1
|
Aleksić I, Glišić T, Ćirin-Varađan S, Djuris M, Djuris J, Parojčić J. Evaluation of the Potential of Novel Co-Processed Excipients to Enable Direct Compression and Modified Release of Ibuprofen. Pharmaceutics 2024; 16:1473. [PMID: 39598596 PMCID: PMC11597293 DOI: 10.3390/pharmaceutics16111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Improving the production rates of modern tablet presses places ever greater demands on the performance of excipients. Although co-processing has emerged as a promising solution, there is still a lack of directly compressible excipients for modified-release formulations. The aim of the present study was to address this issue by investigating the potential of novel co-processed excipients for the manufacture of modified-release tablets containing ibuprofen. Methods: The excipients were prepared by melt granulation of lactose monohydrate with glyceryl palmitostearate as a binder. The influence of glyceryl palmitostearate particle size, ibuprofen content, compression pressure, and compression speed on the compaction behavior of the tablet blends was analyzed. Results: Novel co-processed excipients ensured good flowability and acceptable mechanical properties of the tablets containing up to 70% ibuprofen. Furthermore, lipid-based co-processed excipients proved to be very promising for directly compressible formulations with high-dose, highly adhesive active pharmaceutical ingredients such as ibuprofen, as they do not require additional lubricants. The influence of compression speed on the tensile strength of the tablets prepared was not pronounced, indicating the robustness of these directly compressible excipients. The investigated lipid-based excipients enabled a prolonged release of ibuprofen over 10 h. Conclusions: The novel lipid-based co-processed excipients have shown great potential for directly compressible formulations with modified release of high-dose, challenging active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Ivana Aleksić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.G.); (S.Ć.-V.); (J.D.); (J.P.)
| | - Teodora Glišić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.G.); (S.Ć.-V.); (J.D.); (J.P.)
| | - Slobodanka Ćirin-Varađan
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.G.); (S.Ć.-V.); (J.D.); (J.P.)
| | - Mihal Djuris
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.G.); (S.Ć.-V.); (J.D.); (J.P.)
| | - Jelena Parojčić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.G.); (S.Ć.-V.); (J.D.); (J.P.)
| |
Collapse
|
2
|
Ćirin-Varađan S, Đuriš J, Mirković M, Ivanović M, Parojčić J, Aleksić I. Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Guha A, Bhalekar M, Madgulkar A, Ingale A. Pastillation with Amorphous Synthetic Polymers: A Key to Solubility Enhancement of Poorly Soluble Drugs. PHARMACOPHORE 2022. [DOI: 10.51847/3bkbg2fm1t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Mudrić J, Šavikin K, Đekić L, Pavlović S, Kurćubić I, Ibrić S, Đuriš J. Development of Lipid-Based Gastroretentive Delivery System for Gentian Extract by Double Emulsion-Melt Dispersion Technique. Pharmaceutics 2021; 13:pharmaceutics13122095. [PMID: 34959376 PMCID: PMC8704910 DOI: 10.3390/pharmaceutics13122095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Gentian (Gentiana lutea L., Gentianaceae) root extract (GRE) is used for the treatment of gastrointestinal disorders. However, its bioactive potential is limited in conventional forms due to the low bioavailability and short elimination half-life of the dominant bioactive compound, gentiopicroside. The aim of study was to encapsulate GRE in the lipid-based gastroretentive delivery system that could provide high yield and encapsulation efficiency, as well as the biphasic release of gentiopicroside from the tablets obtained by direct compression. Solid lipid microparticles (SLM) loaded with GRE were prepared by freeze-drying double (W/O/W) emulsions, which were obtained by a multiple emulsion-melt dispersion technique, with GRE as the inner water phase, Gelucire® 39/01 or 43/01, as lipid components, with or without the addition of porous silica (Sylysia® 350) in the outer water phase. Formulated SLM powders were examined by SEM and mercury intrusion porosimetry, as well as by determination of yield, encapsulation efficiency, and flow properties. Furthermore, in vitro dissolution of gentiopicroside, the size of the dispersed systems, mechanical properties, and mucoadhesion of tablets obtained by direct compression were investigated. The results have revealed that SLM with the macroporous structure were formulated, and, consequently, the powders floated immediately in the acidic medium. Formulation with porous silica (Sylysia® 350) and Gelucire® 43/01 as a solid lipid was characterized with the high yield end encapsulation efficiency. Furthermore, the mucoadhesive properties of tablets obtained by direct compression of that formulation, as well as the biphasic release of gentiopicroside, presence of nanoassociates in dissolution medium, and optimal mechanical properties indicated that a promising lipid-based gastroretentive system for GRE was developed.
Collapse
Affiliation(s)
- Jelena Mudrić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
- Correspondence:
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Ljiljana Đekić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.Đ.); (I.K.); (S.I.); (J.Đ.)
| | - Stefan Pavlović
- Institute of Chemistry, Technology, and Metallurgy-National Institute for the Republic of Serbia, University of Belgrade, Njegoševa 12, 11001 Belgrade, Serbia;
| | - Ivana Kurćubić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.Đ.); (I.K.); (S.I.); (J.Đ.)
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.Đ.); (I.K.); (S.I.); (J.Đ.)
| | - Jelena Đuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.Đ.); (I.K.); (S.I.); (J.Đ.)
| |
Collapse
|
5
|
Heat Treatment Induced Specified Aggregation Morphology of Metoprolol Tartrate in Poly(ε-caprolactone) Matrix and the Drug Release Variation. Polymers (Basel) 2021; 13:polym13183076. [PMID: 34577979 PMCID: PMC8471319 DOI: 10.3390/polym13183076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Hot-melt blending has been widely used in the pharmaceutical industry to produce drug delivery systems, however, realizing the controlled drug release behavior of a hot-melt blended medicament it is still a tough challenge. In this study, we developed a simple and effective heat treatment method to adjust the drug release behavior, without the addition of any release modifiers. Thin metoprolol tartrate (MPT)/poly(ε-caprolactone) (PCL) tablets were prepared through hot-melt processing, and different morphologies of MPT were obtained by altering processing temperatures and the following heat treatment. MPT particles with different particle sizes were obtained under different processing temperatures, and fibrous crystals of MPT were fabricated during the following heat treatment. Different morphological structures of MPT adjusted the drug diffusion channel when immersed in phosphate-buffered saline (PBS), and various drug release behaviors were approached. After being immersed for 24 h, 7% of the MPT was released from the blend processed at 130 °C, while more than 95% of the MPT were released after the following heat treatment of the same sample. Thus, flexible drug release behaviors were achieved using this simple and effective processing manufacture, which is demonstrated to be of profound importance for biomedical applications.
Collapse
|
6
|
Banerjee S, Joshi U, Singh A, Saharan VA. Lipids for Taste masking and Taste assessment in pharmaceutical formulations. Chem Phys Lipids 2020; 235:105031. [PMID: 33352198 DOI: 10.1016/j.chemphyslip.2020.105031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Pharmaceutical products often have drawbacks of unacceptable taste and palatability which makes it quite difficult for oral administration to some special populations like pediatrics and geriatrics. To curb this issue different approaches like coating, granulation, extrusion, inclusion complexation, ion-exchange resins, etc for taste masking are employed and among them use of lipids have drawn special attention of researchers. Lipids have a lower melting point which is ideal for incorporating drugs in some of these methods like hot-melt extrusion, melt granulation, spray drying/congealing and emulsification. Lipids play a significant role as a barrier to sustain the release of drugs and biocompatible nature of lipids increases their acceptability by the human body. Further, lipids provide vast opportunities of altering pharmacokinetics of the active ingredients by modulating release profiles. In taste sensors, also known as electronic tongue or e-tongue, lipids are used in preparing taste sensing membranes which are subsequently used in preparing taste sensors. Lipid membrane taste sensors have been widely used in assessing taste and palatability of pharmaceutical and food formulations. This review explores applications of lipids in masking the bitter taste in pharmaceutical formulations and significant role of lipids in evaluation of taste and palatability.
Collapse
Affiliation(s)
- Surojit Banerjee
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Ujjwal Joshi
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Anupama Singh
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Vikas Anand Saharan
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
7
|
Salar-Behzadi S, Karrer J, Demiri V, Barrios B, Corzo C, Meindl C, Lochmann D, Reyer S. Polyglycerol esters of fatty acids as safe and stable matrix forming tableting excipients: A structure-function analysis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Csóka I, Regdon G, Sovány T, Dreu R. Selected papers of the “12th central European symposium on pharmaceutical technology and regulatory affairs”. Eur J Pharm Sci 2020; 145:105238. [DOI: 10.1016/j.ejps.2020.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|