1
|
Ungvári O, Bakos É, Kovacsics D, Özvegy-Laczka C. The fluorescence-based competitive counterflow assay developed for organic anion transporting polypeptides 1A2, 1B1, 1B3 and 2B1 identifies pentamidine as a selective OATP1A2 substrate. FASEB J 2023; 37:e23223. [PMID: 37781971 DOI: 10.1096/fj.202300530rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Organic anion transporting polypeptides OATP1A2, OATP1B1, OATP1B3 and OATP2B1 are Na+ - and ATP-independent exchangers of large, organic compounds, encompassing structurally diverse xenobiotics, including various drugs. These OATPs influence intestinal absorption (OATP2B1), hepatic clearance (OATP1B1/3) and blood to brain penetration (OATP1A2, OATP2B1) of their drug substrates. Consequently, OATP-mediated drug or food interactions may lead to altered pharmacokinetics and toxicity. During drug development, investigation of hepatic OATP1B1 and OATP1B3 is recommended by international regulatory agencies. Most frequently, OATP-drug interactions are investigated in an indirect assay, i.e., by examining uptake inhibition of a radioactive or fluorescent probe. However, indirect assays do not distinguish between transported substrates and non-transported OATP inhibitors. To fill this hiatus, a novel assay, termed competitive counterflow (CCF) has been developed and has since been applied for several OATPs to differentiate between substrates and non-transported inhibitors. However, previous OATP CCF assays, with the exception of that for OATP1B1, used radioactive probes. In the current study, we demonstrate that sulforhodamine 101 or pyranine can be used as fluorescent probes in a CCF assay to identify transported substrates of OATP1A2, or OATPs 1B1, 1B3 and 2B1, respectively. With the help of the newly developed fluorescence-based CCF method, we identify the FDA-approved anti-protozoal drug, pentamidine as a unique substrate of OATP1A2. Furthermore, we confirm the selective, OATP1A2-mediated uptake of pentamidine in a cytotoxicity assay. Based on our results, OATP1A2 may be an important determinant of pentamidine transport through the blood-brain barrier.
Collapse
Affiliation(s)
- Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Daniella Kovacsics
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
2
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
3
|
Kaci H, Bodnárová S, Fliszár-Nyúl E, Lemli B, Pelantová H, Valentová K, Bakos É, Özvegy-Laczka C, Poór M. Interaction of luteolin, naringenin, and their sulfate and glucuronide conjugates with human serum albumin, cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) enzymes and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Biomed Pharmacother 2023; 157:114078. [PMID: 36481402 DOI: 10.1016/j.biopha.2022.114078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Luteolin and naringenin are flavonoids found in various foods/beverages and present in certain dietary supplements. After a high intake of these flavonoids, their sulfate and glucuronide conjugates reach micromolar concentrations in the bloodstream. Some pharmacokinetic interactions of luteolin and naringenin have been investigated in previous studies; however, only limited data are available in regard to their metabolites. In this study, we aimed to investigate the interactions of the sulfate and glucuronic acid conjugates of luteolin and naringenin with human serum albumin, cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes, and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Our main findings are as follows: (1) Sulfate conjugates formed more stable complexes with albumin than the parent flavonoids. (2) Luteolin and naringenin conjugates showed no or only weak inhibitory action on the CYP enzymes examined. (3) Certain conjugates of luteolin and naringenin are potent inhibitors of OATP1B1 and/or OATP2B1 enzymes. (4) Conjugated metabolites of luteolin and naringenin may play an important role in the pharmacokinetic interactions of these flavonoids.
Collapse
Affiliation(s)
- Hana Kaci
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Slávka Bodnárová
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Green Chemistry Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Éva Bakos
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
| |
Collapse
|
4
|
Fliszár-Nyúl E, Ungvári O, Dombi Á, Özvegy-Laczka C, Poór M. Interactions of Mycotoxin Alternariol with Cytochrome P450 Enzymes and OATP Transporters. Metabolites 2022; 13:metabo13010045. [PMID: 36676970 PMCID: PMC9862037 DOI: 10.3390/metabo13010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Alternariol (AOH) is an emerging mycotoxin produced by Alternaria strains. The acute toxicity of the mycotoxin is low; however, chronic exposure to AOH may result in the development of endocrine disruptor and/or carcinogenic effects. The toxicokinetic properties of AOH have barely been characterized. Therefore, in this study, we aimed to investigate its interactions with CYP (1A2, 2C9, 2C19, 2D6, and 3A4) enzymes and OATP (1A2, 1B1, 1B3, and 2B1) transporters employing in vitro enzyme assays and OATP overexpressing cells, respectively. Our results demonstrated that AOH is a strong inhibitor of CYP1A2 (IC50 = 0.15 μM) and CYP2C9 (IC50 = 7.4 μM). Based on the AOH depletion assays in the presence of CYP enzymes, CYP1A2 is mainly involved, while CYP2C19 is moderately involved in the CYP-catalyzed biotransformation of the mycotoxin. AOH proved to be a strong inhibitor of each OATP transporter examined (IC50 = 1.9 to 5.4 μM). In addition, both direct and indirect assays suggest the involvement of OATP1B1 in the cellular uptake of the mycotoxin. These findings promote the deeper understanding of certain toxicokinetic interactions of AOH.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Orsolya Ungvári
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
5
|
Tuerkova A, Bongers BJ, Norinder U, Ungvári O, Székely V, Tarnovskiy A, Szakács G, Özvegy-Laczka C, van Westen GJP, Zdrazil B. Identifying Novel Inhibitors for Hepatic Organic Anion Transporting Polypeptides by Machine Learning-Based Virtual Screening. J Chem Inf Model 2022; 62:6323-6335. [PMID: 35274943 PMCID: PMC9795544 DOI: 10.1021/acs.jcim.1c01460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Integration of statistical learning methods with structure-based modeling approaches is a contemporary strategy to identify novel lead compounds in drug discovery. Hepatic organic anion transporting polypeptides (OATP1B1, OATP1B3, and OATP2B1) are classical off-targets, and it is well recognized that their ability to interfere with a wide range of chemically unrelated drugs, environmental chemicals, or food additives can lead to unwanted adverse effects like liver toxicity and drug-drug or drug-food interactions. Therefore, the identification of novel (tool) compounds for hepatic OATPs by virtual screening approaches and subsequent experimental validation is a major asset for elucidating structure-function relationships of (related) transporters: they enhance our understanding about molecular determinants and structural aspects of hepatic OATPs driving ligand binding and selectivity. In the present study, we performed a consensus virtual screening approach by using different types of machine learning models (proteochemometric models, conformal prediction models, and XGBoost models for hepatic OATPs), followed by molecular docking of preselected hits using previously established structural models for hepatic OATPs. Screening the diverse REAL drug-like set (Enamine) shows a comparable hit rate for OATP1B1 (36% actives) and OATP1B3 (32% actives), while the hit rate for OATP2B1 was even higher (66% actives). Percentage inhibition values for 44 selected compounds were determined using dedicated in vitro assays and guided the prioritization of several highly potent novel hepatic OATP inhibitors: six (strong) OATP2B1 inhibitors (IC50 values ranging from 0.04 to 6 μM), three OATP1B1 inhibitors (2.69 to 10 μM), and five OATP1B3 inhibitors (1.53 to 10 μM) were identified. Strikingly, two novel OATP2B1 inhibitors were uncovered (C7 and H5) which show high affinity (IC50 values: 40 nM and 390 nM) comparable to the recently described estrone-based inhibitor (IC50 = 41 nM). A molecularly detailed explanation for the observed differences in ligand binding to the three transporters is given by means of structural comparison of the detected binding sites and docking poses.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Brandon J. Bongers
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ulf Norinder
- Department
of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden,MTM
Research Centre, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Orsolya Ungvári
- Drug
Resistance Research Group, Institute of
Enzymology, RCNS, Eötvös Loránd Research Network, Magyar tudósok krt. 2, H-1117 Budapest, Hungary,Doctoral
School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Virág Székely
- Drug
Resistance Research Group, Institute of
Enzymology, RCNS, Eötvös Loránd Research Network, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | | | - Gergely Szakács
- Drug
Resistance Research Group, Institute of
Enzymology, RCNS, Eötvös Loránd Research Network, Magyar tudósok krt. 2, H-1117 Budapest, Hungary,Department
of Medicine I, Institute of Cancer Research, Comprehensive Cancer
Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Csilla Özvegy-Laczka
- Drug
Resistance Research Group, Institute of
Enzymology, RCNS, Eötvös Loránd Research Network, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Gerard J. P. van Westen
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands,.
Phone: +31 71 527 3511
| | - Barbara Zdrazil
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria,. Phone: +43-1-4277- 55113
| |
Collapse
|
6
|
Langó T, Kuffa K, Tóth G, Turiák L, Drahos L, Tusnády GE. Comprehensive Discovery of the Accessible Primary Amino Group-Containing Segments from Cell Surface Proteins by Fine-Tuning a High-Throughput Biotinylation Method. Int J Mol Sci 2022; 24:ijms24010273. [PMID: 36613715 PMCID: PMC9820203 DOI: 10.3390/ijms24010273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Cell surface proteins, including transmembrane and other surface-anchored proteins, play a key role in several critical cellular processes and have a strong diagnostic value. The development of quick and robust experimental methods remains vital for the accurate and comprehensive characterization of the cell surface subproteome of individual cells. Here we present a high-throughput technique which relies on the biotinylation of the accessible primary amino groups in the extracellular segments of the proteins, using HL60 as a model cell line. Several steps of the method have been thoroughly optimized to capture labeled surface proteins selectively and in larger quantities. These include the following: improving the efficiency of the cell surface biotinylation; reducing the endogen protease activity; applying an optimal amount of affinity column and elution steps for labeled peptide enrichment; and examining the effect of various solid-phase extraction methods, different HPLC gradients, and various tandem mass spectrometry settings. Using the optimized workflow, we identified at least 1700 surface-associated individual labeled peptides (~6000-7000 redundant peptides) from the model cell surface in a single nanoHPLC-MS/MS run. The presented method can provide a comprehensive and specific list of the cell surface available protein segments that could be potential targets in various bioinformatics and molecular biology research.
Collapse
Affiliation(s)
- Tamás Langó
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok krt 2, H-1117 Budapest, Hungary
- Correspondence:
| | - Katalin Kuffa
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok krt 2, H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok krt 2, H-1117 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok krt 2, H-1117 Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok krt 2, H-1117 Budapest, Hungary
| | - Gábor E. Tusnády
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok krt 2, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Liu C, Zhu H, Zhang Y, Su M, Liu M, Zhang X, Wang X, Rong X, Wang K, Li X, Zhu B. Recent advances in Golgi-targeted small-molecule fluorescent probes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Evaluation of Blood-CSF Barrier Transport by Quantitative Real Time Fluorescence Microscopy. Pharm Res 2022; 39:1469-1480. [PMID: 35411508 DOI: 10.1007/s11095-022-03251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Transporters at the blood-cerebrospinal fluid (CSF) barrier (BCSFB) play active roles in removing drugs and toxins from the CSF. The goal of this study is to develop a fluorescence microscopy approach to quantitatively study the transepithelial transport processes at the murine BCSFB in real time. METHODS Choroid plexus (CP) tissues were isolated from mouse lateral ventricles and incubated with anionic (fluorescein-methotrexate, 8-fluorescein-cAMP) or cationic (IDT307) fluorescent probes. The CSF-to-blood transport was imaged and quantified using compartmental segmentation and digital image analysis. Real time images were captured and analyzed to obtain kinetic information and identify the rate-limiting step. The effect of transporter inhibitors was also evaluated. RESULTS The transport processes of fluorescent probes can be captured and analyzed digitally. The intra- and inter- animal variability were 20.4% and 25.7%, respectively. Real time analysis showed distinct transport kinetics and rate-limiting step for anionic and cationic probes. A CP efflux index was proposed to distinguish between transepithelial flux and intracellular accumulation. Rifampin and MK571 decreased the overall transepithelial transport of anionic probes by more than 90%, indicating a possible involvement of organic anion transporting polypeptides (Oatps) and multidrug resistance-associated proteins (Mrps). CONCLUSIONS A CP isolation method was described, and a quantitative fluorescence imaging approach was developed to evaluate CSF-to-blood transport in mouse CP. The method is consistent, reproducible, and capable of tracking real time transepithelial transport with temporal and spatial resolution. The approach can be used to evaluate transport mechanisms, assess tissue drug accumulation, and assay potential drug-drug interactions at the BCSFB.
Collapse
|
9
|
Ambrus C, Bakos É, Sarkadi B, Özvegy-Laczka C, Telbisz Á. Interactions of anti-COVID-19 drug candidates with hepatic transporters may cause liver toxicity and affect pharmacokinetics. Sci Rep 2021; 11:17810. [PMID: 34497279 PMCID: PMC8426393 DOI: 10.1038/s41598-021-97160-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Transporters in the human liver play a major role in the clearance of endo- and xenobiotics. Apical (canalicular) transporters extrude compounds to the bile, while basolateral hepatocyte transporters promote the uptake of, or expel, various compounds from/into the venous blood stream. In the present work we have examined the in vitro interactions of some key repurposed drugs advocated to treat COVID-19 (lopinavir, ritonavir, ivermectin, remdesivir and favipiravir), with the key drug transporters of hepatocytes. These transporters included ABCB11/BSEP, ABCC2/MRP2, and SLC47A1/MATE1 in the canalicular membrane, as well as ABCC3/MRP3, ABCC4/MRP4, SLC22A1/OCT1, SLCO1B1/OATP1B1, SLCO1B3/OATP1B3, and SLC10A1/NTCP, residing in the basolateral membrane. Lopinavir and ritonavir in low micromolar concentrations inhibited BSEP and MATE1 exporters, as well as OATP1B1/1B3 uptake transporters. Ritonavir had a similar inhibitory pattern, also inhibiting OCT1. Remdesivir strongly inhibited MRP4, OATP1B1/1B3, MATE1 and OCT1. Favipiravir had no significant effect on any of these transporters. Since both general drug metabolism and drug-induced liver toxicity are strongly dependent on the functioning of these transporters, the various interactions reported here may have important clinical relevance in the drug treatment of this viral disease and the existing co-morbidities.
Collapse
Affiliation(s)
- Csilla Ambrus
- SOLVO Biotechnology, Irinyi József street 4-20, 1117, Budapest, Hungary.,Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary
| | - Ágnes Telbisz
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary.
| |
Collapse
|
10
|
Ungvári O, Király L, Bakos É, Özvegy-Laczka C. 8-acetoxy-trisulfopyrene as the first activatable fluorogenic probe for add-and-read assessment of Organic anion-transporting polypeptides, OATP1B1, OATP1B3, and OATP2B1. FASEB J 2021; 35:e21863. [PMID: 34411334 DOI: 10.1096/fj.202100648r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
Organic anion-transporting polypeptides, OATP1B1, OATP1B3, and OATP2B1 are multispecific membrane proteins mediating the hepatocellular uptake of structurally diverse endo- and exogenous compounds, including various kinds of drugs. Co-administration of OATP1B/2B1 substrates may lead to altered pharmacokinetics or even toxicity. Therefore, the study of the interaction with these OATPs is essential in drug development and is recommended by international regulatory agencies, the FDA, EMA, and PMDA. In general, radiolabeled indicators are used to measure drug interactions of OATPs, and, lately, fluorescent probes are also gaining wider application in OATP tests. However, all of the currently available methods (either radioactive or fluorescence-based) comprise multiple steps, including the removal of the indicator in the end of the experiment. Hence, they are not ideally suited for high-throughput screening. In the current study, in order to find an indicator allowing real-time assessment of hepatic OATP function, we searched for an activatable fluorogenic OATP substrate. Here, we show that 8-acetoxypyrene-1,3,6-trisulfonate (Ace), a fluorogenic derivative of the hepatic OATP substrate pyranine (8-hydroxypyrene-1,3,6-trisulfonate) enters the cells via OATP1B1/3 or OATP2B1 function. In living cells, Ace is then converted into highly fluorescent pyranine, allowing "no-wash" measurement of OATP function and drug interactions. Furthermore, we demonstrate that Ace can be used in an indirect assay termed as competitive counterflow suitable to distinguish between transported substrates and inhibitors of OATP1B1. The fluorescence-based methods described here are unique and open the way toward high-throughput screening of interactions between new molecular entities and OATPs.
Collapse
Affiliation(s)
- Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Laura Király
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
11
|
Tuerkova A, Ungvári O, Laczkó-Rigó R, Mernyák E, Szakács G, Özvegy-Laczka C, Zdrazil B. Data-Driven Ensemble Docking to Map Molecular Interactions of Steroid Analogs with Hepatic Organic Anion Transporting Polypeptides. J Chem Inf Model 2021; 61:3109-3127. [PMID: 34105971 PMCID: PMC8243326 DOI: 10.1021/acs.jcim.1c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Hepatic organic anion transporting polypeptides—OATP1B1,
OATP1B3, and OATP2B1—are expressed at the basolateral membrane
of hepatocytes, being responsible for the uptake of a wide range of
natural substrates and structurally unrelated pharmaceuticals. Impaired
function of hepatic OATPs has been linked to clinically relevant drug–drug
interactions leading to altered pharmacokinetics of administered drugs.
Therefore, understanding the commonalities and differences across
the three transporters represents useful knowledge to guide the drug
discovery process at an early stage. Unfortunately, such efforts remain
challenging because of the lack of experimentally resolved protein
structures for any member of the OATP family. In this study, we established
a rigorous computational protocol to generate and validate structural
models for hepatic OATPs. The multistep procedure is based on the
systematic exploration of available protein structures with shared
protein folding using normal-mode analysis, the calculation of multiple
template backbones from elastic network models, the utilization of
multiple template conformations to generate OATP structural models
with various degrees of conformational flexibility, and the prioritization
of models on the basis of enrichment docking. We employed the resulting
OATP models of OATP1B1, OATP1B3, and OATP2B1 to elucidate binding
modes of steroid analogs in the three transporters. Steroid conjugates
have been recognized as endogenous substrates of these transporters.
Thus, investigating this data set delivers insights into mechanisms
of substrate recognition. In silico predictions were complemented
with in vitro studies measuring the bioactivity of a compound set
on OATP expressing cell lines. Important structural determinants conferring
shared and distinct binding patterns of steroid analogs in the three
transporters have been identified. Overall, this comparative study
provides novel insights into hepatic OATP-ligand interactions and
selectivity. Furthermore, the integrative computational workflow for
structure-based modeling can be leveraged for other pharmaceutical
targets of interest.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Althanstraße 14, A-1090 Vienna, Austria
| | - Orsolya Ungvári
- Drug Resistance Research Group, Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Réka Laczkó-Rigó
- Drug Resistance Research Group, Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gergely Szakács
- Drug Resistance Research Group, Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117, Budapest, Magyar tudósok krt. 2, Hungary.,Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Barbara Zdrazil
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
12
|
Telbisz Á, Ambrus C, Mózner O, Szabó E, Várady G, Bakos É, Sarkadi B, Özvegy-Laczka C. Interactions of Potential Anti-COVID-19 Compounds with Multispecific ABC and OATP Drug Transporters. Pharmaceutics 2021; 13:pharmaceutics13010081. [PMID: 33435273 PMCID: PMC7827085 DOI: 10.3390/pharmaceutics13010081] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
During the COVID-19 pandemic, several repurposed drugs have been proposed to alleviate the major health effects of the disease. These drugs are often applied with analgesics or non-steroid anti-inflammatory compounds, and co-morbid patients may also be treated with anticancer, cholesterol-lowering, or antidiabetic agents. Since drug ADME-tox properties may be significantly affected by multispecific transporters, in this study, we examined the interactions of the repurposed drugs with the key human multidrug transporters present in the major tissue barriers and strongly affecting the pharmacokinetics. Our in vitro studies, using a variety of model systems, explored the interactions of the antimalarial agents chloroquine and hydroxychloroquine; the antihelmintic ivermectin; and the proposed antiviral compounds ritonavir, lopinavir, favipiravir, and remdesivir with the ABCB1/Pgp, ABCG2/BCRP, and ABCC1/MRP1 exporters, as well as the organic anion-transporting polypeptide (OATP)2B1 and OATP1A2 uptake transporters. The results presented here show numerous pharmacologically relevant transporter interactions and may provide a warning on the potential toxicities of these repurposed drugs, especially in drug combinations at the clinic.
Collapse
Affiliation(s)
- Ágnes Telbisz
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Csilla Ambrus
- SOLVO Biotechnology, Irinyi József Street 4-20, 1117 Budapest, Hungary;
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Orsolya Mózner
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Edit Szabó
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - György Várady
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Éva Bakos
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Balázs Sarkadi
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
- Correspondence: (B.S.); (C.Ö.-L.)
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Correspondence: (B.S.); (C.Ö.-L.)
| |
Collapse
|
13
|
Rosa B. Equine Drug Transporters: A Mini-Review and Veterinary Perspective. Pharmaceutics 2020; 12:pharmaceutics12111064. [PMID: 33171593 PMCID: PMC7695171 DOI: 10.3390/pharmaceutics12111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Xenobiotic transport proteins play an important role in determining drug disposition and pharmacokinetics. Our understanding of the role of these important proteins in humans and pre-clinical animal species has increased substantially over the past few decades, and has had an important impact on human medicine; however, veterinary medicine has not benefitted from the same quantity of research into drug transporters in species of veterinary interest. Differences in transporter expression cause difficulties in extrapolation of drug pharmacokinetic parameters between species, and lack of knowledge of species-specific transporter distribution and function can lead to drug–drug interactions and adverse effects. Horses are one species in which little is known about drug transport and transporter protein expression. The purpose of this mini-review is to stimulate interest in equine drug transport proteins and comparative transporter physiology.
Collapse
Affiliation(s)
- Brielle Rosa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, TRW 2D01, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
14
|
Inhibitory Effects of Quercetin and Its Main Methyl, Sulfate, and Glucuronic Acid Conjugates on Cytochrome P450 Enzymes, and on OATP, BCRP and MRP2 Transporters. Nutrients 2020; 12:nu12082306. [PMID: 32751996 PMCID: PMC7468908 DOI: 10.3390/nu12082306] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Quercetin is a flavonoid, its glycosides and aglycone are found in significant amounts in several plants and dietary supplements. Because of the high presystemic biotransformation of quercetin, mainly its conjugates appear in circulation. As has been reported in previous studies, quercetin can interact with several proteins of pharmacokinetic importance. However, the interactions of its metabolites with biotransformation enzymes and drug transporters have barely been examined. In this study, the inhibitory effects of quercetin and its most relevant methyl, sulfate, and glucuronide metabolites were tested on cytochrome P450 (CYP) (2C19, 3A4, and 2D6) enzymes as well as on organic anion-transporting polypeptides (OATPs) (OATP1A2, OATP1B1, OATP1B3, and OATP2B1) and ATP (adenosine triphosphate) Binding Cassette (ABC) (BCRP and MRP2) transporters. Quercetin and its metabolites (quercetin-3'-sulfate, quercetin-3-glucuronide, isorhamnetin, and isorhamnetin-3-glucuronide) showed weak inhibitory effects on CYP2C19 and 3A4, while they did not affect CYP2D6 activity. Some of the flavonoids caused weak inhibition of OATP1A2 and MRP2. However, most of the compounds tested proved to be strong inhibitors of OATP1B1, OATP1B3, OATP2B1, and BCRP. Our data demonstrate that not only quercetin but some of its conjugates, can also interact with CYP enzymes and drug transporters. Therefore, high intake of quercetin may interfere with the pharmacokinetics of drugs.
Collapse
|
15
|
Mohos V, Fliszár-Nyúl E, Ungvári O, Bakos É, Kuffa K, Bencsik T, Zsidó BZ, Hetényi C, Telbisz Á, Özvegy-Laczka C, Poór M. Effects of Chrysin and Its Major Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide on Cytochrome P450 Enzymes and on OATP, P-gp, BCRP, and MRP2 Transporters. Drug Metab Dispos 2020; 48:1064-1073. [PMID: 32661014 DOI: 10.1124/dmd.120.000085] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Chrysin is an abundant flavonoid in nature, and it is also contained by several dietary supplements. Chrysin is highly biotransformed in the body, during which conjugated metabolites chrysin-7-sulfate and chrysin-7-glucuronide are formed. These conjugates appear at considerably higher concentrations in the circulation than the parent compound. Based on previous studies, chrysin can interact with biotransformation enzymes and transporters; however, the interactions of its metabolites have been barely examined. In this in vitro study, the effects of chrysin, chrysin-7-sulfate, and chrysin-7-glucuronide on cytochrome P450 enzymes (2C9, 2C19, 3A4, and 2D6) as well as on organic anion-transporting polypeptides (OATPs; 1A2, 1B1, 1B3, and 2B1) and ATP binding cassette [P-glycoprotein, multidrug resistance-associated protein 2, and breast cancer resistance protein (BCRP)] transporters were investigated. Our observations revealed that chrysin conjugates are strong inhibitors of certain biotransformation enzymes (e.g., CYP2C9) and transporters (e.g., OATP1B1, OATP1B3, OATP2B1, and BCRP) examined. Therefore, the simultaneous administration of chrysin-containing dietary supplements with medications needs to be carefully considered due to the possible development of pharmacokinetic interactions. SIGNIFICANCE STATEMENT: Chrysin-7-sulfate and chrysin-7-glucuronide are the major metabolites of flavonoid chrysin. In this study, we examined the effects of chrysin and its conjugates on cytochrome P450 enzymes and on organic anion-transporting polypeptides and ATP binding cassette transporters (P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2). Our results demonstrate that chrysin and/or its conjugates can significantly inhibit some of these proteins. Since chrysin is also contained by dietary supplements, high intake of chrysin may interrupt the transport and/or the biotransformation of drugs.
Collapse
Affiliation(s)
- Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Orsolya Ungvári
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Éva Bakos
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Katalin Kuffa
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tímea Bencsik
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Csaba Hetényi
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ágnes Telbisz
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|