1
|
Harris DMM, Szymczak S, Schuchardt S, Labrenz J, Tran F, Welz L, Graßhoff H, Zirpel H, Sümbül M, Oumari M, Engelbogen N, Junker R, Conrad C, Thaçi D, Frey N, Franke A, Weidinger S, Hoyer B, Rosenstiel P, Waschina S, Schreiber S, Aden K. Tryptophan degradation as a systems phenomenon in inflammation - an analysis across 13 chronic inflammatory diseases. EBioMedicine 2024; 102:105056. [PMID: 38471395 PMCID: PMC10943670 DOI: 10.1016/j.ebiom.2024.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Chronic inflammatory diseases (CIDs) are systems disorders that affect diverse organs including the intestine, joints and skin. The essential amino acid tryptophan (Trp) can be broken down to various bioactive derivatives important for immune regulation. Increased Trp catabolism has been observed in some CIDs, so we aimed to characterise the specificity and extent of Trp degradation as a systems phenomenon across CIDs. METHODS We used high performance liquid chromatography and targeted mass spectrometry to assess the serum and stool levels of Trp and Trp derivatives. Our retrospective study incorporates both cross-sectional and longitudinal components, as we have included a healthy population as a reference and there are also multiple observations per patient over time. FINDINGS We found reduced serum Trp levels across the majority of CIDs, and a prevailing negative relationship between Trp and systemic inflammatory marker C-reactive protein (CRP). Notably, serum Trp was low in several CIDs even in the absence of measurable systemic inflammation. Increases in the kynurenine-to-Trp ratio (Kyn:Trp) suggest that these changes result from increased degradation along the kynurenine pathway. INTERPRETATION Increases in Kyn:Trp indicate the kynurenine pathway as a major route for CID-related Trp metabolism disruption and the specificity of the network changes indicates excessive Trp degradation relative to other proteogenic amino acids. Our results suggest that increased Trp catabolism is a common metabolic occurrence in CIDs that may directly affect systemic immunity. FUNDING This work was supported by the DFG Cluster of Excellence 2167 "Precision medicine in chronic inflammation" (KA, SSchr, PR, BH, SWa), the BMBF (e:Med Juniorverbund "Try-IBD" 01ZX1915A and 01ZX2215, the e:Med Network iTREAT 01ZX2202A, and GUIDE-IBD 031L0188A), EKFS (2020_EKCS.11, KA), DFG RU5042 (PR, KA), and Innovative Medicines Initiative 2 Joint Undertakings ("Taxonomy, Treatments, Targets and Remission", 831434, "ImmUniverse", 853995, "BIOMAP", 821511).
Collapse
Affiliation(s)
- Danielle M M Harris
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Institute for Human Nutrition and Food Science, Division Nutriinformatics, Kiel University, Kiel, Germany
| | - Silke Szymczak
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Johannes Labrenz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Institute for Human Nutrition and Food Science, Division Nutriinformatics, Kiel University, Kiel, Germany
| | - Hanna Graßhoff
- Department of Rheumatology University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Henner Zirpel
- Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Melike Sümbül
- Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mhmd Oumari
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nils Engelbogen
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Junker
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Claudio Conrad
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Diamant Thaçi
- Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Norbert Frey
- Department of Medicine III: Cardiology, Angiology, and Pneumology, Heidelberg University, Heidelberg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Bimba Hoyer
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Division Nutriinformatics, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
2
|
Wirestam L, Martinsson K, Kastbom A. Serum serotonin levels are elevated in patients with increased risk of rheumatoid arthritis. Front Med (Lausanne) 2023; 9:1081814. [PMID: 36687404 PMCID: PMC9846029 DOI: 10.3389/fmed.2022.1081814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background Even though serotonin (5-HT) has been ascribed immunomodulatory features, very little is known about its role in chronic inflammatory diseases. Serotonin is implicated in inflammation and increased levels have been associated with progression of bone erosions in RA. Objective To investigate serum serotonin levels in patients with increased risk of rheumatoid arthritis (RA) and patients with recent-onset disease. Moreover, we aimed to determine the prognostic value of serotonin for arthritis development and the disease course. Methods Two prospective observational patient cohorts were studied; anti-citrullinated protein antibody (ACPA) -positive patients with musculoskeletal pain without clinical arthritis (n = 82) and patients with early RA (n = 412). Serotonin levels were measured by enzyme-linked immunosorbent assay (ELISA) in baseline serum samples from both cohorts, and longitudinally in at-risk individuals. Results Compared to healthy controls (median 65 ng/ml), serotonin levels were significantly higher in both at-risk individuals (median 111 ng/ml, p < 0.0001) and patients with early RA (median 135 ng/ml, p < 0.0001). No significant differences were found between at-risk individuals and patients with early RA. At-risk individuals progressing to arthritis had similar levels as those not progressing, and no significant differences were seen over time. Baseline levels in early RA did not associate with mean 28-joint disease activity scores during 3 years follow-up. Conclusion Serum serotonin levels are elevated both at, and prior to, onset of RA. However, increased serotonin is not prognostic for arthritis development or disease course.
Collapse
|