34500962 PMCID: PMC8432670 DOI: 10.3390/ma14174872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
Polymers constitute a group of materials having a wide-ranging impact on modern pharmaceutical technology. Polymeric components provide the foundation for the advancement of novel drug delivery platforms, inter alia orodispersible films. Orodispersible films are thin, polymeric scraps intended to dissolve quickly when put on the tongue, allowing them to be easily swallowed without the necessity of drinking water, thus eliminating the risk of choking, which is of great importance in the case of pediatric and geriatric patients. Polymers are essential excipients in designing orodispersible films, as they constitute the backbone of these drug dosage form. The type of polymer is of significant importance in obtaining the formulation of the desired quality. The polymers employed to produce orodispersible films must meet particular requirements due to their oral administration and have to provide adequate surface texture, film thickness, mechanical attributes, tensile and folding strength as well as relevant disintegration time and drug release to obtain the final product characterized by optimal pharmaceutical features. A variety of natural and synthetic polymers currently utilized in manufacturing of orodispersible films might be used alone or in a blend. The goal of the present manuscript was to present a review about polymers utilized in designing oral-dissolving films.
Collapse
Affiliation(s)
- Katarzyna Olechno
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Correspondence: (K.O.); (K.W.)
| | - Anna Basa
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Correspondence: (K.O.); (K.W.)
| |
Collapse
|
6
|
Mucoadhesion and Mechanical Assessment of Oral Films. Eur J Pharm Sci 2021; 159:105727. [DOI: 10.1016/j.ejps.2021.105727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
|
7
|
Musazzi UM, Ortenzi MA, Gennari CGM, Casiraghi A, Minghetti P, Cilurzo F. Design of pressure-sensitive adhesive suitable for the preparation of transdermal patches by hot-melt printing. Int J Pharm 2020; 586:119607. [PMID: 32652181 DOI: 10.1016/j.ijpharm.2020.119607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
This work aimed to design low-melting pressure sensitive adhesives and to demonstrate the feasibility of the preparation of (trans)dermal patches by hot-melt ram extrusion printing. This approach allows defining both the geometry of (trans)dermal patch and the drug strength easily according to patient needs. The preparation steps are the mixing of a poly-ammonium methacrylate polymer (i.e. Eudragit RL and RS) with a suitable amount of plasticizer (triacetin or tributyl citrate) and drug (ketoprofen or nicotine), the melting in the ram extruder, and the printing on the backing layer foil. The formulations were characterized in terms of rheological and adhesive properties, in vitro drug release and skin permeation profiles. The (trans)dermal patches made of Eudragit RL or Eudragit RS plasticized with the 40% triacetin could be printed at 90 °C giving formulations with suitable adhesive properties and without cold flow after 1 month of storage at 40 °C. Furthermore, the overall results showed that the performances of printed (trans)dermal patches overlapped those made by solvent casting, suggesting that the proposed solvent-free technology can be useful to treat cutaneous pathologies when the availability of (trans)dermal patches with size and shape that perfectly fit with the skin area affected by the disease improves the safety of the pharmacological treatment.
Collapse
Affiliation(s)
- Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, 20133 Milan, Italy
| | - Marco A Ortenzi
- Department of Chemistry, Università degli Studi di Milano, Via Golgi, 19-20133 Milan, Italy; CRC Materiali Polimerici (LaMPo), Department of Chemistry, Università degli Studi di Milano, Via Golgi, 19-20133 Milan, Italy
| | - Chiara G M Gennari
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, 20133 Milan, Italy
| | - Antonella Casiraghi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, 20133 Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, 20133 Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, 20133 Milan, Italy.
| |
Collapse
|
8
|
Gupta MS, Kumar TP. Characterization of Orodispersible Films: An Overview of Methods and Introduction to a New Disintegration Test Apparatus Using LDR - LED Sensors. J Pharm Sci 2020; 109:2925-2942. [PMID: 32565356 DOI: 10.1016/j.xphs.2020.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Orodispersible Film (ODF) is a promising and progressive dosage form that offers exceptional drug delivery benefits to patients. Indeed, they are the most transformational alternatives to traditional/conventional dosage forms such as tablets and capsules. ODFs are portable and highly comfortable for self-administration by patients with swallowing problems. The key to gain end-user acceptance is to have an ODF with outstanding quality. Poor quality may lead to choking or spitting, accordingly leading to a lack of compliance. It is vital to employ suitable experimental methodologies that facilitate characterization or determination of the quality of ODF. Nonetheless, there are no standard techniques prescribed in official compendia of any country. But, there is a consensus in the thin-film research community about the characterization techniques that one relies on deciding the quality of an ODF. We review various experimental techniques and highlight its importance in determining the performance and quality of an ODF. We provide a relatively novel and inventive disintegration test apparatus, which works using 'Light Dependent Resistor (LDR) and Light Emitting Diode (LED) sensors' for clear and accurate determination of start and end disintegration time of an ODF.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, India.
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, India
| |
Collapse
|
9
|
Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm 2020; 576:118963. [DOI: 10.1016/j.ijpharm.2019.118963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
|
10
|
Ghafar H, Khan MI, Sarwar HS, Yaqoob S, Hussain SZ, Tariq I, Madni AU, Shahnaz G, Sohail MF. Development and Characterization of Bioadhesive Film Embedded with Lignocaine and Calcium Fluoride Nanoparticles. AAPS PharmSciTech 2020; 21:60. [PMID: 31912272 DOI: 10.1208/s12249-019-1615-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/16/2019] [Indexed: 11/30/2022] Open
Abstract
The formation of biofilm by Streptococcus mutans on the tooth surface is the primary cause of dental caries and periodontal diseases, and fluoride (F) has shown tremendous potential as a therapeutic moiety against these problems. Herein, we report an efficient multi-ingredient bioadhesive film-based delivery system for oral cavity to combat dental problems with an ease of administration. Thiolated chitosan-based bioadhesive film loaded with calcium fluoride nanoparticles (CaF2 NPs) and lignocaine as a continuous reservoir for prolonged delivery was successfully prepared and characterized. The polygonal CaF2 NPs with an average particle size less than 100 nm, PDI 0.253, and + 6.10 mV zeta potential were synthesized and loaded in film. The energy dispersive x-ray (EDX) spectroscopy confirmed the presence 33.13% F content in CaF2 NPs. The characterization of the three film trials for their mechanical strength, bioadhesion, drug release, and permeation enhancement suggested film B as better among the three trials and showed significant outcomes, indicating the potential application of the medicated bioadhesive film. In vitro dissolution studies revealed sustained release pattern of lignocaine and CaF2 NP following Krosmeyer-Peppas model over 8 h. Franz diffusion studies showed the prolonged contact time of film with mucosa that facilitated the transport of CaF2 NPs and lignocaine across the mucosa. Hence, the prepared bioadhesive film-based system showed good potential for better management of dental problems. Graphical Abstract.
Collapse
|
11
|
Ehtezazi T, Algellay M, Hardy A. Next Steps in 3D Printing of Fast Dissolving Oral Films for Commercial Production. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 14:5-20. [PMID: 31886755 DOI: 10.2174/1872211314666191230115851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023]
Abstract
3D printing technique has been utilised to develop novel and complex drug delivery systems that are almost impossible to produce by employing conventional formulation techniques. For example, this technique may be employed to produce tablets or Fast Dissolving oral Films (FDFs) with multilayers of active ingredients, which are personalised to patient's needs. In this article, we compared the production of FDFs by 3D printing to conventional methods such as solvent casting. Then, we evaluated the need for novel methods of producing fast dissolving oral films, and why 3D printing may be able to meet the shortfalls of FDF production. The challenges of producing 3D printed FDFs are identified at commercial scale by referring to the identification of suitable materials, hardware, qualitycontrol tests and Process Analytical Technology. In this paper, we discuss that the FDF market will grow to more than $1.3 billion per annum in the next few years and 3D printing of FDFs may share part of this market. Although companies are continuing to invest in technologies, which provide alternatives to standard drug delivery systems, the market for thin-film products is already well established. Market entry for a new technology such as 3D printing of FDFs will, therefore, be hard, unless, this technology proves to be a game changer. A few approaches are suggested in this paper.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Marwan Algellay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Alison Hardy
- Knowledge Exchange and Commercialisation, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
12
|
Preparation and evaluation of orally disintegrating film containing donepezil for Alzheimer disease. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Musazzi UM, Dolci LS, Albertini B, Passerini N, Cilurzo F. A new melatonin oral delivery platform based on orodispersible films containing solid lipid microparticles. Int J Pharm 2019; 559:280-288. [PMID: 30690132 DOI: 10.1016/j.ijpharm.2019.01.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
An innovative delivery system for melatonin, based on the incorporation of solid lipid microparticles in orodispersible films (ODFs) made of maltodextrin, was designed and developed. Lipid microparticles at two different melatonin concentrations (10 and 20% w/w) were produced by the spray congealing technology using two different lipid carrier (tristearin and hydrogenated castor oil) and characterized in terms of size, solid state, drug loading and drug release pattern. Tristearin microparticles were discarded due to a polymorphic modification of the carrier. The incorporation of hydrogenated castor oil microparticles in ODFs by using the casting method did not alter significantly the shape and dimension of the microparticles and the mechanical properties (elasticity and strength) of the films, which remained acceptable for manufacturing and handling. The in vitro release studies performed in saliva, gastric and intestinal simulated media on ODFs containing melatonin loaded in hydrogenated castor oil microparticles revealed the possibility to combine with an immediate release of the drug and a sustained release over at least 5 h period. In conclusion, the proposed drug delivery system maintains the advantages of ODFs, i.e. the suitability to be swallowed without water, and permits the tuning of drug release according to the clinical needs by modulating the ratio of free and microencapsulated drug in the ODF.
Collapse
Affiliation(s)
- Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milano, Italy
| | - Luisa S Dolci
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milano, Italy
| |
Collapse
|
14
|
Shahzad Y, Maqbool M, Hussain T, Yousaf AM, Khan IU, Mahmood T, Jamshaid M. Natural and semisynthetic polymers blended orodispersible films of citalopram. Nat Prod Res 2019; 34:16-25. [DOI: 10.1080/14786419.2018.1552698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Maimoona Maqbool
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Tariq Mahmood
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
15
|
Orodispersible films based on blends of trehalose and pullulan for protein delivery. Eur J Pharm Biopharm 2018; 133:104-111. [DOI: 10.1016/j.ejpb.2018.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/10/2018] [Accepted: 09/22/2018] [Indexed: 11/23/2022]
|
16
|
Personalized orodispersible films by hot melt ram extrusion 3D printing. Int J Pharm 2018; 551:52-59. [DOI: 10.1016/j.ijpharm.2018.09.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|