1
|
Piranfar A, Moradi Kashkooli F, Zhan W, Bhandari A, Soltani M. A Comparative Analysis of Alpha and Beta Therapy in Prostate Cancer Using a 3D Image-Based Spatiotemporal Model. Ann Biomed Eng 2024:10.1007/s10439-024-03650-6. [PMID: 39570494 DOI: 10.1007/s10439-024-03650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE In treating prostate cancer, distinguishing alpha and beta therapies is vital for efficient radiopharmaceutical delivery. Our study introduces a 3D image-based spatiotemporal computational model that utilizes MRI-derived images to evaluate the efficacy of 225Ac-PSMA and 177Lu-PSMA therapies. We examine the impact of tumor size, diffusion, interstitial fluid pressure (IFP), and interstitial fluid velocity (IFV) on the absorbed doses. METHODS An MRI-based geometric model of the tumor and its surrounding environment is initially developed. Subsequently, COMSOL Multiphysics software is utilized to solve convection-diffusion-reaction equations and conduct numerical analyses of blood pressure distribution. This computational methodology provides valuable insights into interstitial fluid patterns and the spatiotemporal distribution of extracellular and intracellular concentrations of 225Ac-PSMA and 177Lu-PSMA. In addition, our study investigates the impacts of increasing tumor size on absorbed doses and mechanisms involved in radiopharmaceutical transport and delivery. RESULTS Larger tumors have diminished absorbed doses, highlighting the need for customized treatments according to tumor size. Diffusion significantly influences the transport and delivery of radiopharmaceuticals. Additionally, alpha therapy was observed to consistently yield higher absorbed doses within the tumor than beta therapy. CONCLUSIONS This study reveals the complex interplay between radiopharmaceutical properties, the tumor microenvironment, and treatment outcomes. It highlights the potential of 225Ac-PSMA in prostate cancer treatment, advocating for personalized treatment strategies tailored to the specific characteristics of each patient and their tumor.
Collapse
Affiliation(s)
- Anahita Piranfar
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Wenbo Zhan
- School of Engineering, King's College, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Centre for Sustainable Business, International Business University, Toronto, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
2
|
He Y, Feng Y, Qiu D, Lin M, Jin H, Hu Z, Huang X, Ma S, He Y, Lai M, Jin W, Liu J. Regulation of IFP in solid tumours through acoustic pressure to enhance infiltration of nanoparticles of various sizes. J Drug Target 2024; 32:964-976. [PMID: 38884143 DOI: 10.1080/1061186x.2024.2367579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Numerous nanomedicines have been developed recently that can accumulate selectively in tumours due to the enhanced permeability and retention (EPR) effect. However, the high interstitial fluid pressure (IFP) in solid tumours limits the targeted delivery of nanomedicines. We were previously able to relieve intra-tumoural IFP by low-frequency non-focused ultrasound (LFNFU) through ultrasonic targeted microbubble destruction (UTMD), improving the targeted delivery of FITC-dextran. However, the accumulation of nanoparticles of different sizes and the optimal acoustic pressure were not evaluated. In this study, we synthesised Cy5.5-conjugated mesoporous silica nanoparticles (Cy5.5-MSNs) of different sizes using a one-pot method. The Cy5.5-MSNs exhibited excellent stability and biosafety regardless of size. MCF7 tumour-bearing mice were subjected to UTMD over a range of acoustic pressures (0.5, 0.8, 1.5 and 2.0 MPa), and injected intravenously with Cy5.5-MSNs. Blood perfusion, tumour IFP and intra-tumoural accumulation of Cy5.5-MSNs were analysed. Blood perfusion and IFP initially rose, and then declined, as acoustic pressure intensified. Furthermore, UTMD significantly enhanced the accumulation of differentially sized Cy5.5-MSNs in tumour tissues compared to that of the control group, and the increase was sevenfold higher at an acoustic pressure of 1.5 MPa. Taken together, UTMD enhanced the infiltration and accumulation of Cy5.5-MSNs of different sizes in solid tumours by reducing intra-tumour IFP.
Collapse
Affiliation(s)
- Yangcheng He
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yuyi Feng
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Danxai Qiu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - MinHua Lin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Hai Jin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Zhiwen Hu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Xue Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Suihong Ma
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yan He
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Meiqi Lai
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Wenhui Jin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Jianhua Liu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Kashkooli FM, Jakhmola A, A Ferrier G, Sathiyamoorthy K, Tavakkoli J(J, C Kolios M. Development of an ultrasound-mediated nano-sized drug-delivery system for cancer treatment: from theory to experiment. Nanomedicine (Lond) 2024; 19:1167-1189. [PMID: 38722104 PMCID: PMC11418290 DOI: 10.2217/nnm-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 09/21/2024] Open
Abstract
Aim: To establish a methodology for understanding how ultrasound (US) induces drug release from nano-sized drug-delivery systems (NSDDSs) and enhances drug penetration and uptake in tumors. This aims to advance cancer treatment strategies.Materials & methods: We developed a multi-physics mathematical model to elucidate and understand the intricate mechanisms governing drug release, transport and delivery. Unique in vitro models (monolayer, multilayer, spheroid) and a tailored US exposure setup were introduced to evaluate drug penetration and uptake.Results: The results highlight the potential advantages of US-mediated NSDDSs over conventional NSDDSs and chemotherapy, notably in enhancing drug release and inducing cell death.Conclusion: Our sophisticated numerical and experimental methods aid in determining and quantifying drug penetration and uptake into solid tumors.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Graham A Ferrier
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | | | - Jahangir (Jahan) Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
4
|
Piranfar A, Moradi Kashkooli F, Zhan W, Bhandari A, Saboury B, Rahmim A, Soltani M. Radiopharmaceutical transport in solid tumors via a 3-dimensional image-based spatiotemporal model. NPJ Syst Biol Appl 2024; 10:39. [PMID: 38609421 PMCID: PMC11015041 DOI: 10.1038/s41540-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA)-targeted radiopharmaceutical therapy is a clinically approved treatment for patients with metastatic castration-resistant prostate cancer (mCRPC). Even though common practice reluctantly follows "one size fits all" approach, medical community believes there is significant room for deeper understanding and personalization of radiopharmaceutical therapies. To pursue this aim, we present a 3-dimensional spatiotemporal radiopharmaceutical delivery model based on clinical imaging data to simulate pharmacokinetic of 177Lu-PSMA within the prostate tumors. The model includes interstitial flow, radiopharmaceutical transport in tissues, receptor cycles, association/dissociation with ligands, synthesis of PSMA receptors, receptor recycling, internalization of radiopharmaceuticals, and degradation of receptors and drugs. The model was studied for a range of values for injection amount (100-1000 nmol), receptor density (10-500 nmol•l-1), and recycling rate of receptors (10-4 to 10-1 min-1). Furthermore, injection type, different convection-diffusion-reaction mechanisms, characteristic time scales, and length scales are discussed. The study found that increasing receptor density, ligand amount, and labeled ligands improved radiopharmaceutical uptake in the tumor. A high receptor recycling rate (0.1 min-1) increased radiopharmaceutical concentration by promoting repeated binding to tumor cell receptors. Continuous infusion results in higher radiopharmaceutical concentrations within tumors compared to bolus administration. These insights are crucial for advancing targeted therapy for prostate cancer by understanding the mechanism of radiopharmaceutical distribution in tumors. Furthermore, measures of characteristic length and advection time scale were computed. The presented spatiotemporal tumor transport model can analyze different physiological parameters affecting 177Lu-PSMA delivery.
Collapse
Affiliation(s)
- Anahita Piranfar
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Wenbo Zhan
- School of Engineering, King's College, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Babak Saboury
- Department of Computational Nuclear Oncology, Institute of Nuclear Medicine, Bethesda, MD, USA
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
5
|
Tehrani MHH, Moradi Kashkooli F, Soltani M. Effect of tumor heterogeneity on enhancing drug delivery to vascularized tumors using thermo-sensitive liposomes triggered by hyperthermia: A multi-scale and multi-physics computational model. Comput Biol Med 2024; 170:108050. [PMID: 38308872 DOI: 10.1016/j.compbiomed.2024.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
In this study, a novel multi-scale and multi-physics image-based computational model is introduced to assess the delivery of doxorubicin (Dox) loaded temperature-sensitive liposomes (TSLs) in the presence of hyperthermia. Unlike previous methodologies, this approach incorporates capillary network geometry extracted from images, resulting in a more realistic physiological tumor model. This model holds significant promise in advancing personalized medicine by integrating patient-specific tumor properties. The finite element method is employed to solve the equations governing intravascular and interstitial fluid flows, as well as the transport of therapeutic agents within the tissue. Realistic biological conditions and intricate processes like intravascular pressure, drug binding to cells, and cellular uptake are also considered to enhance the model's accuracy. The results underscore the significant impact of vascular architecture on treatment outcomes. Variation in vascular network pattern yielded changes of up to 38 % in the fraction of killed cells (FKCs) parameter under identical conditions. Pressure control of the parent vessels can also improve FKCs by approximately 17 %. Tailoring the treatment plan based on tumor-specific parameters emerged as a critical factor influencing treatment efficacy. For instance, changing the time interval between the administration of Dox-loaded TSLs and hyperthermia can result in a 48 % improvement in treatment outcomes. Additionally, devising a customized heating schedule led to a 20 % increase in treatment efficacy. Our proposed model highlights the significant effect of tumor characteristics and vascular network structure on the final treatment outcomes of the presented combination treatment.
Collapse
Affiliation(s)
- Masoud H H Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | | | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
6
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Moradi Kashkooli F, Hornsby TK, Kolios MC, Tavakkoli JJ. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1913. [PMID: 37475577 DOI: 10.1002/wnan.1913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
Computational modeling enables researchers to study and understand various complex biological phenomena in anticancer drug delivery systems (DDSs), especially nano-sized DDSs (NSDDSs). The combination of NSDDSs and therapeutic ultrasound (TUS), that is, focused ultrasound and low-intensity pulsed ultrasound, has made significant progress in recent years, opening many opportunities for cancer treatment. Multiple parameters require tuning and optimization to develop effective DDSs, such as NSDDSs, in which mathematical modeling can prove advantageous. In silico computational modeling of ultrasound-responsive DDS typically involves a complex framework of acoustic interactions, heat transfer, drug release from nanoparticles, fluid flow, mass transport, and pharmacodynamic governing equations. Owing to the rapid development of computational tools, modeling the different phenomena in multi-scale complex problems involved in drug delivery to tumors has become possible. In the present study, we present an in-depth review of recent advances in the mathematical modeling of TUS-mediated DDSs for cancer treatment. A detailed discussion is also provided on applying these computational models to improve the clinical translation for applications in cancer treatment. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Besanjideh M, Shamloo A, Hannani SK. Evaluating the reliability of tumour spheroid-on-chip models for replicating intratumoural drug delivery: considering the role of microfluidic parameters. J Drug Target 2023; 31:179-193. [PMID: 36036226 DOI: 10.1080/1061186x.2022.2119478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several tumour spheroid-on-chip models have already been proposed in the literature to conduct high throughput drug screening assays. The microfluidic configurations in these models generally depend on the strategies adopted for spheroid formation and entrapment. However, it is not clear how successful they are to mimic in vivo transport mechanisms. In this study, drug transport in different tumour spheroid-on-chip models is numerically investigated under static and dynamic conditions using porous media theory. Moreover, the treatment of a solid tumour at the initial stage of development is modelled using bolus injection and continuous infusion methods. Then, the results of tumour spheroid-on-chip, including drug concentration, cell viability, as well as pressure and fluid shear stress distributions, are compared with those of the solid tumour, assuming identical transport properties in all models. Finally, a new configuration of the microfluidic device along with the optimal drug concentrations is proposed, which can well imitate a given in vivo situation.
Collapse
Affiliation(s)
- Mohsen Besanjideh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.,Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
9
|
Multiphysics Modeling of Low-Intensity Pulsed Ultrasound Induced Chemotherapeutic Drug Release from the Surface of Gold Nanoparticles. Cancers (Basel) 2023; 15:cancers15020523. [PMID: 36672471 PMCID: PMC9856557 DOI: 10.3390/cancers15020523] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Currently, no numerical model for low-intensity pulsed ultrasound (LIPUS)-triggered anticancer drug release from gold nanoparticle (GNP) drug carriers exists in the literature. In this work, LIPUS-induced doxorubicin (DOX) release from GNPs was achieved in an ex vivo tissue model. Transmission electronic microscopy (TEM) imaging was performed before and after LIPUS exposure, and significant aggregation of the GNPs was observed upon DOX release. Subsequently, GNP surface potential was determined before and after LIPUS-induced DOX release, using a Zetasizer. A numerical model was then created to predict GNP aggregation, and the subsequent DOX release, via combining a thermal field simulation by solving the bioheat transfer equation (in COMSOL) and the Derjaguin, Landau, Verwey, and Overbeek (DLVO) total interaction potential (in MATLAB). The DLVO model was applied to the colloidal DOX-loaded GNPs by summing the attractive van der Waals and electrostatic repulsion interaction potentials for any given GNP pair. DLVO total interaction potential was found before and after LIPUS exposure, and an energy barrier for aggregation was determined. The DLVO interaction potential peak amplitude was found to drop from 1.36 kBT to 0.24 kBT after LIPUS exposure, translating to an 82.4% decrease in peak amplitude value. It was concluded that the interaction potential energy threshold for GNP aggregation (and, as a result, DOX release) was equal to 0.24 kBT.
Collapse
|
10
|
Eltahir S, Al homsi R, Jagal J, Ahmed IS, Haider M. Graphene Oxide/Chitosan Injectable Composite Hydrogel for Controlled Release of Doxorubicin: An Approach for Enhanced Intratumoral Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4261. [PMID: 36500884 PMCID: PMC9736459 DOI: 10.3390/nano12234261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Intratumoral (IT) injection of chemotherapeutics into needle-accessible solid tumors can directly localize the anticancer drug in the tumor site, thus increasing its local bioavailability and reducing its undesirable effects compared to systemic administration. In this study, graphene oxide (GO)-based chitosan/β-glycerophosphate (CS/GP) thermosensitive injectable composite hydrogels (CH) were prepared and optimized for the localized controlled delivery of doxorubicin (DOX). A quality-by-design (QbD) approach was used to study the individual and combined effects of several formulation variables to produce optimal DOX-loaded GO/CS/GP CH with predetermined characteristics, including gelation time, injectability, porosity, and swelling capacity. The surface morphology of the optimal formulation (DOX/opt CH), chemical interaction between its ingredients and in vitro release of DOX in comparison to GO-free CS/GP CH were investigated. Cell viability and cellular uptake after treatment with DOX/opt CH were studied on MCF 7, MDB-MB-231 and FaDu cell lines. The statistical analysis of the measured responses revealed significant effects of the concentration of GO, the concentration of CS, and the CS:GP ratio on the physicochemical characteristics of the prepared GO/CS/GP CH. The optimization process showed that DOX-loaded GO/CS/GP CH prepared using 0.1% GO and 1.7% CS at a CS: GO ratio of 3:1 (v/v) had the highest desirability value. DOX/opt CH showed a porous microstructure and chemical compatibility between its ingredients. The incorporation of GO resulted in an increase in the ability of the CH matrices to control DOX release in vitro. Finally, cellular characterization showed a time-dependent increase in cytotoxicity and cellular uptake of DOX after treatment with DOX/opt CH. The proposed DOX/opt CH might be considered a promising injectable platform to control the release and increase the local bioavailability of chemotherapeutics in the treatment of solid tumors.
Collapse
Affiliation(s)
- Safaa Eltahir
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Reem Al homsi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
11
|
Bhandari A, Jaiswal K, Singh A, Zhan W. Convection-Enhanced Delivery of Antiangiogenic Drugs and Liposomal Cytotoxic Drugs to Heterogeneous Brain Tumor for Combination Therapy. Cancers (Basel) 2022; 14:cancers14174177. [PMID: 36077714 PMCID: PMC9454524 DOI: 10.3390/cancers14174177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although developed anticancer drugs have shown desirable effects in preclinical trials, the clinical efficacy of chemotherapy against brain cancer remains disappointing. One of the important obstacles is the highly heterogeneous environment in tumors. This study aims to evaluate the performance of an emerging treatment using antiangiogenic and cytotoxic drugs. Our mathematical modelling confirms the advantage of this combination therapy in homogenizing the intratumoral environment for better drug delivery outcomes. In addition, the effects of local microvasculature and cell density on this therapy are also discussed. The results would contribute to the development of more effective treatments for brain cancer. Abstract Although convection-enhanced delivery can successfully bypass the blood-brain barrier, its clinical performance remains disappointing. This is primarily attributed to the heterogeneous intratumoral environment, particularly the tumor microvasculature. This study investigates the combined convection-enhanced delivery of antiangiogenic drugs and liposomal cytotoxic drugs in a heterogeneous brain tumor environment using a transport-based mathematical model. The patient-specific 3D brain tumor geometry and the tumor’s heterogeneous tissue properties, including microvascular density, porosity and cell density, are extracted from dynamic contrast-enhanced magnetic resonance imaging data. Results show that antiangiogenic drugs can effectively reduce the tumor microvascular density. This change in tissue structure would inhibit the fluid loss from the blood to prevent drug concentration from dilution, and also reduce the drug loss by blood drainage. The comparisons between different dosing regimens demonstrate that the co-infusion of liposomal cytotoxic drugs and antiangiogenic drugs has the advantages of homogenizing drug distribution, increasing drug accumulation, and enlarging the volume where tumor cells can be effectively killed. The delivery outcomes are susceptible to the location of the infusion site. This combination treatment can be improved by infusing drugs at higher microvascular density sites. In contrast, infusion at a site with high cell density would lower the treatment effectiveness of the whole brain tumor. Results obtained from this study can deepen the understanding of this combination therapy and provide a reference for treatment design and optimization that can further improve survival and patient quality of life.
Collapse
Affiliation(s)
- Ajay Bhandari
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
- Correspondence: (A.B.); (W.Z.)
| | - Kartikey Jaiswal
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Wenbo Zhan
- School of Engineering, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK
- Correspondence: (A.B.); (W.Z.)
| |
Collapse
|
12
|
Kashkooli FM, Rezaeian M, Soltani M. Drug delivery through nanoparticles in solid tumors: a mechanistic understanding. Nanomedicine (Lond) 2022; 17:695-716. [PMID: 35451315 DOI: 10.2217/nnm-2021-0126] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: In this study, the main goal was to apply a multi-scale computational model in evaluating nano-sized drug-delivery systems, following extracellular drug release, into solid tumors in order to predict treatment efficacy. Methods: The impact of several parameters related to tumor (size, shape, vessel-wall pore size, and necrotic core size) and therapeutic agents (size of nanoparticles, binding affinity of drug, drug release rate from nanoparticles) are examined in detail. Results: This study illustrates that achieving a higher treatment efficacy requires smaller nanoparticles (NPs) or a low binding affinity and drug release rate. Long-term analysis finds that a slow release rate in extracellular space does not always improve treatment efficacy compared with a rapid release rate; NP size as well as binding affinity of drug are also highly influential. Conclusions: The presented methodology can be used as a step forward towards optimization of patient-specific nanomedicine plans.
Collapse
Affiliation(s)
| | - Mohsen Rezaeian
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Canada.,Centre for Biotechnology & Bioengineering (CBB), University of Waterloo, Waterloo, Canada.,Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
13
|
Analysis of Magneto-Hyperthermia Duration in Nano-sized Drug Delivery System to Solid Tumors Using Intravascular-Triggered Thermosensitive-Liposome. Pharm Res 2022; 39:753-765. [DOI: 10.1007/s11095-022-03255-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
|
14
|
Mohammadi M, Aghanajafi C, Soltani M, Raahemifar K. Numerical Investigation on the Anti-Angiogenic Therapy-Induced Normalization in Solid Tumors. Pharmaceutics 2022; 14:363. [PMID: 35214095 PMCID: PMC8877966 DOI: 10.3390/pharmaceutics14020363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
This study numerically analyzes the fluid flow and solute transport in a solid tumor to comprehensively examine the consequence of normalization induced by anti-angiogenic therapy on drug delivery. The current study leads to a more accurate model in comparison to previous research, as it incorporates a non-homogeneous real-human solid tumor including necrotic, semi-necrotic, and well-vascularized regions. Additionally, the model considers the effects of concurrently chemotherapeutic agents (three macromolecules of IgG, F(ab')2, and F(ab')) and different normalization intensities in various tumor sizes. Examining the long-term influence of normalization on the quality of drug uptake by necrotic area is another contribution of the present study. Results show that normalization decreases the interstitial fluid pressure (IFP) and spreads the pressure gradient and non-zero interstitial fluid velocity (IFV) into inner areas. Subsequently, wash-out of the drug from the tumor periphery is decreased. It is also demonstrated that normalization can improve the distribution of solute concentration in the interstitium. The efficiency of normalization is introduced as a function of the time course of perfusion, which depends on the tumor size, drug type, as well as normalization intensity, and consequently on the dominant mechanism of drug delivery. It is suggested to accompany anti-angiogenic therapy by F(ab') in large tumor size (Req=2.79 cm) to improve reservoir behavior benefit from normalization. However, IgG is proposed as the better option in the small tumor (Req=0.46 cm), in which normalization finds the opportunity of enhancing uniformity of IgG average exposure by 22%. This study could provide a perspective for preclinical and clinical trials on how to take advantage of normalization, as an adjuvant treatment, in improving drug delivery into a non-homogeneous solid tumor.
Collapse
Affiliation(s)
- Mahya Mohammadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.M.); (C.A.)
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Cyrus Aghanajafi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.M.); (C.A.)
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.M.); (C.A.)
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA;
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
15
|
Tehrani MHH, Soltani M, Moradi Kashkooli F, Mahmoudi M, Raahemifar K. Computational Modeling of Combination of Magnetic Hyperthermia and Temperature-Sensitive Liposome for Controlled Drug Release in Solid Tumor. Pharmaceutics 2021; 14:35. [PMID: 35056931 PMCID: PMC8778939 DOI: 10.3390/pharmaceutics14010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Combination therapy, a treatment modality that combines two or more therapeutic methods, provides a novel pathway for cancer treatment, as it targets the region of interest (ROI) in a characteristically synergistic or additive manner. To date, liposomes are the only nano-drug delivery platforms that have been used in clinical trials. Here, we speculated that it could be promising to improve treatment efficacy and reduce side effects by intravenous administration of thermo-sensitive liposomes loaded with doxorubicin (TSL-Dox) during magnetic hyperthermia (MHT). A multi-scale computational model using the finite element method was developed to simulate both MHT and temperature-sensitive liposome (TSL) delivery to a solid tumor to obtain spatial drug concentration maps and temperature profiles. The results showed that the killing rate of MHT alone was about 15%, which increased to 50% using the suggested combination therapy. The results also revealed that this combination treatment increased the fraction of killed cells (FKCs) inside the tumor compared to conventional chemotherapy by 15% in addition to reducing side effects. Furthermore, the impacts of vessel wall pore size, the time interval between TSL delivery and MHT, and the initial dose of TSLs were also investigated. A considerable reduction in drug accumulation was observed in the tumor by decreasing the vessel wall pore size of the tumor. The results also revealed that the treatment procedure plays an essential role in the therapeutic potential of anti-cancer drugs. The results suggest that the administration of MHT can be beneficial in the TSL delivery system and that it can be employed as a guideline for upcoming preclinical studies.
Collapse
Affiliation(s)
- Masoud H. H. Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.H.H.T.); (F.M.K.)
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.H.H.T.); (F.M.K.)
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
| | - Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.H.H.T.); (F.M.K.)
| | - Mohammadreza Mahmoudi
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287, USA;
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, Pennsylvania, PA 16801, USA;
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
16
|
Fasaeiyan N, Soltani M, Moradi Kashkooli F, Taatizadeh E, Rahmim A. Computational modeling of PET tracer distribution in solid tumors integrating microvasculature. BMC Biotechnol 2021; 21:67. [PMID: 34823506 PMCID: PMC8620574 DOI: 10.1186/s12896-021-00725-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 11/05/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND We present computational modeling of positron emission tomography radiotracer uptake with consideration of blood flow and interstitial fluid flow, performing spatiotemporally-coupled modeling of uptake and integrating the microvasculature. In our mathematical modeling, the uptake of fluorodeoxyglucose F-18 (FDG) was simulated based on the Convection-Diffusion-Reaction equation given its high accuracy and reliability in modeling of transport phenomena. In the proposed model, blood flow and interstitial flow are solved simultaneously to calculate interstitial pressure and velocity distribution inside cancer and normal tissues. As a result, the spatiotemporal distribution of the FDG tracer is calculated based on velocity and pressure distributions in both kinds of tissues. RESULTS Interstitial pressure has maximum value in the tumor region compared to surrounding tissue. In addition, interstitial fluid velocity is extremely low in the entire computational domain indicating that convection can be neglected without effecting results noticeably. Furthermore, our results illustrate that the total concentration of FDG in the tumor region is an order of magnitude larger than in surrounding normal tissue, due to lack of functional lymphatic drainage system and also highly-permeable microvessels in tumors. The magnitude of the free tracer and metabolized (phosphorylated) radiotracer concentrations followed very different trends over the entire time period, regardless of tissue type (tumor vs. normal). CONCLUSION Our spatiotemporally-coupled modeling provides helpful tools towards improved understanding and quantification of in vivo preclinical and clinical studies.
Collapse
Affiliation(s)
- Niloofar Fasaeiyan
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Tehran Province, Iran
- Department of Civil Engineering, Polytechnique University, Montreal, QC, Canada
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Tehran Province, Iran.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Tehran Province, Iran.
| | - Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Tehran Province, Iran
| | - Erfan Taatizadeh
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Tehran Province, Iran
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
17
|
Moradi Kashkooli F, Soltani M. Evaluation of solid tumor response to sequential treatment cycles via a new computational hybrid approach. Sci Rep 2021; 11:21475. [PMID: 34728726 PMCID: PMC8563754 DOI: 10.1038/s41598-021-00989-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022] Open
Abstract
The development of an in silico approach that evaluates and identifies appropriate treatment protocols for individuals could help grow personalized treatment and increase cancer patient lifespans. With this motivation, the present study introduces a novel approach for sequential treatment cycles based on simultaneously examining drug delivery, tumor growth, and chemotherapy efficacy. This model incorporates the physical conditions of tumor geometry, including tumor, capillary network, and normal tissue assuming real circumstances, as well as the intravascular and interstitial fluid flow, drug concentration, chemotherapy efficacy, and tumor recurrence. Three treatment approaches-maximum tolerated dose (MTD), metronomic chemotherapy (MC), and chemo-switching (CS)-as well as different chemotherapy schedules are investigated on a real tumor geometry extracted from image. Additionally, a sensitivity analysis of effective parameters of drug is carried out to evaluate the potential of using different other drugs in cancer treatment. The main findings are: (i) CS, MC, and MTD have the best performance in reducing tumor cells, respectively; (ii) multiple doses raise the efficacy of drugs that have slower clearance, higher diffusivity, and lower to medium binding affinities; (iii) the suggested approach to eradicating tumors is to reduce their cells to a predetermined rate through chemotherapy and then apply adjunct therapy.
Collapse
Affiliation(s)
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
18
|
Computational modeling of thermal combination therapies by magneto-ultrasonic heating to enhance drug delivery to solid tumors. Sci Rep 2021; 11:19539. [PMID: 34599207 PMCID: PMC8486865 DOI: 10.1038/s41598-021-98554-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/12/2021] [Indexed: 02/02/2023] Open
Abstract
For the first time, inspired by magnetic resonance imaging-guidance high intensity focused ultrasound (MR-HIFU) technology, i.e., medication therapy and thermal ablation in one session, in a preclinical setting based on a developed mathematical model, the performance of doxorubicin (Dox) and its encapsulation have been investigated in this study. Five different treatment methods, that combine medication therapy with mild hyperthermia by MRI contrast (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma -{Fe}_{2}{O}_{3}$$\end{document}γ-Fe2O3) and thermal ablation via HIFU, are investigated in detail. A comparison between classical chemotherapy and thermochemistry shows that temperature can improve the therapeutic outcome by stimulating biological properties. On the other hand, the intravascular release of ThermoDox increases the concentration of free drug by 2.6 times compared to classical chemotherapy. The transport of drug in interstitium relies mainly on the diffusion mechanism to be able to penetrate deeper and reach the cancer cells in the inner regions of the tumor. Due to the low drug penetration into the tumor center, thermal ablation has been used for necrosis of the central areas before thermochemotherapy and ThermoDox therapy. Perfusion of the region around the necrotic zone is found to be damaged, while cells in the region are alive and not affected by medication therapy; so, there is a risk of tumor recurrence. Therefore, it is recommended that ablation be performed after the medication therapy. Our model describes a comprehensive assessment of MR-HIFU technology, taking into account many effective details, which can be a reliable guide towards the optimal use of drug delivery systems.
Collapse
|
19
|
Soltani M, Souri M, Moradi Kashkooli F. Effects of hypoxia and nanocarrier size on pH-responsive nano-delivery system to solid tumors. Sci Rep 2021; 11:19350. [PMID: 34588504 PMCID: PMC8481507 DOI: 10.1038/s41598-021-98638-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
One of the special features of solid tumors is the acidity of the tumor microenvironment, which is mainly due to the presence of hypoxic regions. Therefore, pH-responsive drug delivery systems have recently been highly welcomed. In the present study, a comprehensive mathematical model is presented based on extravascular drug release paradigm. Accordingly, drug delivery system using pH-responsive nanocarriers is taken into account to examine the impacts of hypoxic regions as well as the size of nanocarriers for cancerous cell-death. The extent of hypoxic regions is controlled by vascular density. This means that regions with very low vascular density represent regions of hypoxia. Using this mathematical model, it is possible to simulate the extracellular and intracellular concentrations of drug by considering the association/disassociation of the free drug to the cell-surface receptors and cellular uptake. Results show that nanocarriers with smaller sizes are more effective due to higher accumulation in the tumor tissue interstitium. The small size of the nanocarriers also allows them to penetrate deeper, so they can expose a larger portion of the tumor to the drug. Additionally, the presence of hypoxic regions in tumor reduces the fraction of killed cancer cells due to reduced penetration depth. The proposed model can be considered for optimizing and developing pH-sensitive delivery systems to reduce both cost and time of the process.
Collapse
Affiliation(s)
- M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave., Waterloo, ON, N2L3G1, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
20
|
Moradi Kashkooli F, Soltani M, Momeni MM, Rahmim A. Enhanced Drug Delivery to Solid Tumors via Drug-Loaded Nanocarriers: An Image-Based Computational Framework. Front Oncol 2021; 11:655781. [PMID: 34249692 PMCID: PMC8264267 DOI: 10.3389/fonc.2021.655781] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023] Open
Abstract
Objective Nano-sized drug delivery systems (NSDDSs) offer a promising therapeutic technology with sufficient biocompatibility, stability, and drug-loading rates towards efficient drug delivery to solid tumors. We aim to apply a multi-scale computational model for evaluating drug delivery to predict treatment efficacy. Methodology Three strategies for drug delivery, namely conventional chemotherapy (one-stage), as well as chemotherapy through two- and three-stage NSDDSs, were simulated and compared. A geometric model of the tumor and the capillary network was obtained by processing a real image. Subsequently, equations related to intravascular and interstitial flows as well as drug transport in tissue were solved by considering real conditions as well as details such as drug binding to cells and cellular uptake. Finally, the role of periodic treatments was investigated considering tumor recurrence between treatments. The impact of different parameters, nanoparticle (NP) size, binding affinity of drug, and the kinetics of release rate, were additionally investigated to determine their therapeutic efficacy. Results Using NPs considerably increases the fraction of killed cells (FKCs) inside the tumor compared to conventional chemotherapy. Tumoral FKCs for two-stage DDS with smaller NP size (20nm) is higher than that of larger NPs (100nm), in all investigate release rates. Slower and continuous release of the chemotherapeutic agents from NPs have better treatment outcomes in comparison with faster release rate. In three-stage DDS, for intermediate and higher binding affinities, it is desirable for the secondary particle to be released at a faster rate, and the drug with slower rate. In lower binding affinities, high release rates have better performance. Results also demonstrate that after 5 treatments with three-stage DDS, 99.6% of tumor cells (TCs) are killed, while two-stage DDS and conventional chemotherapy kill 95.6% and 88.5% of tumor cells in the same period, respectively. Conclusion The presented framework has the potential to enable decision making for new drugs via computational modeling of treatment responses and has the potential to aid oncologists with personalized treatment plans towards more optimal treatment outcomes.
Collapse
Affiliation(s)
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Department of Electrical and Computer Engineering, Faculty of Engineering, School of Optometry and Vision Science, Faculty of Science, University of Waterloo, Waterloo, ON, Canada.,Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran, Iran.,Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
| | - Mohammad Masoud Momeni
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada.,Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
21
|
Zhdanov VP. Virology from the perspective of theoretical colloid and interface science. Curr Opin Colloid Interface Sci 2021; 53:101450. [PMID: 36568530 PMCID: PMC9761319 DOI: 10.1016/j.cocis.2021.101450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viral infections occur at very different length and time scales and include various processes, which can often be described using the models developed and/or employed in colloid and interface science. Bearing in mind the currently active COVID-19, I discuss herein the models aimed at viral transmission via respiratory droplets and the contact of virions with the epithelium. In a more general context, I outline the models focused on penetration of virions via the cellular membrane, initial stage of viral genome replication, and formation of viral capsids in cells. In addition, the models related to a new generation of drug delivery vehicles, for example, lipid nanoparticles with size about 100-200 nm, are discussed as well. Despite the high current interest in all these processes, their understanding is still limited, and this area is open for new theoretical studies.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
22
|
Soltani M, Moradi Kashkooli F, Souri M, Zare Harofte S, Harati T, Khadem A, Haeri Pour M, Raahemifar K. Enhancing Clinical Translation of Cancer Using Nanoinformatics. Cancers (Basel) 2021; 13:2481. [PMID: 34069606 PMCID: PMC8161319 DOI: 10.3390/cancers13102481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 12/14/2022] Open
Abstract
Application of drugs in high doses has been required due to the limitations of no specificity, short circulation half-lives, as well as low bioavailability and solubility. Higher toxicity is the result of high dosage administration of drug molecules that increase the side effects of the drugs. Recently, nanomedicine, that is the utilization of nanotechnology in healthcare with clinical applications, has made many advancements in the areas of cancer diagnosis and therapy. To overcome the challenge of patient-specificity as well as time- and dose-dependency of drug administration, artificial intelligence (AI) can be significantly beneficial for optimization of nanomedicine and combinatorial nanotherapy. AI has become a tool for researchers to manage complicated and big data, ranging from achieving complementary results to routine statistical analyses. AI enhances the prediction precision of treatment impact in cancer patients and specify estimation outcomes. Application of AI in nanotechnology leads to a new field of study, i.e., nanoinformatics. Besides, AI can be coupled with nanorobots, as an emerging technology, to develop targeted drug delivery systems. Furthermore, by the advancements in the nanomedicine field, AI-based combination therapy can facilitate the understanding of diagnosis and therapy of the cancer patients. The main objectives of this review are to discuss the current developments, possibilities, and future visions in naoinformatics, for providing more effective treatment for cancer patients.
Collapse
Affiliation(s)
- Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi Univesity of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Samaneh Zare Harofte
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Tina Harati
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Atefeh Khadem
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Mohammad Haeri Pour
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (F.M.K.); (M.S.); (S.Z.H.); (T.H.); (A.K.); (M.H.P.)
| | - Kaamran Raahemifar
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), State College, Penn State University, Pennsylvania, PA 16801, USA
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
23
|
Moradi Kashkooli F, Soltani M, Momeni MM. Computational modeling of drug delivery to solid tumors: A pilot study based on a real image. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Mobaraki M, Soltani M, Zare Harofte S, L. Zoudani E, Daliri R, Aghamirsalim M, Raahemifar K. Biodegradable Nanoparticle for Cornea Drug Delivery: Focus Review. Pharmaceutics 2020; 12:E1232. [PMID: 33353013 PMCID: PMC7765989 DOI: 10.3390/pharmaceutics12121232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
During recent decades, researchers all around the world have focused on the characteristic pros and cons of the different drug delivery systems for cornea tissue change for sense organs. The delivery of various drugs for cornea tissue is one of the most attractive and challenging activities for researchers in biomaterials, pharmacology, and ophthalmology. This method is so important for cornea wound healing because of the controllable release rate and enhancement in drug bioavailability. It should be noted that the delivery of various kinds of drugs into the different parts of the eye, especially the cornea, is so difficult because of the unique anatomy and various barriers in the eye. Nanoparticles are investigated to improve drug delivery systems for corneal disease. Biodegradable nanocarriers for repeated corneal drug delivery is one of the most attractive and challenging methods for corneal drug delivery because they have shown acceptable ability for this purpose. On the other hand, by using these kinds of nanoparticles, a drug could reside in various part of the cornea for longer. In this review, we summarized all approaches for corneal drug delivery with emphasis on the biodegradable nanoparticles, such as liposomes, dendrimers, polymeric nanoparticles, niosomes, microemulsions, nanosuspensions, and hydrogels. Moreover, we discuss the anatomy of the cornea at first and gene therapy at the end.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 15875‐4413, Iran;
- Translational Ophthalmology Research Center, Tehran University of Medical Science, Tehran 1417614411, Iran;
| | - Madjid Soltani
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, K. N. Toosi University of Technology, Tehran 1417614411, Iran
- Computational Medicine Center, K. N. Toosi University of Technology, Tehran 1417614411, Iran
| | - Samaneh Zare Harofte
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Elham L. Zoudani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Roshanak Daliri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Mohamadreza Aghamirsalim
- Translational Ophthalmology Research Center, Tehran University of Medical Science, Tehran 1417614411, Iran;
| | - Kaamran Raahemifar
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, Pennsylvania, PA 16801, USA
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
- Electrical and Computer Engineering Department, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
25
|
Moradi Kashkooli F, Soltani M, Rezaeian M, Meaney C, Hamedi MH, Kohandel M. Effect of vascular normalization on drug delivery to different stages of tumor progression: In-silico analysis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|