1
|
Guo Z, Song Y, Liu Z, Dai J, Chen Z, Feng X, Gao W, Zeng L, Song H. Development of FK506-loaded maleimide-functionalized cationic niosomes for prolonged retention and therapeutic efficacy in dry eye disease. Drug Deliv Transl Res 2024:10.1007/s13346-024-01726-3. [PMID: 39438428 DOI: 10.1007/s13346-024-01726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Tacrolimus (FK506) is widely used in ocular diseases such as corneal transplantation-host disease, uveitis, conjunctivitis, and dry eye disease (DED). However, its low aqueous solubility and poor ocular retention pose challenges for its application in the eye diseases. This study developed a novel FK506-loaded maleimide-functionalized cationic niosomes (FK506 M-CNS), aiming to prolong the retention time of FK506 in the eye and enhance its therapeutic efficacy. FK506 M-CNS had a particle size of 87.69 ± 1.05 nm and zeta potential of 22.06 ± 1.01 mV. Results of histological evaluation through H&E staining and in vitro cytotoxicity of human corneal epithelial cells consistently revealed the excellent biocompatibility of FK506 M-CNS. FK506 M-CNS exhibited superior ocular retention compared to the market product Talymus®. FK506 M-CNS significantly alleviated the symptoms of DED and promoted the recovery of corneal epithelia. FK506 M-CNS group had the lowest expression levels of inflammatory factors associated with DED. These superiorities might be due to the electrostatic interaction between cationic niosomes and negatively charged mucin in the eye, and the covalent binding of maleimide with the thiol group in the mucin. The maleimide group improved the ocular retention and efficacy of FK506, but did not increase the toxicity. Results indicated that FK506 M-CNS had great potential as a nanopharmaceutical in the treatment of ocular diseases, and M-CNS could be a promising drug carrier for ophthalmic drug delivery systems.
Collapse
Affiliation(s)
- Zhixin Guo
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Yutong Song
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Jiansheng Dai
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Zhenzhen Chen
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Xianquan Feng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Wenhao Gao
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China
| | - Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China.
| | - Hongtao Song
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), 156 West Second-Ring Road, Fuzhou, 350025, PR China.
| |
Collapse
|
2
|
Yu L, Meng Q, Li M, Tian L, Wu X, Jie Y. Heating-driven self-assembled glycyrrhizin nanomicelles loading bisdemethoxycurcumin: Preparation, characterization, and efficacy evaluation on experimental dry eye. Colloids Surf B Biointerfaces 2024; 245:114206. [PMID: 39255746 DOI: 10.1016/j.colsurfb.2024.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
In this study, a simple but novel preparation method was developed by heating a mixture of dipotassium glycyrrhizinate (DG) and bisdemethoxycurcumin (BDMC) in aqueous solution, and a DG self-assembled nanomicelles-loading BDMC (named B@DNM) ophthalmic solution was successfully fabricated with this heating-driven process. AutoDock simulation analysis revealed that Pi-Alkyl hydrophobic interactions between BDMC and DG played important role in this self-assembled B@DNM. The optimized B@DNM, with a DG:BDMC mass ratio of 40:1 and heating time of 6 h, had a high encapsulation efficacy of 96.70 ± 0.13 % and particle sizes of 117.50 ± 6.07 nm. The apparent solubility of BDMC in B@DNM was significantly improved from bare BDMC (10.40 ± 0.16 μg/ml to 1405.60 ± 6.78 μg/ml) in artificial tears after 4 h incubation. B@DNM had great storage stability as an aqueous ophthalmic solution. B@DNM showed significantly improved in vitro antioxidant activity. Ex vivo hen's egg test-chorioallantoic membrane assay and long-term in vivo mouse eye tolerance evaluation showed that B@DNM had good ocular safety profiles. B@DNM showed improved in vivo corneal permeation profiles in the mouse eyes. Topical administration of B@DNM achieved a significantly improved efficacy on a mouse model of dry eye disease (DED), including accelerating corneal wound healing, restoring corneal sensitivity, and inhibiting corneal neovascularization. Regulation of the high mobility group box 1 signal pathway was involved in B@DNM's strong therapeutic effects. These findings demonstrate that heating is a simple method to prepare ocular nanoformulation with DG, and B@DNM might be a potential ocular drug for treating DED.
Collapse
Affiliation(s)
- Linrong Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Mengshuang Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Qingdao Women and Children's Hospital, Qingdao, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
4
|
Wang Z, Song X, Wei Y, Wu X, Jie Y. Cytisine eye drops for benzalkonium chloride-induced dry eye: safety and efficacy evaluation. Pharm Dev Technol 2024; 29:457-467. [PMID: 38629738 DOI: 10.1080/10837450.2024.2345148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
This experiment aimed to investigate the feasibility of cytisine (CYT) in treating eye diseases with ocular topical application. An in vitro cytotoxicity test, a hen's egg test-chorioallantoic membrane (HET-CAM), and a mouse eye tolerance test were used to fully reveal the ocular safety profiles of CYT. For the efficacy evaluations, CYT's effects on cell wound healing, against H2O2-induced oxidative stress damages on cells, and on benzalkonium chloride (BAC)-induced dry eye disease (DED) in mice were evaluated. Results showed that CYT did not show any cytotoxicities at concentrations no higher than 250 μg/ml, while lipoic acid (α-LA) at 250 μg/ml and BAC at 1.25 μg/ml showed significant cytotoxicities within 48 h incubation. The HET-CAM and mouse eye tolerance test confirmed that 0.5% CYT eye drops demonstrated good safety characteristics. Efficacy evaluations showed that CTY significantly promoted cell migration and wound healing. CYT significantly improved cell survival against H2O2-induced oxidative stress damage by reversing the imbalance between the reactive oxygen species (ROS) and antioxidant defense mechanisms. The animal evaluation of the BAC-induced dry eye model revealed that CYT demonstrated a strong treatment effect, including reversing ocular surface damages, recovering corneal sensitivity, and inhibiting neovascularization; HMGB1/NF-κB signaling was involved in this DED treatment by CTY. In conclusion, CYT had strong experimental treatment efficacy against DED with good ocular safety profiles, and it might be a novel and promising drug for DED.
Collapse
Affiliation(s)
- Zijian Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xixi Song
- Qingdao Women and Children's Hospital, Qingdao, China
| | - Yanjun Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Viwit Pharmaceutical Co., Ltd, Zaozhuang, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Viwit Pharmaceutical Co., Ltd, Zaozhuang, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Oucif Khaled MT, Zaater A, Ben Amor I, Zeghoud S, Ben Amor A, Hemmami H, Alnazza Alhamad A. Drug delivery methods based on nanotechnology for the treatment of eye diseases. Ann Med Surg (Lond) 2023; 85:6029-6040. [PMID: 38098602 PMCID: PMC10718325 DOI: 10.1097/ms9.0000000000001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/04/2023] [Indexed: 12/17/2023] Open
Abstract
One of the most difficult tasks among the numerous medication delivery methods is ocular drug delivery. Despite having effective medications for treating ocular illness, we have not yet managed to develop an appropriate drug delivery strategy with the fewest side effects. Nanotechnology has the potential to significantly address the drawbacks of current ocular delivery systems, such as their insufficient therapeutic effectiveness and unfavourable side effects from invasive surgery or systemic exposure. The objective of the current research is to highlight and update the most recent developments in nano-based technologies for the detection and treatment of ocular diseases. Even if more work has to be done, the advancements shown here might lead to brand-new, very practical ocular nanomedicines.
Collapse
Affiliation(s)
- Mohammed Tayeb Oucif Khaled
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Abdelmalekd Zaater
- Department of Agronomy, Faculty of Nature and Life Sciences, University of El Oued, El Oued, Algeria
- Biodiversity laboratory and application of biotechnology in agriculture, University of El Oued, El Oued, Algeria
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Ali Alnazza Alhamad
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syrian Arab Republic
| |
Collapse
|
6
|
Sun C, Tian L, Wei Y, Chen P, Wu X, Jie Y. Novel bisdemethoxycurcumin@phytomicelle ophthalmic solution: In vitro formulation appraisal and in vivo prompting rapid corneal wound healing evaluations. Exp Eye Res 2023; 234:109608. [PMID: 37517540 DOI: 10.1016/j.exer.2023.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
A simple and novel phytochemical-based nano-ophthalmic solution was developed for the treatment of eye diseases. This nanoformulation was produced from the mixture of the phytochemicals glycyrrhizin and alpha-glycosyl hesperidin, which serve as the phytonanomaterials that solubilize bisdemethoxycurcumin (BDMC), a promising phytochemical with strong pharmacological activities but with poor water solubility. This novel nanoformulation is a clear solution named as BDMC@phytomicelle ophthalmic solution, which was formulated using a simple preparation process. The BDMC@phytomicelles were characterized by a BDMC encapsulation efficiency of 98.37% ± 2.26%, a small phytomicelle size of 4.06 ± 0.22 nm, and a small polydispersity index of 0.25 ± 0.04. With the optimization of the BDMC@phytomicelles, the apparent solubility of BDMC (i.e., the loading of BDMC in the phytomicelles) in the simulated lacrimal fluid was 3.19 ± 0.02 mg/ml. The BDMC@phytomicelle ophthalmic solution demonstrated a good storage stability. Moreover, it did not cause irritations in rabbit eyes, and it facilitated the excellent corneal permeation of BDMC in mice. The BDMC@phytomicelles demonstrated a marked effect on the in vivo induction of corneal wound healing both in healthy and denervated corneas, as seen in the induction of corneal epithelial wound healing, recovery of corneal sensitivity, and increase in corneal subbasal nerve fiber density. These strong pharmacological activities involve the inhibition of hmgb1 signaling and the induction of VIP signaling. Overall, the BDMC@phytomicelle ophthalmic solution is a novel and promising simple ocular nano-formulation of BDMC with significantly improved in vivo profiles.
Collapse
Affiliation(s)
- Cun Sun
- Ophthalmology Department, Beijing HuiMin Hospital, Beijing, China; Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yanjun Wei
- Viwit Pharmaceutical Co., Ltd., Zaozhuang, Shandong, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Li K, Gong Q, Lu B, Huang K, Tong Y, Mutsvene TE, Lin M, Xu Z, Lu F, Li X, Hu L. Anti-inflammatory and antioxidative effects of gallic acid on experimental dry eye: in vitro and in vivo studies. EYE AND VISION (LONDON, ENGLAND) 2023; 10:17. [PMID: 37122017 PMCID: PMC10150500 DOI: 10.1186/s40662-023-00334-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/22/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND To investigate the anti-inflammatory and antioxidative effects of gallic acid (GA) on human corneal epithelial cells (HCECs) and RAW264.7 macrophages as well as its therapeutic effects in an experimental dry eye (EDE) mouse model. METHODS A cell counting kit-8 (CCK-8) assay was used to test the cytotoxicity of GA. The effect of GA on cell migration was evaluated using a scratch wound healing assay. The anti-inflammatory and antioxidative effects of GA in vitro were tested using a hypertonic model (HCECs) and an inflammatory model (RAW264.7 cells). The in vivo biocompatibility of GA was detected by irritation tests in rabbits, whereas the preventive and therapeutic effect of GA in vivo was evaluated using a mouse model of EDE. RESULTS In the range of 0-100 μM, GA showed no cytotoxicity in RAW264.7 cells or HCECs and did not delay the HCECs monolayer wound healing within 24 h. Ocular tolerance to GA in the in vivo irritation test was good after seven days. In terms of antioxidative activity, GA significantly reduced the intracellular reactive oxygen species (ROS) in lipopolysaccharide (LPS) activated RAW264.7 macrophages and HCECs exposed to hyperosmotic stress. Furthermore, after pre-treatment with GA, the expression levels of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NADPH quinone oxidoreductase-1 (NQO-1) were significantly upregulated in RAW264.7 macrophages. GA also exhibits excellent anti-inflammatory properties. This is mainly demonstrated by the ability of GA to effectively downregulate the nuclear transcription factor-κB (NF-κB) pathway in LPS-activated RAW264.7 macrophages and to reduce inflammatory factors, such as nitric oxide (NO), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α). In vivo efficacy testing results in a mouse model of EDE showed that GA can effectively prevent and inhibit the apoptosis of corneal epithelial cells (CECs), reduce inflammatory factors in the cornea and conjunctiva as well as protect goblet cells. CONCLUSION In vitro and in vivo results indicate that GA possesses potent anti-inflammatory and antioxidative properties with no apparent cytotoxicity within the range of 0-100 μM. It is a promising eye drop formulation for the effective prevention and treatment of dry eye disease (DED).
Collapse
Affiliation(s)
- Kexin Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Qianwen Gong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Bin Lu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Kaiyan Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Yixuan Tong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Tinashe Emmanuel Mutsvene
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Meng Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Zhiqiang Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Fan Lu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, People's Republic of China.
| | - Liang Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
| |
Collapse
|
8
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
9
|
Wang C, Pang Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev 2023; 194:114721. [PMID: 36773886 DOI: 10.1016/j.addr.2023.114721] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Eye drops are the most accessible therapy for ocular diseases, while inevitably suffering from their lower bioavailability which highly restricts the treatment efficacy. The introduction of nanotechnology has attracted considerable interest as it has advantages over conventional ones such as prolonged ocular surface retention time and enhanced ocular barrier penetrating properties, and achieving higher bioavailability and improved treatment efficacy. This review describes various ocular diseases treated with eye drops as well as the physiological and anatomical ocular barriers faced with through drug administration. It also summarizes the recent advances regarding the utilization of nanotechnology in developing eye drops, and how to optimize the nanocarrier-based ocular drug delivery systems. The prospective future research directions for nano-based eye drops are also discussed here.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
10
|
Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354:465-488. [PMID: 36642250 DOI: 10.1016/j.jconrel.2023.01.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Obinna Sabastine Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Enugu State, Nigeria; Pharmacology and Physiology Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Prosper Emeh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Pharmaceutics and Pharmaceutical Technology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
11
|
Optimization of Naringenin Nanoparticles to Improve the Antitussive Effects on Post-Infectious Cough. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123736. [PMID: 35744861 PMCID: PMC9228777 DOI: 10.3390/molecules27123736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
Naringenin (NRG) is a natural compound with several biological activities; however, its bioavailability is limited owing to poor aqueous solubility. In this study, NRG nanoparticles (NPs) were prepared using the wet media milling method. To obtain NRG NPs with a small particle size and high drug-loading content, the preparation conditions, including stirring time, temperature, stirring speed, and milling media amount, were optimized. The NRG (30 mg) and D-α-tocopherol polyethylene glycol succinate (10 mg) were wet-milled in deionized water (2 mL) with 10 g of zirconia beads via stirring at 50 °C for 2 h at a stirring speed of 300 rpm. As a result, the NRG NPs, with sheet-like morphology and a diameter of approximately 182.2 nm, were successfully prepared. The NRG NPs were stable in the gastrointestinal system and were released effectively after entering the blood circulation. In vivo experiments indicated that the NRG NPs have good antitussive effects. The cough inhibition rate after the administration of the NRG NPs was 66.7%, cough frequency was three times lower, and the potential period was 1.8 times longer than that in the blank model group. In addition, the enzyme biomarkers and histological analysis results revealed that the NRG NPs can effectively regulate the inflammatory and oxidative stress response. In conclusion, the NRG NPs exhibited good oral bioavailability and promoted antitussive and anti-inflammatory effects.
Collapse
|