1
|
García Carnero LC, Pinzan CF, Diehl C, de Castro PA, Pontes L, Rodrigues AM, Dos Reis TF, Goldman GH. Milteforan, a promising veterinary commercial product against feline sporotrichosis. Microbiol Spectr 2024; 12:e0047424. [PMID: 39194287 PMCID: PMC11448087 DOI: 10.1128/spectrum.00474-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. Due to its zoonotic transmission in Brazil, S. brasiliensis represents a significant health threat to humans and domestic animals. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii. Fluorescent miltefosine localizes to the Sporothrix cell membrane and mitochondria and causes cell death through increased permeabilization. Milteforan decreases S. brasiliensis fungal burden in A549 pulmonary cells and bone marrow-derived macrophages and also has an immunomodulatory effect by decreasing TNF-α, IL-6, and IL-10 production. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis. IMPORTANCE Sporotrichosis is an endemic disease in Latin America caused by different species of Sporothrix. This fungus can infect domestic animals, mainly cats and eventually dogs, as well as humans. Few drugs are available to treat this disease, such as itraconazole, terbinafine, and amphotericin B, but resistance to these agents has risen in the last few years. Alternative new therapeutic options to treat sporotrichosis are essential. Here, we propose milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, as a possible therapeutic alternative for treating sporotrichosis. Milteforan decreases S. brasiliensis fungal burden in human and mouse cells and has an immunomodulatory effect by decreasing several cytokine production.
Collapse
Affiliation(s)
- Laura C García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lais Pontes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anderson Messias Rodrigues
- Department of Microbiology, Immunology and Parasitology, Discipline of Cellular Biology, Laboratory of Emerging Fungal Pathogens, Federal University of São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
2
|
Ramisetty BS, Yang S, Dorlo TPC, Wang MZ. Determining tissue distribution of the oral antileishmanial agent miltefosine: a physiologically-based pharmacokinetic modeling approach. Antimicrob Agents Chemother 2024; 68:e0032824. [PMID: 38842325 PMCID: PMC11232387 DOI: 10.1128/aac.00328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Miltefosine (MTS) is the only approved oral drug for treating leishmaniasis caused by intracellular Leishmania parasites that localize in macrophages of the liver, spleen, skin, bone marrow, and lymph nodes. MTS is extensively distributed in tissues and has prolonged elimination half-lives due to its high plasma protein binding, slow metabolic clearance, and minimal urinary excretion. Thus, understanding and predicting the tissue distribution of MTS help assess therapeutic and toxicologic outcomes of MTS, especially in special populations, e.g., pediatrics. In this study, a whole-body physiologically-based pharmacokinetic (PBPK) model of MTS was built on mice and extrapolated to rats and humans. MTS plasma and tissue concentration data obtained by intravenous and oral administration to mice were fitted simultaneously to estimate model parameters. The resulting high tissue-to-plasma partition coefficient values corroborate extensive distribution in all major organs except the bone marrow. Sensitivity analysis suggests that plasma exposure is most susceptible to changes in fraction unbound in plasma. The murine oral-PBPK model was further validated by assessing overlay of simulations with plasma and tissue profiles obtained from an independent study. Subsequently, the murine PBPK model was extrapolated to rats and humans based on species-specific physiological and drug-related parameters, as well as allometrically scaled parameters. Fold errors for pharmacokinetic parameters were within acceptable range in both extrapolated models, except for a slight underprediction in the human plasma exposure. These animal and human PBPK models are expected to provide reliable estimates of MTS tissue distribution and assist dose regimen optimization in special populations.
Collapse
Affiliation(s)
| | - Sihyung Yang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Thomas P. C. Dorlo
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
3
|
Carnero LCG, Dos Reis TF, Diehl C, de Castro PA, Pontes L, Pinzan CF, Goldman GH. Milteforan, a promising veterinary commercial product against feline sporotrichosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580352. [PMID: 38405873 PMCID: PMC10888911 DOI: 10.1101/2024.02.14.580352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In Brazil, S. brasiliensis represents a vital health threat to humans and domestic animals due to its zoonotic transmission. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii, and by its antifungal activity when used to treat infected epithelial cells and macrophages. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis.
Collapse
Affiliation(s)
- Laura C García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lais Pontes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Olías-Molero AI, Botías P, Cuquerella M, García-Cantalejo J, Barcia E, Torrado S, Torrado JJ, Alunda JM. Effect of Clindamycin on Intestinal Microbiome and Miltefosine Pharmacology in Hamsters Infected with Leishmania infantum. Antibiotics (Basel) 2023; 12:362. [PMID: 36830274 PMCID: PMC9952363 DOI: 10.3390/antibiotics12020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Visceral leishmaniasis (VL), a vector-borne parasitic disease caused by Leishmania donovani and L. infantum (Kinetoplastida), affects humans and dogs, being fatal unless treated. Miltefosine (MIL) is the only oral medication for VL and is considered a first choice drug when resistance to antimonials is present. Comorbidity and comedication are common in many affected patients but the relationship between microbiome composition, drugs administered and their pharmacology is still unknown. To explore the effect of clindamycin on the intestinal microbiome and the availability and distribution of MIL in target organs, Syrian hamsters (120-140 g) were inoculated with L. infantum (108 promastigotes/animal). Infection was maintained for 16 weeks, and the animals were treated with MIL (7 days, 5 mg/kg/day), clindamycin (1 mg/kg, single dose) + MIL (7 days, 5 mg/kg/day) or kept untreated. Infection was monitored by ELISA and fecal samples (16 wpi, 18 wpi, end point) were analyzed to determine the 16S metagenomic composition (OTUs) of the microbiome. MIL levels were determined by LC-MS/MS in plasma (24 h after the last treatment; end point) and target organs (spleen, liver) (end point). MIL did not significantly affect the composition of intestinal microbiome, but clindamycin provoked a transient albeit significant modification of the relative abundance of 45% of the genera, including Ruminococcaceae UCG-014, Ruminococcus 2; Bacteroides and (Eubacterium) ruminantium group, besides its effect on less abundant phyla and families. Intestinal dysbiosis in the antibiotic-treated animals was associated with significantly lower levels of MIL in plasma, though not in target organs at the end of the experiment. No clear relationship between microbiome composition (OTUs) and pharmacological parameters was found.
Collapse
Affiliation(s)
- Ana Isabel Olías-Molero
- ICPVet, Department of Animal Health, School of Veterinary Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Botías
- Genomics Unit, Research Assistance Center of Biological Techniques, Complutense University of Madrid, 28040 Madrid, Spain
| | - Montserrat Cuquerella
- ICPVet, Department of Animal Health, School of Veterinary Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús García-Cantalejo
- Genomics Unit, Research Assistance Center of Biological Techniques, Complutense University of Madrid, 28040 Madrid, Spain
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Susana Torrado
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan José Torrado
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - José María Alunda
- ICPVet, Department of Animal Health, School of Veterinary Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Miltefosine and Nifuratel Combination: A Promising Therapy for the Treatment of Leishmania donovani Visceral Leishmaniasis. Int J Mol Sci 2023; 24:ijms24021635. [PMID: 36675150 PMCID: PMC9865052 DOI: 10.3390/ijms24021635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Visceral leishmaniasis is a neglected vector-borne tropical disease caused by Leishmania donovani and Leishmania infantum that is endemic not only in East African countries, but also in Asia, regions of South America and the Mediterranean Basin. For the pharmacological control of this disease, there is a limited number of old and, in general, poorly adherent drugs, with a multitude of adverse effects and low oral bioavailability, which favor the emergence of resistant pathogens. Pentavalent antimonials are the first-line drugs, but due to their misuse, resistant Leishmania strains have emerged worldwide. Although these drugs have saved many lives, it is recommended to reduce their use as much as possible and replace them with novel and more friendly drugs. From a commercial collection of anti-infective drugs, we have recently identified nifuratel-a nitrofurantoin used against vaginal infections-as a promising repurposing drug against a mouse model of visceral leishmaniasis. In the present work, we have tested combinations of miltefosine-the only oral drug currently used against leishmaniasis-with nifuratel in different proportions, both in axenic amastigotes from bone marrow and in intracellular amastigotes from infected Balb/c mouse spleen macrophages, finding a potent synergy in both cases. In vivo evaluation of oral miltefosine/nifuratel combinations using a bioimaging platform has revealed the potential of these combinations for the treatment of this disease.
Collapse
|
6
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
7
|
Olías-Molero AI, Botías P, Cuquerella M, García-Cantalejo J, Barcia E, Torrado S, Torrado JJ, Alunda JM. Leishmania infantum infection does not affect the main composition of the intestinal microbiome of the Syrian hamster. Parasit Vectors 2022; 15:468. [PMID: 36522762 PMCID: PMC9753363 DOI: 10.1186/s13071-022-05576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/03/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is the most severe form of all leishmanial infections and is caused by infection with protozoa of Leishmania donovani and Leishmania infantum. This parasitic disease occurs in over 80 countries and its geographic distribution is on the rise. Although the interaction between the intestinal microbiome and the immune response has been established in several pathologies, it has not been widely studied in leishmaniasis. The Syrian hamster is the most advanced laboratory model for developing vaccines and new drugs against VL. In the study reported here, we explored the relationship between the intestinal microbiome and infection with L. infantum in this surrogate host. METHODS Male Syrian hamsters (120-140 g) were inoculated with 108 promastigotes of a canine-derived L. infantum strain or left as uninfected control animals. Infection was maintained for 19 weeks (endpoint) and monitored by an immunoglobulin G (IgG) enyzme-linked immunosorbent assay throughout the experiment. Individual faecal samples, obtained at weeks 16, 18 and 19 post-inoculation, were analysed to determine the 16S metagenomic composition (the operational taxonomic units [OTUs] of the intestinal microbiome and the comparison between groups were FDR (false discovery rate)-adjusted). RESULTS Leishmania infantum infection elicited moderate clinical signs and lesions and a steady increase in specific anti-Leishmania serum IgG. The predominant phyla (Firmicutes + Bacteriodetes: > 90%), families (Muribaculaceae + Lachnospiraceae + Ruminococcaceae: 70-80%) and genera found in the uninfected hamsters showed no significant variations throughout the experiment. Leishmania infantum infection provoked a slightly higher-albeit non-significant-value for the Firmicutes/Bacteriodetes ratio but no notable differences were found in the relative abundance or diversity of phyla and families. The microbiome of the infected hamsters was enriched in CAG-352, whereas Lachnospiraceae UCG-004, the [Eubacterium] ventriosum group and Allobaculum were less abundant. CONCLUSIONS The lack of extensive significant differences between hamsters infected and uninfected with L. infantum in the higher taxa (phyla, families) and the scarce variation found, which was restricted to genera with a low relative abundance, suggest that there is no clear VL infection-intestinal microbiome axis in hamsters. Further studies are needed (chronic infections, co-abundance analyses, intestinal sampling, functional analysis) to confirm these findings and to determine more precisely the possible relationship between microbiome composition and VL infection.
Collapse
Affiliation(s)
- Ana Isabel Olías-Molero
- ICPVet, Department of Animal Health, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Pedro Botías
- Unidad de Genómica, Centro de Asistencia a la Investigación de Técnicas Biológicas, Complutense University of Madrid, Madrid, Spain
| | - Montserrat Cuquerella
- ICPVet, Department of Animal Health, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Jesús García-Cantalejo
- Unidad de Genómica, Centro de Asistencia a la Investigación de Técnicas Biológicas, Complutense University of Madrid, Madrid, Spain
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Susana Torrado
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Juan José Torrado
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - José María Alunda
- ICPVet, Department of Animal Health, School of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Institute of Industrial Pharmacy UCM, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
8
|
Chen L, Kuang L, Ross AE, Farhat W, Boychev N, Sharfi S, Kanu LN, Liu L, Kohane DS, Ciolino JB. Topical Sustained Delivery of Miltefosine Via Drug-Eluting Contact Lenses to Treat Acanthamoeba Keratitis. Pharmaceutics 2022; 14:pharmaceutics14122750. [PMID: 36559244 PMCID: PMC9781349 DOI: 10.3390/pharmaceutics14122750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop a miltefosine-eluting contact lens (MLF-CL) device that would allow sustained and localized miltefosine release for the treatment of Acanthamoeba keratitis. MLF-CLs were produced in three different miltefosine doses by solvent-casting a thin miltefosine-polymer film around the periphery of a methafilcon hydrogel, which was then lathed into a contact lens. During seven days of in vitro testing, all three formulations demonstrated sustained release from the lens at theoretically therapeutic levels. Based on the physicochemical characterization of MLF-CLs, MLF-CL's physical properties are not significantly different from commercial contact lenses in terms of light transmittance, water content and wettability. MLF-CLs possessed a slight reduction in compression modulus that was attributed to the inclusion of polymer-drug films but still remain within the optimal range of soft contact lenses. In cytotoxicity studies, MLF-CL indicated up to 91% viability, which decreased proportionally as miltefosine loading increased. A three-day biocompatibility test on New Zealand White rabbits revealed no impact of MLF-CLs on the corneal tissue. The MLF-CLs provided sustained in vitro release of miltefosine for a week while maintaining comparable physical features to a commercial contact lens. MLF-CL has a promising potential to be used as a successful treatment method for Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Lin Chen
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (L.K.); (J.B.C.)
| | - Amy E. Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Sina Sharfi
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Levi N. Kanu
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Longqian Liu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Daniel S. Kohane
- Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (L.K.); (J.B.C.)
| |
Collapse
|
9
|
A new immunochemotherapy schedule for visceral leishmaniasis in a hamster model. Parasitol Res 2022; 121:2849-2860. [PMID: 35997843 DOI: 10.1007/s00436-022-07628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
The purpose of the present study was to evaluate the efficacy of the treatment with a recombinant cysteine proteinase from Leishmania, rldccys1, associated with allopurinol or miltefosine on Leishmania (Leishmania) infantum chagasi-infected hamsters. Golden Syrian hamsters infected with L. (L.) infantum chagasi were treated with either miltefosine (46 mg/kg) or allopurinol (460 mg/kg) alone by oral route or associated with rldccys1 (150 µg/hamster) by subcutaneous route for 30 days. Infected hamsters were also treated with miltefosine (46 mg/kg) plus rldccys1 (150 µg/hamster) for 30 days (phase 1) followed by two additional doses of rldccys1 (250 µg/hamster) (phase 2). After the end of treatment, the animals were analyzed for parasite load, body weight, serum levels of immunoglobulins, cytokine expression, and drug toxicity. The data showed a significant decrease of parasite load in infected hamsters treated with allopurinol or miltefosine alone or associated with rldccys1, as well as in those treated with rldccys1 alone. Significantly lower levels of serum IgG were detected in hamsters treated with allopurinol plus rldccys1. The treatment with miltefosine associated with rldccys1 prevented relapse observed in animals treated with miltefosine alone. A significant loss of body weight was detected only in some hamsters treated with miltefosine for 1 month and deprived of this treatment for 15 days. There were no significant differences in transcript expression of IFN-γ and IL-10 in any of treated groups. Neither hepatotoxicity nor nephrotoxicity was observed among controls and treated groups. These findings open perspectives to further explore this immunochemotherapeutic schedule as an alternative for treatment of visceral leishmaniasis.
Collapse
|
10
|
Eissa MM, El-Azzouni MZ, El-Khordagui LK, Abdel Bary A, El-Moslemany RM, Abdel Salam SA. Single oral fixed-dose praziquantel-miltefosine nanocombination for effective control of experimental schistosomiasis mansoni. Parasit Vectors 2020; 13:474. [PMID: 32933556 PMCID: PMC7493353 DOI: 10.1186/s13071-020-04346-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background The control of schistosomiasis has been centered to date on a single drug, praziquantel, with shortcomings including treatment failure, reinfection, and emergence of drug resistance. Drug repurposing, combination therapy or nanotechnology were explored to improve antischistosomal treatment. The aim of the present study was to utilize a novel combination of the three strategies to improve the therapeutic profile of praziquantel. This was based on a fixed-dose nanocombination of praziquantel and miltefosine, an antischistosomal repurposing candidate, co-loaded at reduced doses into lipid nanocapsules, for single dose oral therapy. Methods Two nanocombinations were prepared to provide 250 mg praziquantel-20 mg miltefosine/kg (higher fixed-dose) or 125 mg praziquantel-10 mg miltefosine/kg (lower fixed-dose), respectively. Their antischistosomal efficacy in comparison with a non-treated control and their praziquantel or miltefosine singly loaded counterparts was assessed in murine schistosomiasis mansoni. A single oral dose of either formulation was administered on the initial day of infection, and on days 21 and 42 post-infection. Scanning electron microscopic, parasitological, and histopathological studies were used for assessment. Preclinical data were subjected to analysis of variance and Tukeyʼs post-hoc test for pairwise comparisons. Results Lipid nanocapsules (~ 58 nm) showed high entrapment efficiency of both drugs (> 97%). Compared to singly loaded praziquantel-lipid nanocapsules, the higher nanocombination dose showed a significant increase in antischistosomal efficacy in terms of statistically significant decrease in mean worm burden, particularly against invasive and juvenile worms, and amelioration of hepatic granulomas (P ≤ 0.05). In addition, scanning electron microscopy examination showed extensive dorsal tegumental damage with noticeable deposition of nanostructures. Conclusions The therapeutic profile of praziquantel could be improved by a novel multiple approach integrating drug repurposing, combination therapy and nanotechnology. Multistage activity and amelioration of liver pathology could be achieved by a new praziquantel-miltefosine fixed-dose nanocombination providing 250 mg praziquantel-20 mg miltefosine/kg. To the best of our knowledge, this is the first report of a fixed-dose nano-based combinatorial therapy for schistosomiasis mansoni. Further studies are needed to document the nanocombination safety and explore its prophylactic activity and potential to hinder the onset of resistance to the drug components.![]()
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mervat Z El-Azzouni
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Amany Abdel Bary
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sara A Abdel Salam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|