1
|
Quoc TT, Bíró K, Pető Á, Kósa D, Haimhoffer Á, Lekli I, Pallér Á, Bak I, Gyöngyösi A, Fehér P, Bácskay I, Ujhelyi Z. The Role of Amphiphilic Compounds in Nasal Nanoparticles. AAPS PharmSciTech 2024; 25:269. [PMID: 39562402 DOI: 10.1208/s12249-024-03000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Nasal medications hold significant importance and are widely utilized due to their numerous advantageous properties, offering a compelling route for both local and systemic therapeutic effects. Nowadays, the development of nasal particles under 1 micrometer is in the focus of much scientific research. In our experiments, the use of innovative nanotechnology to increase the effectiveness of the active substance was of paramount importance. Our aim was to create solid nanoparticles that enable targeted and effective delivery of the active ingredient into the body. The innovation of this experimental series lies not only in highlighting the importance of amphiphilic compounds in enhancing penetration, but also in the fact that while most nasally administered formulations are in liquid form, our formulation is solid. Liquid formulations frequently suffer from the disadvantage of possible leakage during administration, which can reduce the bioavailability of the active ingredient. In our experiments we created novel drug delivery systems of finely divided powders, which, thanks to the penetration enhancers, can be successfully administered. These enhancers facilitate the swift disintegration and penetration of the particles through the membrane. This represents a new direction in nasal drug delivery methods. The results of our trials are promising in the development of innovative pharmaceutical products and outline the role of amphiphilic compounds in more efficient utilization and targeted application of active substances. According to our results it can be concluded that this innovative approach not only addresses the common issues associated with liquid nasal formulations but also paves the way for more stable and effective delivery methods. The use of finely divided powders for nasal delivery, enabled by penetration enhancers, represents a major breakthrough in the field, providing a dependable alternative to conventional liquid formulations and ensuring improved therapeutic results.
Collapse
Affiliation(s)
- Thinh To Quoc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Krisztina Bíró
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- University Pharmacy, University of Debrecen Clinical Center, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ádám Pallér
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - István Bak
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary.
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary.
| |
Collapse
|
2
|
Tian B, Wang N, Yang J, Jiang Z, Feng Y, Wang T, Zhou L, Huang X, Hao H. Insight into the Manipulation Mechanism of Polymorphic Transformation by Polymers: A Case of Cimetidine. Pharm Res 2024; 41:1521-1531. [PMID: 38955998 DOI: 10.1007/s11095-024-03734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Employing polymer additives is an effective strategy to realize the manipulation of polymorphic transformation. However, the manipulation mechanism is still not clear, which limit the precise selection of polymeric excipients and the development of pharmaceutical formulations. METHODS The solubility of cimetidine (CIM) in acetonitrile/water mixtures were measured. And the polymorphic transformation from CIM form A to form B with the addition of different polymers was monitored by Raman spectroscopy. Furthermore, the manipulation effect of polymers was determined based on the results of experiments and molecular simulations. RESULTS The solubility of form A is consistently higher than that of form B, which indicate that form B is the thermodynamically stable form within the examined temperature range. The presence of polyvinylpyrrolidone (PVP) of a shorter chain length could have a stronger inhibitory effect on the phase transformation process of metastable form, whereas polyethylene glycol (PEG) had almost no impact. The nucleation kinetics experiments and molecular dynamic simulation results showed that only PVP molecules could significantly decrease the nucleation rate of CIM, due to the ability of reducing solute molecular diffusion and solute-solute molecular interaction. A combination of crystal growth rate measurements and calculations of the interaction energies between PVP and the crystal faces of CIM indicate that smaller molecular weight PVP can suppress crystal growth more effectively. CONCLUSION PVP K16-18 has more impact on the stabilization of CIM form A and inhibition of the phase transformation process. The manipulation mechanism of polymer additives in the polymorphic transformation of CIM was proposed.
Collapse
Affiliation(s)
- Beiqian Tian
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jinyue Yang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhicheng Jiang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yaoguang Feng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Zhejiang Institute of Tianjin University, Ningbo, 315200, China.
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
3
|
Liu X, Zhang M, Zhou X, Wan M, Cui A, Xiao B, Yang J, Liu H. Research advances in Zein-based nano-delivery systems. Front Nutr 2024; 11:1379982. [PMID: 38798768 PMCID: PMC11119329 DOI: 10.3389/fnut.2024.1379982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Xuelian Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Mengjiao Wan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Aiping Cui
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Jiang M, Gan Y, Li Y, Qi Y, Zhou Z, Fang X, Jiao J, Han X, Gao W, Zhao J. Protein-polysaccharide-based delivery systems for enhancing the bioavailability of curcumin: A review. Int J Biol Macromol 2023; 250:126153. [PMID: 37558039 DOI: 10.1016/j.ijbiomac.2023.126153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
In recent years, a wide attention has been paid to curcumin in medicine due to its excellent physiological activities, including anti-inflammatory, antioxidant, antibacterial, and nerve damage repair. However, the low solubility, poor stability, and rapid metabolism of curcumin make its bioavailability low, which affects its development and application. As a unique biopolymer structure, protein-polysaccharide (PRO-POL)-based delivery system has the advantages of low toxicity, biocompatibility, biodegradability, and delayed release. Many scholars have investigated PRO-POL -based delivery systems to improve the bioavailability of curcumin. In this paper, we focus on the interactions between different proteins (e.g. casein, whey protein, soybean protein isolate, pea protein, zein, etc.) and polysaccharides (chitosan, sodium alginate, hyaluronic acid, pectin, etc.) and their effects on complexes diameter, surface charge, encapsulation drive, and release characteristics. The mechanism of the PRO-POL-based delivery system to enhance the bioavailability of curcumin is highlighted. In addition, the application of PRO-POL complexes loaded with curcumin is summarized, aiming to provide a reference for the construction and application of PRO-POL delivery systems.
Collapse
Affiliation(s)
- Mengyuan Jiang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yulu Gan
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yuanzheng Qi
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Zhe Zhou
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xin Fang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Junjie Jiao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Weijia Gao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China; Jilin Province Key Laboratory of Tooth Department and Bone Remodeling, Changchun 130021, China.
| |
Collapse
|
5
|
Diab S, Christodoulou C, Taylor G, Rushworth P. Mathematical Modeling and Optimization to Inform Impurity Control in an Industrial Active Pharmaceutical Ingredient Manufacturing Process. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samir Diab
- GlaxoSmithKline (GSK), Park Road, Ware SG12 0DP, United Kingdom
| | | | - George Taylor
- GlaxoSmithKline (GSK), Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Philip Rushworth
- GlaxoSmithKline (GSK), Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| |
Collapse
|
6
|
Insights into the ethanol solvate form of clarithromycin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Ghaemmaghamian Z, Zarghami R, Walker G, O'Reilly E, Ziaee A. Stabilizing vaccines via drying: Quality by design considerations. Adv Drug Deliv Rev 2022; 187:114313. [PMID: 35597307 DOI: 10.1016/j.addr.2022.114313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Pandemics and epidemics are continually challenging human beings' health and imposing major stresses on the societies particularly over the last few decades, when their frequency has increased significantly. Protecting humans from multiple diseases is best achieved through vaccination. However, vaccines thermal instability has always been a hurdle in their widespread application, especially in less developed countries. Furthermore, insufficient vaccine processing capacity is also a major challenge for global vaccination programs. Continuous drying of vaccine formulations is one of the potential solutions to these challenges. This review highlights the challenges on implementing the continuous drying techniques for drying vaccines. The conventional drying methods, emerging technologies and their adaptation by biopharmaceutical industry are investigated considering the patented technologies for drying of vaccines. Moreover, the current progress in applying Quality by Design (QbD) in each of the drying techniques considering the critical quality attributes (CQAs), critical process parameters (CPPs) are comprehensively reviewed. An expert advice is presented on the required actions to be taken within the biopharmaceutical industry to move towards continuous stabilization of vaccines in the realm of QbD.
Collapse
Affiliation(s)
- Zahra Ghaemmaghamian
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Reza Zarghami
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Gavin Walker
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Emmet O'Reilly
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Ahmad Ziaee
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
8
|
Jezerska L, Prokes R, Gelnar D, Zegzulka J. Hard gelatine capsules: DEM supported experimental study of particle arrangement effect on properties and vibrational transport behaviour. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Bongioanni A, Bueno MS, Mezzano BA, Longhi MR, Garnero C. Amino acids and its pharmaceutical applications: A mini review. Int J Pharm 2021; 613:121375. [PMID: 34906648 DOI: 10.1016/j.ijpharm.2021.121375] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
Amino acids are natural compounds that can be safely used in pharmaceutical applications. Considering the great interest in the amino acids used in the pharmaceutical industry, this article presents an overview of investigations reported in recent years. In this regard, the first sections begin with an introductory description of the properties, classification and safety of amino acids, while in the other sections the most common methods for the preparation of amino acids formulations and their application on solubilization, permeation and stabilization of several active pharmaceutical ingredients are described. Furthermore, available data about the multicomponent systems approach is included. Lastly, the impact of amino acids formulations on therapeutic efficacy is explored. The advantages illustrated suggest that amino acids are capable of improving the biopharmaceutical properties of drugs.
Collapse
Affiliation(s)
- Agustina Bongioanni
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Maria Soledad Bueno
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Belén Alejandra Mezzano
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Marcela Raquel Longhi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| | - Claudia Garnero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba X5000HUA, Argentina.
| |
Collapse
|
10
|
Application of Fundamental Techniques for Physicochemical Characterizations to Understand Post-Formulation Performance of Pharmaceutical Nanocrystalline Materials. CRYSTALS 2021. [DOI: 10.3390/cryst11030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanocrystalline materials (NCM, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from drug delivery and electronics to optics. Drug nanocrystals (NC) and nano co-crystals (NCC) are examples of NCM with fascinating physicochemical properties and have attracted significant attention in drug delivery. NCM are categorized by advantageous properties, such as high drug-loading efficiency, good long-term physical stability, steady and predictable drug release, and long systemic circulation time. These properties make them excellent formulations for the efficient delivery of a variety of active pharmaceutical ingredients (API). In this review, we summarize the recent advances in drug NCM-based therapy options. Currently, there are three main methods to synthesize drug NCM, including top-down, bottom-up, and combination methods. The fundamental characterization methods of drug NCM are elaborated. Furthermore, the applications of these characterizations and their implications on the post-formulation performance of NCM are introduced.
Collapse
|
11
|
Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing. Int J Pharm 2021; 592:119901. [DOI: 10.1016/j.ijpharm.2020.119901] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
|
12
|
Quan P, Wan X, Tian Q, Liu C, Fang L. Dicarboxylic acid as a linker to improve the content of amorphous drug in drug-in-polymer film: Effects of molecular mobility, electrical conductivity and intermolecular interactions. J Control Release 2019; 317:142-153. [PMID: 31785302 DOI: 10.1016/j.jconrel.2019.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023]
Abstract
Amorphous solid dispersion (ASD) is a well-established approach to improve the dissolution rate of the drugs with low water solubility. However, the application of the ASD was hindered by the low drug content and high risk of re-crystallization of drugs. The purpose of this research was to develop an ASD film with high content of amorphous olanzapine (OLN) for oral delivery. To overcome the high crystallization tendency of OLN in polyvinyl alcohol (PVA) films, three dicarboxylic acids (succinic acid (Suc), fumaric acid (Fum) and malic acid (Mal)) were introduced in the drug-in-polymer system as linkers between the drug and the polymer. The influence of the linkers on the re-crystallization of OLN in PVA films was evaluated by polarized light microscopy (PLM) and x-ray diffraction (XRD). Then, the possible mechanisms of crystallization inhibition were discussed based on the results of dielectric spectroscopy (DES), differential scanning calorimetry (DSC), attenuated total reflectance Fourier transform infrared (ATR-FTIR), Raman spectroscopy and molecular modeling. Finally, the effect of the linkers on the in vitro dissolution of the OLN-in-PVA films was studied in simulant saliva, and the in vivo performance of the optimal formulation was evaluated in rats. The results showed that OLN-in-PVA film have lower molecular mobility, lower electrical conductivity and stronger intermolecular interactions with the existence of Mal, which led to a better crystallization inhibition of OLN in PVA films. The re-crystallization of OLN in PVA films decreased the dissolution rate of OLN in simulant saliva. The in vivo performance of the optimal formulation was similar with that of OLN solution in rats. This study introduced a novel strategy to reduce the risk of drug re-crystallization in ASD, and also provided a deeper insight into the mechanisms of crystallization inhibition in ASD. The results will improve the judicious selection of excipients in pharmaceutical formulations.
Collapse
Affiliation(s)
- Peng Quan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiaocao Wan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Qi Tian
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|