1
|
Liang W, Zhang W, Tian J, Zhang X, Lv X, Qu A, Chen J, Wu Z. Advances in carbohydrate-based nanoparticles for targeted therapy of inflammatory bowel diseases: A review. Int J Biol Macromol 2024; 281:136392. [PMID: 39423983 DOI: 10.1016/j.ijbiomac.2024.136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The incidence of inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, is rapidly increasing worldwide. Unfortunately, the current therapies for IBD are often hindered by premature drug release and undesirable side effects. With the advancement of nanotechnology, the innovative targeted nanotherapeutics are explored to ensure the accurate delivery of drugs to specific sites in the colon, thereby reducing side effects and improving the efficacy of oral administration. The emphasis of this review is to summarize the potential pathogenesis of IBD and highlight recent breakthroughs in carbohydrate-based nanoparticles for IBD treatment, including their construction, release mechanism, potential targeting ability, and their therapeutic efficacy. Specifically, we summarize the latest knowledge regarding environmental-responsive nano-systems and active targeted nanoparticles. The environmental-responsive drug delivery systems crafted with carbohydrates or other biological macromolecules like chitosan and sodium alginate, exhibit a remarkable capacity to enhance the accumulation of therapeutic drugs in the inflamed regions of the digestive tract. Active targeting strategies improve the specificity and accuracy of oral drug delivery to the colon by modifying carbohydrates such as hyaluronic acid and mannose onto nanocarriers. Finally, we discuss the challenges and provide insight into the future perspectives of colon-targeted delivery systems for IBD treatment.
Collapse
Affiliation(s)
- Wenjing Liang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| | - Jiayi Tian
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinping Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinyi Lv
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ao Qu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinyu Chen
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
2
|
Zhang Q, Ye X, Zhu L, Xu Z, Hou Y, Ke Q, Feng J, Xie X, Chen D, Piao JG, Wei Y. Spatiotemporal delivery of multiple components of rhubarb-astragalus formula for the sysnergistic treatment of renal fibrosis. Front Pharmacol 2024; 15:1456721. [PMID: 39415839 PMCID: PMC11480027 DOI: 10.3389/fphar.2024.1456721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose Rhubarb (Rheum palmatum L.) and astragalus (Radix astragali) find widespread used in clinical formulations for treating chronic kidney disease (CKD). Notably, the key active components, total rhubarb anthraquinone (TRA) and total astragalus saponin (TAS), exhibit superiority over rhubarb and astragalus in terms of their clear composition, stability, quality control, small dosage, and efficacy for disease treatment. Additionally, astragalus polysaccharides (APS) significantly contribute to the treatment of renal fibrosis by modulating the gut microbiota. However, due to differences in the biopharmaceutical properties of these components, achieving synergistic effects remains challenging. This study aims to develop combined pellets (CPs) and evaluate the potential effect on unilateral ureteral obstruction (UUO)-induced renal fibrosis. Methods The CPs pellets were obtained by combining TRA/TAS-loaded SNEDDS pellets and APS-loaded pellets, prepared using the fluidized bed coating process. The prepared pellets underwent evaluation for morphology, bulk density, hardness, and flowing property. Moreover, the in vitro release of the payloads was evaluated with the CHP Type I method. Furthermore, the unilateral ureteral obstruction (UUO) model was utilized to investigate the potential effects of CPs pellets on renal fibrosis and their contribution to gut microbiota modulation. Results The ex-vivo study demonstrated that the developed CPs pellets not only improved the dissolution of TRA and TAS but also delivered TRA/TAS and APS spatiotemporally to the appropriate site along the gastrointestinal tract. In an animal model of renal fibrosis (UUO rats), oral administration of the CPs ameliorated kidney histological pathology, reduced collagen deposition, and decreased the levels of inflammatory cytokines. The CPs also restored the disturbed gut microbiota induced by UUO surgery and protected the intestinal barrier. Conclusion The developed CPs pellets represent a promising strategy for efficiently delivering active components in traditional Chinese medicine formulas, offering an effective approach for treating CKD.
Collapse
Affiliation(s)
- Qibin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishi Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Hou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoying Ke
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiawei Feng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Xie
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danfei Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
4
|
Shendge RS, Zalte TS, Khade SB. Polymeric microspheres redefining the landscape of colon-targeted delivery: A contemporary update. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2024; 11:100156. [DOI: 10.1016/j.ejmcr.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Abbaspour M, Faeznia F, Zanjanian P, Ruzbehi M, Shourgashti K, Ziaee A, Sardou HS, Nokhodchi A. Preparation and Evaluation of Berberine-Excipient Complexes in Enhancing the Dissolution Rate of Berberine Incorporated into Pellet Formulations. AAPS PharmSciTech 2024; 25:154. [PMID: 38961012 DOI: 10.1208/s12249-024-02863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Berberine is used in the treatment of metabolic syndrome and its low solubility and very poor oral bioavailability of berberine was one of the primary hurdles for its market approval. This study aimed to improve the solubility and bioavailability of berberine by preparing pellet formulations containing drug-excipient complex (obtained by solid dispersion). Berberine-excipient solid dispersion complexes were obtained with different ratios by the solvent evaporation method. The maximum saturation solubility test was performed as a key factor for choosing the optimal complex for the drug-excipient. The properties of these complexes were investigated by FTIR, DSC, XRD and dissolution tests. The obtained pellets were evaluated and compared in terms of pelletization efficiency, particle size, mechanical strength, sphericity and drug release profile in simulated media of gastric and intestine. Solid-state analysis showed complex formation between the drug and excipients used in solid dispersion. The optimal berberine-phospholipid complex showed a 2-fold increase and the optimal berberine-gelucire and berberine-citric acid complexes showed more than a 3-fold increase in the solubility of berberine compared to pure berberine powder. The evaluation of pellets from each of the optimal complexes showed that the rate and amount of drug released from all pellet formulations in the simulated gastric medium were significantly lower than in the intestine medium. The results of this study showed that the use of berberine-citric acid or berberine-gelucire complex could be considered a promising technique to increase the saturation solubility and improve the release characteristics of berberine from the pellet formulation.
Collapse
Affiliation(s)
- Mohammadreza Abbaspour
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Faeznia
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Zanjanian
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Ruzbehi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Shourgashti
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosseinn Ziaee
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Shahdadi Sardou
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK.
- Lupin Research Inc, Coral Springs, Florida, USA.
| |
Collapse
|
6
|
Deljavan Ghodrati A, Comoglu T. An overview on recent approaches for colonic drug delivery systems. Pharm Dev Technol 2024; 29:566-581. [PMID: 38813948 DOI: 10.1080/10837450.2024.2362353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Colon-targeted drug delivery systems have garnered significant interest as potential solutions for delivering various medications susceptible to acidic and catalytic degradation in the gastrointestinal (GI) tract or as a means of treating colonic diseases naturally with fewer overall side effects. The increasing demand for patient-friendly drug administration underscores the importance of colonic drug delivery, particularly through noninvasive methods like nanoparticulate drug delivery technologies. Such systems offer improved patient compliance, cost reduction, and therapeutic advantages. This study places particular emphasis on formulations and discusses recent advancements in various methods for designing colon-targeted drug delivery systems and their medicinal applications.
Collapse
Affiliation(s)
- Aylin Deljavan Ghodrati
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Tansel Comoglu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Soltani F, Kamali H, Akhgari A, Afrasiabi Garekani H, Nokhodchi A, Sadeghi F. Formulation and optimization of a single-layer coat for targeting budesonide pellets to the descending Colon. Pharm Dev Technol 2024; 29:212-220. [PMID: 38392961 DOI: 10.1080/10837450.2024.2321250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
The current budesonide formulations are inadequate for addressing left-sided colitis, and patients might hesitate to use an enema for a prolonged time. This study focuses on developing a single-layer coating for budesonide pellets targeting the descending colon. Pellets containing budesonide (1.5%w/w), PVP K30 (5%w/w), lactose monohydrate (25%w/w) and Avicel pH 102 (68.5%w/w) were prepared using extrusion spheronization technique. Coating formulations were designed using response surface methodology with pH and time-dependent Eudragits. Dissolution tests were conducted at different pH levels (1.2, 6.5, 6.8, and 7.2). Optimal coating formulation, considering coating level and the Eudragit (S + L) ratio to the total coating weight, was determined. Budesonide pellets were coated with the optimized composition and subjected to continuous dissolution testing simulating the gastrointestinal tract. The coating, with 48% S, 12% L, and 40% RS at a 10% coating level, demonstrated superior budesonide delivery to the descending colon. Coated pellets had a spherical shape with a uniform 30 µm thickness coating, exhibiting pH and time-dependent release. Notably, zero-order release kinetics was observed for the last 9 h in colonic conditions. The study suggests that an optimized single-layer coating, incorporating pH and time-dependent polymers, holds promise for consistently delivering budesonide to the descending colon.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Pharmaceutical Research Inc, Coral Springs, Florida, USA
| | - Fatemeh Sadeghi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Sun LF, Li MM, Chen Y, Lu WJ, Zhang Q, Wang N, Fang WY, Gao S, Chen SQ, Hu RF. pH/enzyme dual sensitive Gegenqinlian pellets coated with Bletilla striata polysaccharide membranes for the treatment of ulcerative colitis. Colloids Surf B Biointerfaces 2023; 229:113453. [PMID: 37454443 DOI: 10.1016/j.colsurfb.2023.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gegen Qinlian Decoction, derived from Zhang Zhongjing's Treatise on Typhoid Fever, has been widely used in the treatment of various common diseases, frequently-occurring diseases and difficult and complicated diseases, such as ulcerative colitis. In this study, Bletilla striata polysaccharide (BSP) was innovatively used as a film coating material to prepare Gegen Qinlian pellets with dual sensitivity of pH enzyme for the treatment of ulcerative colitis. BSP has the ability to repair the inflamed colon mucosa and can produce synergistic effects, while avoiding the adverse therapeutic effects caused by the early release of drugs from a single pH-sensitive pellets in the small intestine. The prepared pellets have a uniform particle size, good roundness, a particle size range from 0.8 mm to 1.0 mm, and a particle yield is 85.6 %. The results of in vitro release showed that ES-BSP pellets hardly released drugs in the pH range of 1.2-6.8. However, in the colon mimic fluid containing specific enzymes, the drug release was significantly accelerated, demonstrating the sensitivity of the pellets to pH enzymes. In vivo and ex vivo fluorescence imaging of small animals showed that Gegen Qinlian pellets with dual sensitivity of pH enzyme remained longer in the colon compared with pH-sensitive pellets. In vivo pharmacodynamics study showed that the Gegen Qinlian pellets with dual sensitivity of pH enzyme had a better therapeutic effect in the rat model of the ulcerative colon than the commercially available Gegenqinlian pellets in the control group.
Collapse
Affiliation(s)
- Ling Feng Sun
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Man Man Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Yuan Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Wen Jie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Qing Zhang
- Department of Pharmacy, School of Pharmacy, Nanjing Medical University Nanjing, Jiangsu, 210009, China
| | - Nan Wang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Wen You Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Song Gao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China.
| | - Sheng Qi Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China.
| | - Rong Feng Hu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China.
| |
Collapse
|
9
|
Ouyang J, Dedroog S, Van den Mooter G. New insights on the effects of blend composition on the biodegradation and permeability of Inulin-Eudragit RS film coatings for colon drug delivery. Eur J Pharm Biopharm 2023:S0939-6411(23)00143-1. [PMID: 37270158 DOI: 10.1016/j.ejpb.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Inulin has been applied in Inulin-Eudragit RS (Inu-ERS) coatings as the component responsible for degradation by human microbiota. However, studies on how bacterial enzymes can degrade polysaccharides like inulin imbedded in water insoluble polymers like Eudragit RS are still elusive. The present work aims at elucidating the complex process of enzyme triggered biodegradation of inulin with various molecular weights in isolated films with Eudragit RS. The ratio of inulin to Eudragit RS was varied to create films with different degree of hydrophilicity. The phase behavior study revealed that blends of inulin and Eudragit RS are phase separated systems. The film permeability was studied by determination of the permeability coefficient of caffeine and the fraction of inulin that was released from the films in a buffer solution with or without inulinase was quantified. Together with the morphology characterization of the Inu-ERS films with and without incubation in the enzyme solution, these results suggest that the action of the enzyme was only limited to the fraction of inulin released in the buffer solution. Inulin fully embedded in the Eudragit RS matrix was not degraded. The permeation of the model drug caffeine occurred in the phase-separated film as a result of pores formed as a consequence of inulin release. The inulin to Eudragit RS blend ratio and the molecular weight of inulin affected the percolation threshold, the release of inulin, the morphology of the film formed thereafter and the connectivity of the formed water channels, thus influencing the drug permeation properties.
Collapse
Affiliation(s)
- Jiabi Ouyang
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Sien Dedroog
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Shahdadi Sardou H, Sadeghi F, Afrasiabi Garekani H, Akhgari A, Hossein Jafarian A, Abbaspour M, Nokhodchi A. Comparison of 5-ASA layered or matrix pellets coated with a combination of ethylcellulose and Eudragits L and S in the treatment of ulcerative colitis in rats. Int J Pharm 2023; 640:122981. [PMID: 37120124 DOI: 10.1016/j.ijpharm.2023.122981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
The aim of this study was to evaluate and optimize the combination of time and pH-dependent polymers as a single coating for the design of the colon-specific drug delivery system of 5-aminosalicylic acid (5-ASA) pellets. 5-ASA matrix pellets with a 70% drug load were prepared by the extrusion-spheronization method. The optimal coating formula which included Eudragit S (ES)+Eudragit L (EL)+Ethylcellulose (EC) was predicted for the targeted drug delivery to the colonic area by a 32 factorial design. The ratio of ES:EL:EC and coating level were considered as independent variables while the responses were the release of less than 10% of the drug within 2 h (Y1), the release of 60-70% within 10 h at pH 6.8 (Y2) and lag time of less than 1 h at pH 7.2 (Y3). Also, 5-ASA layered pellets were prepared by the powder layering of 5-ASA on nonpareils (0.4-0.6 mm) in a fluidized bed coater and then coated with the same optimum coating composition. The coated 5-ASA layered or matrix pellets were tested in a rat model of ulcerative colitis (UC) and compared with the commercial form of 5-ASA pellets (Pentasa®). The ratio of ES:EL:EC of 33:52:15 w/w at a coating level of 7% was discovered as the optimum coating for the delivery of 5-ASA matrix pellets to the colon. The coated 5-ASA pellets were spherical with uniform coating as shown by SEM and met all of our release criteria as predicted. In-vivo studies demonstrated that the optimum 5-ASA layered or matrix pellets had superior anti-inflammatory activities than Pentasa® in terms of colitis activity index (CAI), colon damage score (CDS), colon/body weight ratio and colon's tissue enzymes of glutathione (GSH) and malondialdehyde (MDA). The optimum coating formulation showed a high potential for colonic delivery of 5-ASA layered or matrix pellets and triggered drug release based on pH and time.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardou
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Nokhodchi
- Lupin Research Inc, Coral Springs, Florida, USA; School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
11
|
Forde S, Vozza G, Brayden DJ, Byrne HJ, Frías JM, Ryan SM. Evaluation of Selenomethionine Entrapped in Nanoparticles for Oral Supplementation Using In Vitro, Ex Vivo and In Vivo Models. Molecules 2023; 28:molecules28072941. [PMID: 37049704 PMCID: PMC10095941 DOI: 10.3390/molecules28072941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Selenium methionine (SeMet) is an essential micronutrient required for normal body function and is associated with additional health benefits. However, oral administration of SeMet can be challenging due to its purported narrow therapeutic index, low oral bioavailability, and high susceptibility to oxidation. To address these issues, SeMet was entrapped in zein-coated nanoparticles made from chitosan using an ionic gelation formulation. The high stability of both the SeMet and selenomethionine nanoparticles (SeMet-NPs) was established using cultured human intestinal and liver epithelial cells, rat liver homogenates, and rat intestinal homogenates and lumen washes. Minimal cytotoxicity to Caco-2 and HepG2 cells was observed for SeMet and SeMet-NPs. Antioxidant properties of SeMet were revealed using a Reactive Oxygen Species (ROS) assay, based on the observation of a concentration-dependent reduction in the build-up of peroxides, hydroxides and hydroxyl radicals in Caco-2 cells exposed to SeMet (6.25–100 μM). The basal apparent permeability coefficient (Papp) of SeMet across isolated rat jejunal mucosae mounted in Ussing chambers was low, but the Papp was increased when presented in NP. SeMet had minimal effects on the electrogenic ion secretion of rat jejunal and colonic mucosae in Ussing chambers. Intra-jejunal injections of SeMet-NPs to rats yielded increased plasma levels of SeMet after 3 h for the SeMet-NPs compared to free SeMet. Overall, there is potential to further develop SeMet-NPs for oral supplementation due to the increased intestinal permeability, versus free SeMet, and the low potential for toxicity.
Collapse
Affiliation(s)
- Shane Forde
- UCD School of Veterinary Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Giulianna Vozza
- Environmental Science and Health Institute, Technological University Dublin, Grangegorman, D07 EWV4 Dublin, Ireland
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
| | - David J. Brayden
- UCD School of Veterinary Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
| | - Jesus M. Frías
- Environmental Science and Health Institute, Technological University Dublin, Grangegorman, D07 EWV4 Dublin, Ireland
| | - Sinéad M. Ryan
- UCD School of Veterinary Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-7166215
| |
Collapse
|
12
|
Ahmad S, Hafeez A. Formulation and Development of Curcumin-Piperine-Loaded S-SNEDDS for the Treatment of Alzheimer's Disease. Mol Neurobiol 2023; 60:1067-1082. [PMID: 36414909 DOI: 10.1007/s12035-022-03089-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
Abstract
Curcumin (CUR) and piperine (PIP) are very well-known phytochemicals that claimed to have many health benefits and have been widely used in foods and traditional medicines. This study investigated the therapeutic efficacy of these compounds to treat Alzheimer's disease (AD). However, poor oral bioavailability and permeability of curcumin are a major challenge for formulation scientists. In this research study, the researcher tried to enhance the bioavailability and permeability of curcumin by a nanotechnological approach. In this research study, we developed a CUR-PIP-loaded SNEDDS in various oils. Optimised formulation NF3 was subjected to evaluate its therapeutic effectiveness on AD animal model in comparison with untreated AD model and treated group (by market formulation donepezil). On the basis of characterisation results, it is confirmed that NF3 formulation is the best formulation. The optimised formulation shows a significant dose-dependent manner therapeutic effect on AD-induced model. Novel formulation CUR-PIP solid-SNEDDS was successfully developed and optimised. It is expected that the developed S-SNEDDS can be a potential, safe and effective carrier for the oral delivery of curcumin to the brain. To date, this article is the only study of CUR-PIP-loaded S-SNEDDS for the treatment of AD.
Collapse
Affiliation(s)
- Shmmon Ahmad
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India.
| |
Collapse
|
13
|
McCoubrey LE, Favaron A, Awad A, Orlu M, Gaisford S, Basit AW. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J Control Release 2023; 353:1107-1126. [PMID: 36528195 DOI: 10.1016/j.jconrel.2022.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/26/2022]
Abstract
Colonic drug delivery can facilitate access to unique therapeutic targets and has the potential to enhance drug bioavailability whilst reducing off-target effects. Delivering drugs to the colon requires considered formulation development, as both oral and rectal dosage forms can encounter challenges if the colon's distinct physiological environment is not appreciated. As the therapeutic opportunities surrounding colonic drug delivery multiply, the success of novel pharmaceuticals lies in their design. This review provides a modern insight into the key parameters determining the effective design and development of colon-targeted medicines. Influential physiological features governing the release, dissolution, stability, and absorption of drugs in the colon are first discussed, followed by an overview of the most reliable colon-targeted formulation strategies. Finally, the most appropriate in vitro, in vivo, and in silico preclinical investigations are presented, with the goal of inspiring strategic development of new colon-targeted therapeutics.
Collapse
Affiliation(s)
- Laura E McCoubrey
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alessia Favaron
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Atheer Awad
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Mine Orlu
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Simon Gaisford
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Abdul W Basit
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
14
|
Preparation and Characterization of a Novel Multiparticulate Dosage Form Carrying Budesonide-Loaded Chitosan Nanoparticles to Enhance the Efficiency of Pellets in the Colon. Pharmaceutics 2022; 15:pharmaceutics15010069. [PMID: 36678698 PMCID: PMC9865799 DOI: 10.3390/pharmaceutics15010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
An attempt was made to conquer the limitation of orally administered nanoparticles for the delivery of budesonide to the colon. The ionic gelation technique was used to load budesonide on chitosan nanoparticles. The nanoparticles were investigated in terms of size, zeta potential, encapsulation efficiency, shape and drug release. Then, nanoparticles were pelletized using the extrusion-spheronization method and were investigated for their size, mechanical properties, and drug release. Pellets were subsequently coated with a polymeric solution composed of two enteric (eudragit L and S) and time-dependent polymers (eudragit RS) for colon-specific delivery. All formulations were examined for their anti-inflammatory effect in rats with induced colitis and the relapse of the colitis after discontinuation of treatment was also followed. The size of nanoparticles ranged between 288 ± 7.5 and 566 ± 7.7 nm and zeta potential verified their positive charged surface. The drug release from nanoparticles showed an initial burst release followed by a continuous release. Pelletized nanoparticles showed proper mechanical properties and faster drug release in acidic pH compared with alkaline pH. It was interesting to note that pelletized budesonide nanoparticles released the drug throughout the GIT in a sustained fashion, and had long-lasting anti-inflammatory effects while rapid relapse was observed for those treated with conventional budesonide pellets. It seems that there is a synergistic effect of nanoformulation of budesonide and the encapsulation of pelletized nanoparticles in a proper coating system for colon delivery that could result in a significant and long-lasting anti-inflammatory effect.
Collapse
|
15
|
Bayan MF, Marji SM, Salem MS, Begum MY, Chidambaram K, Chandrasekaran B. Development of Polymeric-Based Formulation as Potential Smart Colonic Drug Delivery System. Polymers (Basel) 2022; 14:polym14173697. [PMID: 36080771 PMCID: PMC9460644 DOI: 10.3390/polym14173697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional oral formulations are mainly absorbed in the small intestine. This limits their use in the treatment of some diseases associated with the colon, where the drug has to act topically at the inflammation site. This paved the way for the development of a smart colonic drug delivery system, thereby improving the therapeutic efficacy, reducing the dosing frequency and potential side effects, as well as improving patient acceptance, especially in cases where enemas or other topical preparations may not be effective alone in treating the inflammation. In healthy individuals, it takes an oral medication delivery system about 5 to 6 h to reach the colon. A colonic drug delivery system should delay or prohibit the medication release during these five to six hours while permitting its release afterward. The main aim of this study was to develop a smart drug delivery system based on pH-sensitive polymeric formulations, synthesized by a free-radical bulk polymerization method, using different monomer and crosslinker concentrations. The formulations were loaded with 5-amino salicylic acid as a model drug and Capmul MCM C8 as a bioavailability enhancer. The glass transition temperature (Tg), tensile strength, Young’s modulus, and tensile elongation at break were all measured as a part of the dried films’ characterization. In vitro swelling and release studies were performed to assess the behavior of the produced formulations. The in vitro swelling and release evaluation demonstrated the potential ability of the developed system to retard the drug release at conditions mimicking the stomach and small intestine while triggering its release at conditions mimicking the colon, which indicates its promising applicability as a potential smart colonic drug delivery system.
Collapse
Affiliation(s)
- Mohammad F. Bayan
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
- Correspondence: (M.F.B.); (K.C.)
| | - Saeed M. Marji
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| | - Mutaz S. Salem
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
- Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - M. Yasmin Begum
- Department of Pharmaceutics, School of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, School of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
- Correspondence: (M.F.B.); (K.C.)
| | - Balakumar Chandrasekaran
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
- Department of Pharmaceutical Chemistry, School of Pharmacy, ITM University, Gwalior 474001, India
| |
Collapse
|