1
|
Polyzois H, Nguyen HT, Roberto de Alvarenga Junior B, Taylor LS. Amorphous Solid Dispersion Formation for Enhanced Release Performance of Racemic and Enantiopure Praziquantel. Mol Pharm 2024; 21:5285-5296. [PMID: 39292641 PMCID: PMC11462518 DOI: 10.1021/acs.molpharmaceut.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
Praziquantel (PZQ) is the treatment of choice for schistosomiasis, which affects more than 250 million people globally. Commercial tablets contain the crystalline racemic compound (RS-PZQ) which limits drug dissolution and oral bioavailability and can lead to unwanted side effects and poor patient compliance due to the presence of the S-enantiomer. While many approaches have been explored for improving PZQ's dissolution and oral bioavailability, studies focusing on investigating its release from amorphous solid dispersions (ASDs) have been limited. In this work, nucleation induction time experiments were performed to identify suitable polymers for preparing ASDs using RS-PZQ and R-PZQ, the therapeutically active enantiomer. Cellulose-based polymers, hydroxypropyl methylcellulose acetate succinate (HPMCAS, MF grade) and hydroxypropyl methylcellulose (HPMC, E5 LV grade), were the best crystallization inhibitors for RS-PZQ in aqueous media and were selected for ASD preparation using solvent evaporation (SE) and hot-melt extrusion (HME). ASDs prepared experimentally were subjected to X-ray powder diffraction to verify their amorphous nature and a selected number of ASDs were monitored and found to remain physically stable following several months of storage under accelerated-stability testing conditions. SE HPMCAS-MF ASDs of RS-PZQ and R-PZQ showed faster release than HPMC E5 LV ASDs and maintained good performance with an increase in drug loading (DL). HME ASDs of RS-PZQ formulated using HPMCAS-MF exhibited slightly enhanced release compared to that of SE ASDs. SE HPMCAS-MF ASDs showed a maximum release increase of the order of 6 times compared to generic and branded (Biltricide) PZQ tablets. More importantly, SE R-PZQ ASDs with HPMCAS-MF released the drug as effectively as RS-PZQ or better, depending on the DL used. These findings have significant implications for the development of commercial PZQ formulations comprised solely of the R-enantiomer, which can result in mitigation of the biopharmaceutical and compliance issues associated with current commercial tablets.
Collapse
Affiliation(s)
- Hector Polyzois
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Hanh Thuy Nguyen
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| | | | - Lynne S. Taylor
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Jablan J, Marguí E, Posavec L, Klarić D, Cinčić D, Galić N, Jug M. Product contamination during mechanochemical synthesis of praziquantel co-crystal, polymeric dispersion and cyclodextrin complex. J Pharm Biomed Anal 2024; 238:115855. [PMID: 37948780 DOI: 10.1016/j.jpba.2023.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
This paper aims to evaluate the product contamination by elemental impurities during the mechanochemical synthesis of praziquantel (PZQ) co-crystal, polymeric dispersion and cyclodextrin complex by grinding. To assess that, PZQ was co-ground with malic acid (MA), Poloxamer F-127 (F-127) and hydroxypropyl-β-cyclodextrin (HPβCD) in high-energy vibrational mills using stainless steel and agate grinding tools, applying different processing time (30 and 90 min). Differential scanning calorimetry and X-ray powder diffraction confirmed the formation of the targeted products, regardless of applied processing time and grinding tool type. After digestion of the solid powder products, the levels of selected elemental impurities were analysed by inductively coupled plasma mass spectrometry (ICP-MS). The analysis revealed that the content of Mg, Ca, and V are below the limit of quantification in all samples analysed. The contents of P and Na are not related to the type of ball mill and reaction time, but to the starting materials themselves, considering that Na is found in HPβCD and MA, while P was found in F-127. The detected Si impurities in the co-ground products can be related to the use of the agate balls and jars, while the presence of Cr and Fe can be related to the use of the stainless steel grinding tools. The risk assessment showed that the oral administration of the prepared co-ground products in quantities corresponding to regular PZQ oral doses resulted in only insignificant exposure to Cr. Finally, the use of agate grinding tools should be preferred, as administration of such products results in lower Cr exposure. The presented elemental impurities did not lead to any significant drug degradation as PZQ content at the end of the six-month testing period was still in the range of 95-105 % of the initial content. Regardless, ICP-MS analysis of the elemental impurities should be considered in regular quality control procedures in the development and production of novel pharmaceutical products prepared by grinding.
Collapse
Affiliation(s)
- Jasna Jablan
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Eva Marguí
- University of Girona, Department of Chemistry, C/M.Aurèlia Capmany 69, 17003 Girona, Spain
| | - Lidija Posavec
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - David Klarić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Dominik Cinčić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Nives Galić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Mario Jug
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
3
|
D’Abbrunzo I, Procida G, Perissutti B. Praziquantel Fifty Years on: A Comprehensive Overview of Its Solid State. Pharmaceutics 2023; 16:27. [PMID: 38258039 PMCID: PMC10821272 DOI: 10.3390/pharmaceutics16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review discusses the entire progress made on the anthelmintic drug praziquantel, focusing on the solid state and, therefore, on anhydrous crystalline polymorphs, amorphous forms, and multicomponent systems (i.e., hydrates, solvates, and cocrystals). Despite having been extensively studied over the last 50 years, new polymorphs and the greater part of their cocrystals have only been identified in the past decade. Progress in crystal engineering science (e.g., the use of mechanochemistry as a solid form screening tool and more strategic structure-based methods), along with the development of analytical techniques, including Synchrotron X-ray analyses, spectroscopy, and microscopy, have furthered the identification of unknown crystal structures of the drug. Also, computational modeling has significantly contributed to the prediction and design of new cocrystals by considering structural conformations and interactions energy. Whilst the insights on praziquantel polymorphs discussed in the present review will give a significant contribution to controlling their formation during manufacturing and drug formulation, the detailed multicomponent forms will help in designing and implementing future praziquantel-based functional materials. The latter will hopefully overcome praziquantel's numerous drawbacks and exploit its potential in the field of neglected tropical diseases.
Collapse
Affiliation(s)
| | | | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (G.P.)
| |
Collapse
|
4
|
D'Abbrunzo I, Bianco E, Gigli L, Demitri N, Birolo R, Chierotti MR, Škorić I, Keiser J, Häberli C, Voinovich D, Hasa D, Perissutti B. Praziquantel meets Niclosamide: A dual-drug Antiparasitic Cocrystal. Int J Pharm 2023; 644:123315. [PMID: 37579827 DOI: 10.1016/j.ijpharm.2023.123315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In this paper we report a successful example of combining drugs through cocrystallization. Specifically, the novel solid is formed by two anthelminthic drugs, namely praziquantel (PZQ) and niclosamide (NCM) in a 1:3 molar ratio, and it can be obtained through a sustainable one-step mechanochemical process in the presence of micromolar amounts of methanol. The novel solid phase crystallizes in the monoclinic space group of P21/c, showing one PZQ and three NCM molecules linked through homo- and heteromolecular hydrogen bonds in the asymmetric unit, as also attested by SSNMR and FT-IR results. A plate-like habitus is evident from scanning electron microscopy analysis with a melting point of 202.89 °C, which is intermediate to those of the parent compounds. The supramolecular interactions confer favorable properties to the cocrystal, preventing NCM transformation into the insoluble monohydrate both in the solid state and in aqueous solution. Remarkably, the PZQ - NCM cocrystal exhibits higher anthelmintic activity against in vitro S. mansoni models than corresponding physical mixture of the APIs. Finally, due to in vitro promising results, in vivo preliminary tests on mice were also performed through the administration of minicapsules size M.
Collapse
Affiliation(s)
- Ilenia D'Abbrunzo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Emma Bianco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Lara Gigli
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy.
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy.
| | - Rebecca Birolo
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Jennifer Keiser
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, Basel 4000, Switzerland
| | - Cécile Häberli
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, Basel 4000, Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| |
Collapse
|
5
|
Cappuccino C, Spoletti E, Renni F, Muntoni E, Keiser J, Voinovich D, Perissutti B, Lusi M. Co-Crystalline Solid Solution Affords a High-Soluble and Fast-Absorbing Form of Praziquantel. Mol Pharm 2023; 20:2009-2016. [PMID: 36884008 PMCID: PMC10074383 DOI: 10.1021/acs.molpharmaceut.2c00984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Praziquantel (PZQ) is a chiral class-II drug, and it is used as a racemate for the treatment of schistosomiasis. The knowledge of several cocrystals with dicarboxylic acids has prompted the realization of solid solutions of PZQ with both enantiomers of malic acid and tartaric acid. Here, the solid form landscape of such a six-component system has been investigated. In the process, two new cocrystals were structural-characterized and three non-stoichiometric, mixed crystal forms identified and isolated. Thermal and solubility analysis indicates a fourfold solubility advantage for the newly prepared solid solutions over the pure drug. In addition, a pharmacokinetic study was conducted in rats, which involved innovative mini-capsules for the oral administration of the solid samples. The available data indicate that the faster dissolution rate of the solid solutions translates in faster absorption of the drug and helps maintain a constant steady-state concentration.
Collapse
Affiliation(s)
- Chiara Cappuccino
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Enrico Spoletti
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Fiammetta Renni
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, 10129 Turin, Italy
| | - Jennifer Keiser
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland.,University of Basel, Basel 4003 Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Matteo Lusi
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
6
|
Salazar-Rojas D, Kaufman TS, Maggio RM. A study of the heat-mediated phase transformations of praziquantel hydrates. Evaluation of their impact on the dissolution rate. Heliyon 2022; 8:e11317. [DOI: 10.1016/j.heliyon.2022.e11317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
|
7
|
MacEachern L, Kermanshahi-Pour A, Mirmehrabi M. Transformation under pressure: Discovery of a novel crystalline form of anthelmintic drug Praziquantel using high-pressure supercritical carbon dioxide. Int J Pharm 2022; 619:121723. [PMID: 35395364 DOI: 10.1016/j.ijpharm.2022.121723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Supercritical carbon dioxide (CO2) has been used as a processing technique to control polymorphism of pharmaceuticals. However, there are fewer reports of novel polymorphs being discovered by supercritical CO2 processing. As supercritical crystallization methods gain attention for potential in pharmaceutical processing, they may become a critical screening tool for discovery of new polymorphs. In this work, a case study is presented for a novel crystalline form of the anthelmintic drug, Praziquantel, found through supercritical CO2 processing. The novel form of Praziquantel was characterized by chromatography, nuclear magnetic resonance and infrared spectroscopy, X-ray powder diffraction, thermal analysis, and scanning electron microscopy. Furthermore, the novel form exhibited 13-20% improved solubility compared to commercial Form A between pH 1.6 and 7.5 and was physically stable under stressed conditions (40 °C and 75% relative humidity) for 7.5 weeks. Overall, this work showed that supercritical CO2 processing is a valuable tool to screen for novel, and possibly viable polymorphs of pharmaceutical compounds with improved properties.
Collapse
Affiliation(s)
- Lauren MacEachern
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada; Solid State Pharma Inc., 1489 Hollis Street, Suite 300, Halifax, Nova Scotia B3J 3M5, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada.
| | - Mahmoud Mirmehrabi
- Solid State Pharma Inc., 1489 Hollis Street, Suite 300, Halifax, Nova Scotia B3J 3M5, Canada.
| |
Collapse
|
8
|
Bertoni S, Hasa D, Albertini B, Perissutti B, Grassi M, Voinovich D, Passerini N. Better and greener: sustainable pharmaceutical manufacturing technologies for highly bioavailable solid dosage forms. Drug Deliv Transl Res 2022; 12:1843-1858. [PMID: 34988827 DOI: 10.1007/s13346-021-01101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
In the last decades, Green Chemistry has been gaining widespread attention within the pharmaceutical field. It is thus very important to bring more sustainable approaches into the design and manufacture of effective oral drug delivery systems. This review focuses on spray congealing and mechanochemical activation, two technologies endorsing different principles of green chemistry, and at the same time, addressing some of the challenges related to the transformation of poorly water-soluble drugs in highly bioavailable solid dosage forms. We therefore present an overview of the basic principles, equipment, and application of these particle-engineering technologies, with specific attention to case studies carried out by the groups working in Italian Universities.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127, Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Nadia Passerini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy.
| |
Collapse
|
9
|
Salas-Zúñiga R, Mondragón-Vásquez K, Alcalá-Alcalá S, Lima E, Höpfl H, Herrera-Ruiz D, Morales-Rojas H. Nanoconfinement of a Pharmaceutical Cocrystal with Praziquantel in Mesoporous Silica: The Influence of the Solid Form on Dissolution Enhancement. Mol Pharm 2021; 19:414-431. [PMID: 34967632 DOI: 10.1021/acs.molpharmaceut.1c00606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoconfinement is a recent strategy to enhance solubility and dissolution of active pharmaceutical ingredients (APIs) with poor biopharmaceutical properties. In this work, we combine the advantage of cocrystals of racemic praziquantel (PZQ) containing a water-soluble coformer (i.e., increased solubility and supersaturation) and its confinement in a mesoporous silica material (i.e., increased dissolution rate). Among various potential cocrystalline phases of PZQ with dicarboxylic acid coformers, the cocrystal with glutaric acid (PZQ-GLU) was selected and successfully loaded by the melting method into nanopores of SBA-15 (experimental pore size of 5.6 nm) as suggested by physical and spectroscopic characterization using various complementary techniques like N2 adsorption, powder X-ray diffraction (PXRD), infrared spectroscopy (IR), solid-state NMR (ss-NMR), differential scanning calorimetry (DSC), and field emission-scanning electron microscopy (FE-SEM) analysis. The PZQ-GLU phase confined in SBA-15 presents more mobility according to ss-NMR studies but still retains its cocrystal-like features in the IR spectra, and it also shows depression of the melting transition temperature in DSC. On the contrary, pristine PZQ loaded into SBA-15 was found only in the amorphous state, according to the aforementioned studies. This dissimilar behavior of the composites was attributed to the larger crystal lattice of PZQ over the PZQ-GLU cocrystal (3320.1 vs 1167.9 Å3) and to stronger intermolecular interactions between PZQ and GLU, facilitating the confinement of a more mobile solid-like phase in the constrained channels. Powder dissolution studies under extremely nonsink conditions (SI = 0.014) of the confined PZQ-GLU and amorphous PZQ phases embedded in mesoporous silica showed transient supersaturation behavior when dissolving in simulated gastric fluid (HCl pH 1.2 at 37 ± 0.5 °C) in a similar fashion to the bare cocrystal PZQ-GLU. A comparison of the area under the curve (AUC0-90 min) of the dissolution profiles afforded a dissolution advantage of 2-fold (p < 0.05) of the new solid phases over pristine racemic PZQ after 90 min; under these conditions, the solubilized API reprecipitated as the recently discovered PZQ hemihydrate (PZQ-HH). In the presence of a cellulosic polymer, sustained solubilization of PZQ from composites SBA-15/PZQ or SBA-15/PZQ-GLU was observed, increasing AUC0-90 min up to 5.1-fold in comparison to pristine PZQ. The combination of a confined solid phase in mesoporous silica and a methylcellulose polymer in the dissolution medium effectively maintained the drug solubilized during times significant to promote absorption. Finally, powder dissolution studies under intermediate nonsink conditions (SI = 1.99) showed a fast release profile from the nanoconfined PZQ-GLU phase in SBA-15, which reached rapid saturation (95% drug dissolved at 30 min); the amorphous PZQ composite and bare PZQ-GLU also displayed an immediate release of the API but at a lower rate (69% drug dissolved at 30 min). In all of these cases, a large dissolution advantage was observed from any of the novel solid phases over PZQ.
Collapse
Affiliation(s)
- Reynaldo Salas-Zúñiga
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México.,Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | | | - Sergio Alcalá-Alcalá
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Coyoacán, Ciudad de México 04510, México
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Dea Herrera-Ruiz
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Hugo Morales-Rojas
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| |
Collapse
|
10
|
Mechanochemical Synthesis and Physicochemical Characterization of Previously Unreported Praziquantel Solvates with 2-Pyrrolidone and Acetic Acid. Pharmaceutics 2021; 13:pharmaceutics13101606. [PMID: 34683899 PMCID: PMC8540171 DOI: 10.3390/pharmaceutics13101606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Two new solvates of the widely used anthelminthic Praziquantel (PZQ) were obtained through mechanochemical screening with different liquid additives. Specifically, 2-pyrrolidone and acetic acid gave solvates with 1:1 stoichiometry (PZQ-AA and PZQ-2P, respectively). A wide-ranging characterization of the new solid forms was carried out by means of powder X-ray diffraction, differential scanning calorimetry, FT-IR, solid-state NMR and biopharmaceutical analyses (solubility and intrinsic dissolution studies). Besides, the crystal structures of the two new solvates were solved from their Synchrotron-PXRD pattern: the solvates are isostructural, with equivalent triclinic packing. In both structures acetic acid and 2-pyrrolidone showed a strong interaction with the PZQ molecule via hydrogen bond. Even though previous studies have shown that PZQ is conformationally flexible, the same syn conformation as the PZQ Form A of the C=O groups of the piperazinone-cyclohexylcarbonyl segment is involved in these two new solid forms. In terms of biopharmaceutical properties, PZQ-AA and PZQ-2P exhibited water solubility and intrinsic dissolution rate much greater than those of anhydrous Form A.
Collapse
|
11
|
Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations. Pharmaceutics 2021; 13:pharmaceutics13081114. [PMID: 34452075 PMCID: PMC8398999 DOI: 10.3390/pharmaceutics13081114] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/30/2022] Open
Abstract
For the last 40 years, praziquantel has been the standard treatment for schistosomiasis, a neglected parasitic disease affecting more than 250 million people worldwide. However, there is no suitable paediatric formulation on the market, leading to off-label use and the splitting of commercial tablets for adults. In this study, we use a recently available technology, direct powder extrusion (DPE) three-dimensional printing (3DP), to prepare paediatric Printlets™ (3D printed tablets) of amorphous solid dispersions of praziquantel with Kollidon® VA 64 and surfactants (Span™ 20 or Kolliphor® SLS). Printlets were successfully printed from both pellets and powders obtained from extrudates by hot melt extrusion (HME). In vitro dissolution studies showed a greater than four-fold increase in praziquantel release, due to the formation of amorphous solid dispersions. In vitro palatability data indicated that the printlets were in the range of praziquantel tolerability, highlighting the taste masking capabilities of this technology without the need for additional taste masking excipients. This work has demonstrated the possibility of 3D printing tablets using pellets or powder forms obtained by HME, avoiding the use of filaments in fused deposition modelling 3DP. Moreover, the main formulation hurdles of praziquantel, such as low drug solubility, inadequate taste, and high and variable dose requirements, can be overcome using this technology.
Collapse
|
12
|
Devogelaer JJ, Charpentier MD, Tijink A, Dupray V, Coquerel G, Johnston K, Meekes H, Tinnemans P, Vlieg E, ter Horst JH, de Gelder R. Cocrystals of Praziquantel: Discovery by Network-Based Link Prediction. CRYSTAL GROWTH & DESIGN 2021; 21:3428-3437. [PMID: 34276256 PMCID: PMC8276530 DOI: 10.1021/acs.cgd.1c00211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Cocrystallization has been promoted as an attractive early development tool as it can change the physicochemical properties of a target compound and possibly enable the purification of single enantiomers from racemic compounds. In general, the identification of adequate cocrystallization candidates (or coformers) is troublesome and hampers the exploration of the solid-state landscape. For this reason, several computational tools have been introduced over the last two decades. In this study, cocrystals of Praziquantel (PZQ), an anthelmintic drug used to treat schistosomiasis, are predicted with network-based link prediction and experimentally explored. Single crystals of 12 experimental cocrystal indications were grown and subjected to a structural analysis with single-crystal X-ray diffraction. This case study illustrates the power of the link-prediction approach and its ability to suggest a diverse set of new coformer candidates for a target compound when starting from only a limited number of known cocrystals.
Collapse
Affiliation(s)
- Jan-Joris Devogelaer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Maxime D. Charpentier
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallization (CMAC), Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Arnoud Tijink
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Valérie Dupray
- Laboratoire
Sciences et Méthodes Séparatives, Normandie Univ, UNIROUEN, SMS, 76000 Rouen, France
| | - Gérard Coquerel
- Laboratoire
Sciences et Méthodes Séparatives, Normandie Univ, UNIROUEN, SMS, 76000 Rouen, France
| | - Karen Johnston
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Hugo Meekes
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Paul Tinnemans
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Elias Vlieg
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joop H. ter Horst
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallization (CMAC), Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
- Laboratoire
Sciences et Méthodes Séparatives, Normandie Univ, UNIROUEN, SMS, 76000 Rouen, France
| | - René de Gelder
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
13
|
Zanolla D, Hasa D, Arhangelskis M, Schneider-Rauber G, Chierotti MR, Keiser J, Voinovich D, Jones W, Perissutti B. Mechanochemical Formation of Racemic Praziquantel Hemihydrate with Improved Biopharmaceutical Properties. Pharmaceutics 2020; 12:pharmaceutics12030289. [PMID: 32210129 PMCID: PMC7151222 DOI: 10.3390/pharmaceutics12030289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
Praziquantel (PZQ) is the first-line drug used against schistosomiasis, one of the most common parasitic diseases in the world. A series of crystalline structures including two new polymorphs of the pure drug and a series of cocrystals of PZQ have been discovered and deposited in the Cambridge Structural Database (CSD). This work adds to the list of multicomponent forms of PZQ a relevant example of a racemic hemihydrate (PZQ-HH), obtainable from commercial PZQ (polymorphic Form A) through mechanochemistry. Noteworthy, the formation of the new hemihydrate strongly depends on the initial polymorphic form of PZQ and on the experimental conditions used. The new PZQ-HH has been fully characterized by means of HPLC, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Hot-Stage Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), FT-IR, polarimetry, solid-state NMR (SS-NMR), solubility and intrinsic dissolution rate (IDR), and in vitro tests on Schistosoma mansoni adults. The crystal structure was solved from the powder X-ray diffraction pattern and validated by periodic-DFT calculations. The new bioactive hemihydrate was physically stable for three months and showed peculiar biopharmaceutical features including enhanced solubility and a double intrinsic dissolution rate in water in comparison to the commercially available PZQ Form A.
Collapse
Affiliation(s)
- Debora Zanolla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
| | - Mihails Arhangelskis
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland;
| | - Gabriela Schneider-Rauber
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2-1EW Cambridge, UK; (G.S.-R.); (W.J.)
| | - Michele R. Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy;
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002 Basel; Switzerland;
- Universität Basel, Petersplatz 1, P.O. Box, CH-4001 Basel, Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
- Correspondence: (D.V.); (B.P.); Tel.: +39-040-558-3106 (D.V. & B.P.)
| | - William Jones
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2-1EW Cambridge, UK; (G.S.-R.); (W.J.)
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
- Correspondence: (D.V.); (B.P.); Tel.: +39-040-558-3106 (D.V. & B.P.)
| |
Collapse
|