1
|
Rational design of magnetoliposomes for enhanced interaction with bacterial membrane models. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184115. [PMID: 36603803 DOI: 10.1016/j.bbamem.2022.184115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
There is a growing need for alternatives to target and treat bacterial infection. Thus, the present work aims to develop and optimize the production of PEGylated magnetoliposomes (MLPs@PEG), by encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) within fusogenic liposomes. A Box-Behnken design was applied to modulate size distribution variables, using lipid concentration, SPIONs amount and ultrasonication time as independent variables. As a result of the optimization, it was possible to obtain MLPs@PEG with a mean size of 182 nm, with polydispersity index (PDI) of 0.19, and SPIONs encapsulation efficiency (%EE) around 76%. Cytocompatibility assays showed that no toxicity was observed in fibroblasts, for iron concentrations up to 400μg/ml. Also, for safe lipid and iron concentrations, no hemolytic effect was detected. The fusogenicity of the nanosystems was first evaluated through lipid mixing assays, based on Förster resonance energy transfer (FRET), using liposomal membrane models, mimicking bacterial cytoplasmic membrane and eukaryotic plasma membrane. It was shown that the hybrid nanosystems preferentially interact with the bacterial membrane model. Confocal microscopy and fluorescence lifetime measurements, using giant unilamellar vesicles (GUVs), validated these results. Overall, the developed hybrid nanosystem may represent an efficient drug delivery system with improved targetability for bacterial membrane.
Collapse
|
2
|
Duan Y, Wu X, Gong Z, Guo Q, Kong Y. Pathological impact and medical applications of electromagnetic field on melanoma: A focused review. Front Oncol 2022; 12:857068. [PMID: 35936711 PMCID: PMC9355252 DOI: 10.3389/fonc.2022.857068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Electromagnetic Field (EMF) influences melanoma in various ways. EMF can be classified into extremely low-frequency electromagnetic field, low-frequency magnetic field, static moderate magnetic field, strong electromagnetic field, alternating magnetic field, and magnetic nanoparticles. Each type of EMF influences melanoma development differently, and the detailed influence of each specific type of EMF on melanoma is reviewed. Furthermore, EMF influences melanoma cell polarity and hence affects drug uptake. In this review, the impacts of EMF on the effectiveness of drugs used to treat melanoma are listed according to drug types, with detailed effects according to the types of EMF and specific melanoma cell lines. EMF also impacts clinical therapies of melanoma, including localized magnetic hyperthermia, focalized thermotherapy, proton radiation treatment, nanostructure heating magnetic hyperthermia, radiation therapy, Polycaprolactone-Fe3O4 fiber mat-based bandage, and optune therapy. Above all, EMF has huge potential in melanoma treatment.
Collapse
Affiliation(s)
- Yunxiao Duan
- Astronomy Department, Wellesley College, Wellesley, MA, United States
| | - Xiaowen Wu
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Ziqi Gong
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Qian Guo
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Yan Kong
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
- *Correspondence: Yan Kong,
| |
Collapse
|
3
|
Preparation and pH/temperature dual drug release behavior of polyamino acid nanomicelles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Cintra ER, Hayasaki TG, Sousa-Junior AA, Silva ACG, Valadares MC, Bakuzis AF, Mendanha SA, Lima EM. Folate-Targeted PEGylated Magnetoliposomes for Hyperthermia-Mediated Controlled Release of Doxorubicin. Front Pharmacol 2022; 13:854430. [PMID: 35387345 PMCID: PMC8978894 DOI: 10.3389/fphar.2022.854430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent commonly used for the treatment of solid tumors. However, the cardiotoxicity associated with its prolonged use prevents further adherence and therapeutic efficacy. By encapsulating DOX within a PEGylated liposome, Doxil® considerably decreased DOX cardiotoxicity. By using thermally sensitive lysolipids in its bilayer composition, ThermoDox® implemented a heat-induced controlled release of DOX. However, both ThermoDox® and Doxil® rely on their passive retention in tumors, depending on their half-lives in blood. Moreover, ThermoDox® ordinarily depend on invasive radiofrequency-generating metallic probes for local heating. In this study, we prepare, characterize, and evaluate the antitumoral capabilities of DOX-loaded folate-targeted PEGylated magnetoliposomes (DFPML). Unlike ThermoDox®, DOX delivery via DFPML is mediated by the heat released through dynamic hysteresis losses from magnetothermal converting systems composed by MnFe2O4 nanoparticles (NPs) under AC magnetic field excitation—a non-invasive technique designated magnetic hyperthermia (MHT). Moreover, DFPML dismisses the use of thermally sensitive lysolipids, allowing the use of simpler and cheaper alternative lipids. MnFe2O4 NPs and DFPML are fully characterized in terms of their size, morphology, polydispersion, magnetic, and magnetothermal properties. About 50% of the DOX load is released from DFPML after 30 min under MHT conditions. Being folate-targeted, in vitro DFPML antitumoral activity is higher (IC50 ≈ 1 μg/ml) for folate receptor-overexpressing B16F10 murine melanoma cells, compared to MCF7 human breast adenocarcinoma cells (IC50 ≈ 4 μg/ml). Taken together, our results indicate that DFPML are strong candidates for folate-targeted anticancer therapies based on DOX controlled release.
Collapse
Affiliation(s)
- Emílio R Cintra
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Tacio G Hayasaki
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Ailton A Sousa-Junior
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Artur C G Silva
- Toxin-Laboratory of Education and Research in In Vitro Toxicology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Marize C Valadares
- Toxin-Laboratory of Education and Research in In Vitro Toxicology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Andris F Bakuzis
- Physics Institute, Federal University of Goias, Goiania, Brazil.,CNanoMed-Nanomedicine Integrated Research Center, Federal University of Goias, Goiania, Brazil
| | - Sebastião A Mendanha
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil.,Physics Institute, Federal University of Goias, Goiania, Brazil.,CNanoMed-Nanomedicine Integrated Research Center, Federal University of Goias, Goiania, Brazil
| | - Eliana M Lima
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil.,CNanoMed-Nanomedicine Integrated Research Center, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
5
|
Chen Y, Hou S. Application of magnetic nanoparticles in cell therapy. Stem Cell Res Ther 2022; 13:135. [PMID: 35365206 PMCID: PMC8972776 DOI: 10.1186/s13287-022-02808-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Fe3O4 magnetic nanoparticles (MNPs) are biomedical materials that have been approved by the FDA. To date, MNPs have been developed rapidly in nanomedicine and are of great significance. Stem cells and secretory vesicles can be used for tissue regeneration and repair. In cell therapy, MNPs which interact with external magnetic field are introduced to achieve the purpose of cell directional enrichment, while MRI to monitor cell distribution and drug delivery. This paper reviews the size optimization, response in external magnetic field and biomedical application of MNPs in cell therapy and provides a comprehensive view.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
6
|
Fu B, Tao C, Chen N, Lin JR, Zhao P. ZnO QD covalently coated, GSH/pH dual-responsive drug delivery system for chemotherapeutic/ionic synergistic therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
8
|
Khaleghi S, Rahbarizadeh F, Nikkhoi SK. Anti-HER2 VHH Targeted Fluorescent Liposome as Bimodal Nanoparticle for Drug Delivery and Optical Imaging. Recent Pat Anticancer Drug Discov 2021; 16:552-562. [PMID: 34365930 DOI: 10.2174/1574892816666210806150929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to formulate fluorescent-labeled targeted immunoliposome to visualize the delivery and distribution of drugs in real-time. METHODS In this study, fluorescent-labeled liposomes were decorated with anti-HER2 VHH or Herceptin to improve the monitoring of intracellular drug delivery and tumor cell tracking with minimal side effects. The conjugation efficiency of antibodies was analyzed by SDS-PAGE silver staining. In addition, the physicochemical characterization of liposomes was performed using DLS and TEM. Finally, confocal microscopy visualized nanoparticles in the target cells. RESULTS Quantitative and qualitative methods characterized the intracellular uptake of 110±10 nm particles with near 70% conjugation efficiency. In addition, live-cell trafficking during hours of incubation was monitored by wide-field microscopy imaging. The results show that the fluorescent-labeled nanoparticles can specifically bind to HER2-positive breast cancer with minimal off-target delivery. CONCLUSION This kind of nanoparticles can have several applications in personalized medicine, especially drug delivery and real-time visualization of cancer therapy. Moreover, this method also can be applied in the targeted delivery of contrast agents in imaging and thermotherapy.
Collapse
Affiliation(s)
- Sepideh Khaleghi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran. Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran. Iran
| | | |
Collapse
|
9
|
Pefani-Antimisiari K, Athanasopoulos DK, Marazioti A, Sklias K, Rodi M, de Lastic AL, Mouzaki A, Svarnas P, Antimisiaris SG. Synergistic effect of cold atmospheric pressure plasma and free or liposomal doxorubicin on melanoma cells. Sci Rep 2021; 11:14788. [PMID: 34285268 PMCID: PMC8292331 DOI: 10.1038/s41598-021-94130-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate combined effects of cold atmospheric plasma (CAP) and the chemotherapeutic drug doxorubicin (DOX) on murine and human melanoma cells, and normal cells. In addition to free drug, the combination of CAP with a liposomal drug (DOX-LIP) was also studied for the first time. Thiazolyl blue tetrazolium bromide (MTT) and Trypan Blue exclusion assays were used to evaluate cell viability; the mechanism of cell death was evaluated by flow cytometry. Combined treatment effects on the clonogenic capability of melanoma cells, was also tested with soft agar colony formation assay. Furthermore the effect of CAP on the cellular uptake of DOX or DOX-LIP was examined. Results showed a strong synergistic effect of CAP and DOX or DOX-LIP on selectively decreasing cell viability of melanoma cells. CAP accelerated the apoptotic effect of DOX (or DOX-LIP) and dramatically reduced the aggressiveness of melanoma cells, as the combination treatment significantly decreased their anchorage independent growth. Moreover, CAP did not result in increased cellular uptake of DOX under the present experimental conditions. In conclusion, CAP facilitates DOX cytotoxic effects on melanoma cells, and affects their metastatic potential by reducing their clonogenicity, as shown for the first time.
Collapse
Affiliation(s)
| | - Dimitrios K Athanasopoulos
- High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504, Rion, Greece
| | - Antonia Marazioti
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, 26504, Rion, Greece.
- FORTH/ICE-ΗΤ, Institute of Chemical Engineering Sciences, 26504, Rion, Greece.
| | - Kyriakos Sklias
- High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504, Rion, Greece
| | - Maria Rodi
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Anne-Lise de Lastic
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Panagiotis Svarnas
- High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504, Rion, Greece.
| | - Sophia G Antimisiaris
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, 26504, Rion, Greece
- FORTH/ICE-ΗΤ, Institute of Chemical Engineering Sciences, 26504, Rion, Greece
| |
Collapse
|
10
|
Sun Y, Ran H, Liu F. Polymer-Based Materials and Their Applications in Image-Guided Cancer Therapy. Curr Med Chem 2021; 29:1352-1368. [PMID: 34137360 DOI: 10.2174/0929867328666210616160717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Advances in nanotechnology have enabled the combination of disease diagnosis and therapy into a single nano package that has tremendous potential for the development of new theranostic strategies. The variety of polymer-based materials has grown exponentially over the past several decades. Such materials have great potential as carriers in disease detection imaging and image monitoring and in systems for the precise delivery of drugs to specific target sites. OBJECTIVE In the present article, we review recent key developments in the synthesis of polymer-based materials for various medical applications and their clinical trials. CONCLUSION There is a growing range of multi-faceted, polymer-based materials with various functions. These functions include carriers for image contrast agents, drug delivery systems, and real-time image-guided systems for noninvasive or minimally invasive therapeutic procedures for cancer therapy.
Collapse
Affiliation(s)
- Yang Sun
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Haitao Ran
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Fan Liu
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| |
Collapse
|
11
|
Veloso SRS, Andrade RGD, Castanheira EMS. Magnetoliposomes: recent advances in the field of controlled drug delivery. Expert Opin Drug Deliv 2021; 18:1323-1334. [PMID: 33836636 DOI: 10.1080/17425247.2021.1915983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Magnetoliposomes have gained increasing attention as delivery systems, as they surpass many limitations associated with liposomes. The combination with magnetic nanoparticles provides a means for development of multimodal and multifunctional theranostic agents that enable on-demand drug release and real-time monitoring of therapy. AREAS COVERED Recently, several magnetoliposome structures have been reported to ensure efficient transport and delivery of therapeutics, while improving magnetic properties. Besides, novel techniques have been introduced to improve on-demand release, as well as to achieve sequential release of different therapeutic agents. This review presents the major types and methods of preparation of magnetoliposomes, and discusses recent strategies in the trigger of drug release, development of theranostic formulations, and delivery of drugs and biological entities. EXPERT OPINION Despite significant advances in efficient drug delivery, current literature lacks an assessment of formulations as theranostic agents and complementary techniques to optimize thermotherapy efficiency. Plasmonic magnetoliposomes are highly promising multimodal and multifunctional systems, providing the required design versatility to optimize theranostic capabilities. Further, photodynamic therapy and delivery of proteins/genes can be improved with a deeper research on the employed magnetic material and associated toxicity. A scale-up procedure is also lacking in recent research, which is limiting their translation to clinical use.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Raquel G D Andrade
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Elisabete M S Castanheira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
12
|
Mirzavi F, Barati M, Soleimani A, Vakili-Ghartavol R, Jaafari MR, Soukhtanloo M. A review on liposome-based therapeutic approaches against malignant melanoma. Int J Pharm 2021; 599:120413. [PMID: 33667562 DOI: 10.1016/j.ijpharm.2021.120413] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 01/14/2023]
Abstract
Melanoma is a highly aggressive form of skin cancer with a very poor prognosis and excessive resistance to current conventional treatments. Recently, the application of the liposomal delivery system in the management of skin melanoma has been widely investigated. Liposomal nanocarriers are biocompatible and less toxic to host cells, enabling the efficient and safe delivery of different therapeutic agents into the tumor site and further promoting their antitumor activities. Therefore, the liposomal delivery system effectively increases the success of current melanoma therapies and overcomes resistance. In this review, we present an overview of liposome-based targeted drug delivery methods and highlight recent advances towards the development of liposome-based carriers for therapeutic genes. We also discuss the new insights regarding the efficacy and clinical significance of combinatorial treatment of liposomal formulations with immunotherapy and conventional therapies in melanoma patients for a better understanding and successfully managing cancer.
Collapse
Affiliation(s)
- Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Barati
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
14
|
Qiao L, Qin Y, Wang Y, Liang Y, Zhu D, Xiong W, Li L, Bao D, Zhang L, Jin X. A brain glioma gene delivery strategy by angiopep-2 and TAT-modified magnetic lipid-polymer hybrid nanoparticles. RSC Adv 2020; 10:41471-41481. [PMID: 35516547 PMCID: PMC9057840 DOI: 10.1039/d0ra07161g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/26/2020] [Indexed: 11/21/2022] Open
Abstract
Owing to the existence of the blood-brain barrier (BBB), most treatments cannot achieve significant effects on gliomas. In this study, synergistic multitarget Ang-TAT-Fe3O4-pDNA-(ss)373 lipid-polymer hybrid nanoparticles (LPNPs) were designed to penetrate the BBB and deliver therapeutic genes to glioma cells. The basic material of the nanoparticles was PCL3750-ss-PEG7500-ss-PCL3750, and is called (ss)373 herein. (ss)373 NPs, Fe3O4 magnetic nanoparticles (MNPs), DOTAP, and DSPE-PEG-MAL formed the basic structure of LPNPs by self-assembly. The Fe3O4 MNPs were wrapped in (ss)373 NPs to implement magnetic targeting. Then, the Angiopep-2 peptide (Ang) and transactivator of transcription (TAT) were coupled with DSPE-PEG-MAL. Both can enhance BBB penetration and tumor targeting. Finally, the pDNA was compressed on DOTAP to form the complete gene delivery system. The results indicated that the Ang-TAT-Fe3O4-pDNA-(ss)373 LPNPs were 302.33 nm in size. In addition, their zeta potential was 4.66 mV, and they had good biocompatibility. The optimal nanoparticles/pDNA ratio was 5 : 1, as shown by gel retardation assay. In this characterization, compared with other LPNPs, the modified single Ang or without the addition of the Fe3O4 MNPs, the penetration efficiency of the BBB model formed by hCMEC/D3 cells, and the transfection efficiency of C6 cells using pEGFP-C1 as the reporter gene were significantly improved with Ang-TAT-Fe3O4-pDNA-(ss)373 LPNPs in the magnetic field.
Collapse
Affiliation(s)
- Lanxin Qiao
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Yu Qin
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Biomedical Engineering Tianjin 300192 China
| | - Yaxin Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Yi Liang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Dunwan Zhu
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Biomedical Engineering Tianjin 300192 China
| | - Wei Xiong
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Lu Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Di Bao
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Linhua Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Biomedical Engineering Tianjin 300192 China
| | - Xu Jin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| |
Collapse
|
15
|
Farcas CG, Dehelean C, Pinzaru IA, Mioc M, Socoliuc V, Moaca EA, Avram S, Ghiulai R, Coricovac D, Pavel I, Alla PK, Cretu OM, Soica C, Loghin F. Thermosensitive Betulinic Acid-Loaded Magnetoliposomes: A Promising Antitumor Potential for Highly Aggressive Human Breast Adenocarcinoma Cells Under Hyperthermic Conditions. Int J Nanomedicine 2020; 15:8175-8200. [PMID: 33122905 PMCID: PMC7591238 DOI: 10.2147/ijn.s269630] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Breast cancer presents one of the highest rates of prevalence around the world. Despite this, the current breast cancer therapy is characterized by significant side effects and high risk of recurrence. The present work aimed to develop a new therapeutic strategy that may improve the current breast cancer therapy by developing a heat-sensitive liposomal nano-platform suitable to incorporate both anti-tumor betulinic acid (BA) compound and magnetic iron nanoparticles (MIONPs), in order to address both remote drug release and hyperthermia-inducing features. To address the above-mentioned biomedical purposes, the nanocarrier must possess specific features such as specific phase transition temperature, diameter below 200 nm, superparamagnetic properties and heating capacity. Moreover, the anti-tumor activity of the developed nanocarrier should significantly affect human breast adenocarcinoma cells. METHODS BA-loaded magnetoliposomes and corresponding controls (BA-free liposomes and liposomes containing no magnetic payload) were obtained through the thin-layer hydration method. The quality and stability of the multifunctional platforms were physico-chemically analysed by the means of RAMAN, scanning electron microscopy-EDAX, dynamic light scattering, zeta potential and DSC analysis. Besides this, the magnetic characterization of magnetoliposomes was performed in terms of superparamagnetic behaviour and heating capacity. The biological profile of the platforms and controls was screened through multiple in vitro methods, such as MTT, LDH and scratch assays, together with immunofluorescence staining. In addition, CAM assay was performed in order to assess a possible anti-angiogenic activity induced by the test samples. RESULTS The physico-chemical analysis revealed that BA-loaded magnetoliposomes present suitable characteristics for the purpose of this study, showing biocompatible phase transition temperature, a diameter of 198 nm, superparamagnetic features and heating capacity. In vitro results showed that hyperthermia induces enhanced anti-tumor activity when breast adenocarcinoma MDA-MB-231 cells were exposed to BA-loaded magnetoliposomes, while a low cytotoxic rate was exhibited by the non-tumorigenic breast epithelial MCF 10A cells. Moreover, the in ovo angiogenesis assay endorsed the efficacy of this multifunctional platform as a good strategy for breast cancer therapy, under hyperthermal conditions. Regarding the possible mechanism of action of this multifunctional nano-platform, the immunocytochemistry of the MCF7 and MDA-MB-231 breast carcinoma cells revealed a microtubule assembly modulatory activity, under hyperthermal conditions. CONCLUSION Collectively, these findings indicate that BA-loaded magnetoliposomes, under hyperthermal conditions, might serve as a promising strategy for breast adenocarcinoma treatment.
Collapse
Affiliation(s)
- Claudia Geanina Farcas
- Faculty of Pharmacy, Department of Toxicology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Iulia Andreea Pinzaru
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Vlad Socoliuc
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy – Timisoara Branch, Timisoara, Romania
- Research Center for Complex Fluids Systems Engineering, Politehnica University of Timisoara, Timisoara, Romania
| | - Elena-Alina Moaca
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Stefana Avram
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Ioana Pavel
- Department of Chemistry, Wright State University, Dayton, OH, USA
| | | | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Felicia Loghin
- Faculty of Pharmacy, Department of Toxicology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| |
Collapse
|
16
|
Du Y, He W, Xia Q, Zhou W, Yao C, Li X. Thioether Phosphatidylcholine Liposomes: A Novel ROS-Responsive Platform for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37411-37420. [PMID: 31556583 DOI: 10.1021/acsami.9b08901] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liposomes are the most valuable nanocarriers in clinical use because of their biocompatibility, biodegradation, and effective encapsulation of hydrophilic or hydrophobic drugs. However, their applications are limited by the structure and functions of the most common phospholipids used as the main component of the liposomes. In this work, novel series of thioether phosphatidylcholines (S-PCs) and S-PC-based liposomes (S-LPs) were developed for reactive oxygen species (ROS)-responsive drug release. First of all, S-PCs with different chain lengths were synthesized by a combination of click reaction and heterogeneous esterification. Differential scanning calorimetry studies indicated that S-PCs had different phase transition temperatures depending on their chain lengths. Their critical aggregation concentrations were measured by the fluorescence probe technique indicating the self-assembly ability. After that, S-PC-based stealth liposomes (S-LPs) containing DSPE-PEG2000 and cholesterol were prepared via a classic thin-film method. Doxorubicin (DOX) as a model drug was loaded in the stealth liposomes (DOX/S-LPs) by using the ammonium sulfate gradient method with high encapsulation efficiency. DOX/S-LPs were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and cryogenic TEM, confirming their spherical structure with the bilayer thickness of about 4 nm. The ROS sensitivity of S-PCs and S-LPs was carefully evaluated in the presence of H2O2 by means of mass spectrometry, DLS, TEM, and ultraviolet spectroscopy and release study. The results indicated the significant structural change of S-LPs after H2O2 treatment, which demonstrated that S-LPs possessed an efficient ROS-triggered disintegration because of thioether oxidation of S-PCs. Finally, in vitro and in vivo anticancer efficiency assays revealed the improved drug potency of DOX/S-LPs, which can be attributed to ROS-triggered destruction of S-LPs after the uptake by tumor cells followed by rapid release of DOX. All together, as alternatives of traditional phosphatidylcholines, S-PC-based stealth liposomes are promising ROS-responsive carriers for the controlled delivery of drugs.
Collapse
Affiliation(s)
- Yawei Du
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Wei He
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Qing Xia
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Wenya Zhou
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Chen Yao
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| |
Collapse
|
17
|
Halevas E, Mavroidi B, Swanson CH, Smith GC, Moschona A, Hadjispyrou S, Salifoglou A, Pantazaki AA, Pelecanou M, Litsardakis G. Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential. J Inorg Biochem 2019; 199:110778. [PMID: 31442839 DOI: 10.1016/j.jinorgbio.2019.110778] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 01/10/2023]
Abstract
In this work novel magnetic cationic liposomal nanoformulations were synthesized for the encapsulation of a crystallographically defined ternary V(IV)-curcumin-bipyridine (VCur) complex with proven bioactivity, as potential anticancer agents. The liposomal vesicles were produced via the thin film hydration method employing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP) and egg phosphatidylcholine lipids and were magnetized through the addition of citric acid surface-modified monodispersed magnetite colloidal magnetic nanoparticles. The obtained nanoformulations were evaluated for their structural and textural properties and shown to have exceptional stability and enhanced solubility in physiological media, demonstrated by the entrapment efficiency and loading capacity results and the in vitro release studies of their cargo. Furthermore, the generated liposomal formulations preserved the superparamagnetic behavior of the employed magnetic core maintaining the physicochemical and morphological requirements for targeted drug delivery applications. The novel nanomaterials were further biologically evaluated for their DNA interaction potential and were found to act as intercalators. The findings suggest that the positively charged magnetic liposomal nanoformulations can generate increased concentration of their cargo at the DNA site, offering a further dimension in the importance of cationic liposomes as nanocarriers of hydrophobic anticancer metal ion complexes for the development of new multifunctional pharmaceutical nanomaterials with enhanced bioavailability and targeted antitumor activity.
Collapse
Affiliation(s)
- Eleftherios Halevas
- Laboratory of Materials for Electrotechnics, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Claudia H Swanson
- Department of Natural Sciences, University of Chester, Thornton Science Park, Chester CH2 4NU, UK
| | - Graham C Smith
- Department of Natural Sciences, University of Chester, Thornton Science Park, Chester CH2 4NU, UK
| | - Alexandra Moschona
- Laboratory of Organic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Spyros Hadjispyrou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Athanasios Salifoglou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece
| | - George Litsardakis
- Laboratory of Materials for Electrotechnics, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
18
|
Grillone A, Battaglini M, Moscato S, Mattii L, de Julián Fernández C, Scarpellini A, Giorgi M, Sinibaldi E, Ciofani G. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine (Lond) 2018; 14:727-752. [PMID: 30574827 PMCID: PMC6701990 DOI: 10.2217/nnm-2018-0436] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency. Materials & methods Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells. Results Nut-Mag-SLNs showed good colloidal stability, the ability to cross an in vitro blood–brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug. Conclusion Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Agostina Grillone
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinado Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinado Piaggio 34, 56025 Pontedera, Italy.,The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Stefania Moscato
- Department of Clinical & Experimental Medicine, Università di Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Letizia Mattii
- Department of Clinical & Experimental Medicine, Università di Pisa, Via Savi 10, 56126 Pisa, Italy
| | - César de Julián Fernández
- Institute of Materials for Electronics & Magnetism, Consiglio Nazionale delle Ricerche-CNR, Parco area delle Scienza 37/A, 43124 Parma, Italy
| | - Alice Scarpellini
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mario Giorgi
- Veterinary Clinics Department, Università di Pisa, Via Livornese 1, 56010 San Piero a Grado, Italy
| | - Edoardo Sinibaldi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinado Piaggio 34, 56025 Pontedera, Italy.,Department of Mechanical & Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
19
|
Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10040218. [PMID: 30404188 PMCID: PMC6321407 DOI: 10.3390/pharmaceutics10040218] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022] Open
Abstract
The similarities between exosomes and liposomes, together with the high organotropism of several types of exosomes, have recently prompted the development of engineered-exosomes or exosome-mimetics, which may be artificial (liposomal) or cell-derived vesicles, as advanced platforms for targeted drug delivery. Here, we provide the current state-of-the-art of using exosome or exosome-inspired systems for drug delivery. We review the various approaches investigated and the shortcomings of each approach. Finally the challenges which have been identified to date in this field are summarized.
Collapse
|