1
|
Yildiz YO, Ruan JL, Gray MD, Bau L, Browning RJ, Mannaris C, Kiltie AE, Vojnovic B, Stride E. Combined drug delivery and treatment monitoring using a single high frequency ultrasound system. Int J Hyperthermia 2024; 41:2430330. [PMID: 39592132 DOI: 10.1080/02656736.2024.2430330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Ultrasound-mediated drug delivery is typically performed using transducers with center frequencies ≤ 1 MHz to promote acoustic cavitation. Such frequencies are not commonly used for diagnostic ultrasound due to limited spatial resolution. Therefore, delivery and monitoring of therapeutic ultrasound typically requires two transducers to enable both treatment and imaging. This study investigates the feasibility of using a single commercial ultrasound imaging transducer operating at 5 MHz for both drug delivery and real-time imaging. We compared a single-transducer system (STS) at 5 MHz with a conventional dual-transducer system (DTS) using a 1.1 MHz therapeutic transducer and an imaging probe. in vitro experiments demonstrated that the STS could achieve comparable extravasation depth and area as the DTS, with higher drug deposition observed at 5 MHz. Additionally, extravasation patterns were influenced by peak negative pressure (PNP) and duty cycle, with the narrower beam width at 5 MHz offering potential advantages for targeted drug delivery. in vivo experiments in a murine bladder cancer model confirmed the efficacy of the STS for real-time imaging and drug delivery, with cavitation dose correlating with drug deposition. The results suggest that a single-transducer approach may enhance the precision and efficiency of ultrasound-mediated drug delivery, potentially reducing system complexity and cost.
Collapse
Affiliation(s)
- Yesna O Yildiz
- Department of Oncology, University of Oxford, Oxford, UK
| | - Jia-Ling Ruan
- Department of Oncology, University of Oxford, Oxford, UK
| | - Michael D Gray
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Luca Bau
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | | | - Christophoros Mannaris
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Eleanor Stride
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Guo B, Sofias AM, Lammers T, Xu J. Image-guided drug delivery: Nanoparticle and probe advances. Adv Drug Deliv Rev 2024; 206:115188. [PMID: 38272185 DOI: 10.1016/j.addr.2024.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Affiliation(s)
- Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Li C, Du Y, Zhang T, Wang H, Hou Z, Zhang Y, Cui W, Chen W. "Genetic scissors" CRISPR/Cas9 genome editing cutting-edge biocarrier technology for bone and cartilage repair. Bioact Mater 2022; 22:254-273. [PMID: 36263098 PMCID: PMC9554751 DOI: 10.1016/j.bioactmat.2022.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
CRISPR/Cas9 is a revolutionary genome editing technology with the tremendous advantages such as precisely targeting/shearing ability, low cost and convenient operation, becoming an efficient and indispensable tool in biological research. As a disruptive technique, CRISPR/Cas9 genome editing has a great potential to realize a future breakthrough in the clinical bone and cartilage repairing as well. This review highlights the research status of CRISPR/Cas9 system in bone and cartilage repair, illustrates its mechanism for promoting osteogenesis and chondrogenesis, and explores the development tendency of CRISPR/Cas9 in bone and cartilage repair to overcome the current limitations.
Collapse
Affiliation(s)
- Chao Li
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Tongtong Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Haoran Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhiyong Hou
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Yingze Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China,Corresponding author.
| | - Wei Chen
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Corresponding author.
| |
Collapse
|
4
|
Park B, Park S, Kim J, Kim C. Listening to drug delivery and responses via photoacoustic imaging. Adv Drug Deliv Rev 2022; 184:114235. [PMID: 35346776 DOI: 10.1016/j.addr.2022.114235] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
Administrating pharmaceutic agents efficiently to achieve the therapeutic effect is the aim of all drug delivery techniques. Recent drug delivery systems aim to deliver high doses of drugs to disease sites accurately while maximizing therapeutic effects and minimizing potential side effects. Key approaches apply image guidance techniques for the quantification of drug biodistribution and pharmacokinetic parameters during drug delivery. This review highlights recent research on image-guided drug delivery systems based on photoacoustic imaging, which has been attracting attention for its non-invasiveness, non-ionizing radiation, and real-time imaging functions. Photoacoustic imaging based on the photothermal conversion efficiency of agents can be easily combined with various phototherapeutics, making them highly suitable for drug delivery therapy platforms. Here, we summarize and compare the characteristics of various types of photoacoustic imaging systems, focus on contrast-enhanced photoacoustic imaging and controlled release of therapeutics in drug delivery systems for synergistic therapies.
Collapse
Affiliation(s)
- Byullee Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering and Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sinyoung Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering and Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jeesu Kim
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, Republic of Korea.
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering and Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
5
|
Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res 2021; 11:1323-1339. [PMID: 33761101 PMCID: PMC7989687 DOI: 10.1007/s13346-021-00963-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Ultrasound-responsive polymeric materials have received a tremendous amount of attention from scientists for several decades. Compared to other stimuli-responsive materials (such as UV-, thermal-, and pH-responsive materials), these smart materials are more applicable since they allow more efficient drug delivery and targeted treatment by fairly non-invasive means. This review describes the recent advances of such ultrasound-responsive polymer-based drug delivery systems and illustrates various applications. More specifically, the mechanism of ultrasound-induced drug delivery, typical formulations, and biomedical applications (tumor therapy, disruption of blood-brain barrier, fighting infectious diseases, transdermal drug delivery, and enhanced thrombolysis) are summarized. Finally, a perspective on the future research directions for the development of ultrasound-responsive polymeric materials to facilitate a clinical translation is given.
Collapse
Affiliation(s)
- Ping Wei
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804, China. .,Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
6
|
Mashel TV, Tarakanchikova YV, Muslimov AR, Zyuzin MV, Timin AS, Lepik KV, Fehse B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020; 258:120282. [PMID: 32798742 DOI: 10.1016/j.biomaterials.2020.120282] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
7
|
Shin U, Kim J, Lee J, Park D, Lee C, Jung HC, Park J, Lee K, Lee MW, Kim SW, Seo J. Development of 64Cu-loaded Perfluoropentane Nanodroplet: A Potential Tumor Theragnostic Nano-carrier and Dual-Modality PET-Ultrasound Imaging Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2775-2784. [PMID: 32653208 DOI: 10.1016/j.ultrasmedbio.2020.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/24/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to develop and preliminarily evaluate phospholipid-shelled nanodroplets (NDs) encapsulating perfluoropentane (PFP) and radioactive 64Cu as a hybrid positron emission tomography (PET)-ultrasound (US) probe. PFP NDs were fabricated by mixing liquid-phase PFP with a phospholipid solution. The 64Cu was encapsulated into the NDs in a size-controlled manner by exploiting the hydrophobicity of 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM) using a vial mixer and an extruder. The fabricated 64Cu-loaded PFP NDs (64Cu-PFP NDs) were evaluated using in vitro/in vivo PET-computed tomography (PET-CT), US imaging and transmission electron microscopy. In the in vitro PET images, the 64Cu-PFP NDs were observed as a hot spot in the lower section of the test tube. In the acquired US images, the mean region of interest brightness values of 64Cu-PFP NDs were revealed by their strong echo image. In a tumor-bearing mouse animal model, tumor uptake of the 64Cu-PFP NDs was low, that is, approximately 65%, compared with that of only free 64Cu, as determined by PET-delayed imaging analysis. The dual-function concept of the NDs is expected to contribute to the prognosis and effectiveness of therapy by fusing the science and technology of nuclear medicine and US.
Collapse
Affiliation(s)
- Unchol Shin
- Department of Biomedical Engineering, College of Health Sciences, Yonsei University, Seoul, Republic of Korea; College of Health Sciences, Institute of Health Science, Korea University, Seoul, Republic of Korea
| | - Jungyoung Kim
- Department of Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jiwoong Lee
- College of Health Sciences, Institute of Health Science, Korea University, Seoul, Republic of Korea
| | - Donghee Park
- Bioinfra Inc., Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Changmoon Lee
- Department of Biomedical Engineering, College of Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Hyon Chel Jung
- College of Health Sciences, Institute of Health Science, Korea University, Seoul, Republic of Korea
| | - Jiae Park
- Department of Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Kyochul Lee
- Department of Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Min Woo Lee
- College of Health Sciences, Institute of Health Science, Korea University, Seoul, Republic of Korea
| | - Suhng Wook Kim
- College of Health Sciences, Institute of Health Science, Korea University, Seoul, Republic of Korea
| | - Jongbum Seo
- Department of Biomedical Engineering, College of Health Sciences, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Zhong W, Zhang X, Zhao M, Wu J, Lin D. Advancements in nanotechnology for the diagnosis and treatment of multiple myeloma. Biomater Sci 2020; 8:4692-4711. [PMID: 32779645 DOI: 10.1039/d0bm00772b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple myeloma (MM), known as a tumor of plasma cells, is not only refractory but also has a high relapse rate, and is the second-most common hematologic tumor after lymphoma. It is often accompanied by multiple osteolytic damage, hypercalcemia, anemia, and renal insufficiency. In terms of diagnosis, conventional detection methods have many limitations, such as it is invasive and time-consuming and has low accuracy. Measures to change these limitations are urgently needed. At the therapeutic level, although the survival of MM continues to prolong with the advent of new drugs, MM remains incurable and has a high recurrence rate. With the development of nanotechnology, nanomedicine has become a powerful way to improve the current diagnosis and treatment of MM. In this review, the research progress and breakthroughs of nanomedicine in MM will be presented. Meanwhile, both superiorities and challenges of nanomedicine were discussed. As a new idea for the diagnosis and treatments of MM, nanomedicine will play a very important role in the research field of MM.
Collapse
Affiliation(s)
- Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China.
| | | | | | | | | |
Collapse
|
9
|
Bellary A, Villarreal A, Eslami R, Undseth QJ, Lec B, Defnet AM, Bagrodia N, Kandel JJ, Borden MA, Shaikh S, Chopra R, Laetsch TW, Delaney LJ, Shaw CM, Eisenbrey JR, Hernandez SL, Sirsi SR. Perfusion-guided sonopermeation of neuroblastoma: a novel strategy for monitoring and predicting liposomal doxorubicin uptake in vivo. Theranostics 2020; 10:8143-8161. [PMID: 32724463 PMCID: PMC7381728 DOI: 10.7150/thno.45903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in infants and children, and imposes significant morbidity and mortality in this population. The aggressive chemoradiotherapy required to treat high-risk NB results in survival of less than 50%, yet is associated with significant long-term adverse effects in survivors. Boosting efficacy and reducing morbidity are therefore key goals of treatment for affected children. We hypothesize that these may be achieved by developing strategies that both focus and limit toxic therapies to the region of the tumor. One such strategy is the use of targeted image-guided drug delivery (IGDD), which is growing in popularity in personalized therapy to simultaneously improve on-target drug deposition and assess drug pharmacodynamics in individual patients. IGDD strategies can utilize a variety of imaging modalities and methods of actively targeting pharmaceutical drugs, however in vivo imaging in combination with focused ultrasound is one of the most promising approaches already being deployed for clinical applications. Over the last two decades, IGDD using focused ultrasound with "microbubble" ultrasound contrast agents (UCAs) has been increasingly explored as a method of targeting a wide variety of diseases, including cancer. This technique, known as sonopermeation, mechanically augments vascular permeability, enabling increased penetration of drugs into target tissue. However, to date, methods of monitoring the vascular bioeffects of sonopermeation in vivo are lacking. UCAs are excellent vascular probes in contrast-enhanced ultrasound (CEUS) imaging, and are thus uniquely suited for monitoring the effects of sonopermeation in tumors. Methods: To monitor the therapeutic efficacy of sonopermeation in vivo, we developed a novel system using 2D and 3D quantitative contrast-enhanced ultrasound imaging (qCEUS). 3D tumor volume and contrast enhancement was used to evaluate changes in blood volume during sonopermeation. 2D qCEUS-derived time-intensity curves (TICs) were used to assess reperfusion rates following sonopermeation therapy. Intratumoral doxorubicin (and liposome) uptake in NB was evalauted ex vivo along with associated vascular changes. Results: In this study, we demonstrate that combining focused ultrasound therapy with UCAs can significantly enhance chemotherapeutic payload to NB in an orthotopic xenograft model, by improving delivery and tumoral uptake of long-circulating liposomal doxorubicin (L-DOX) nanoparticles. qCEUS imaging suggests that changes in flow rates are highly sensitive to sonopermeation and could be used to monitor the efficacy of treatment in vivo. Additionally, initial tumor perfusion may be a good predictor of drug uptake during sonopermeation. Following sonopermeation treatment, vascular biomarkers show increased permeability due to reduced pericyte coverage and rapid onset of doxorubicin-induced apoptosis of NB cells but without damage to blood vessels. Conclusion: Our results suggest that significant L-DOX uptake can occur by increasing tumor vascular permeability with microbubble sonopermeation without otherwise damaging the vasculature, as confirmed by in vivo qCEUS imaging and ex vivo analysis. The use of qCEUS imaging to monitor sonopermeation efficiency and predict drug uptake could potentially provide real-time feedback to clinicians for determining treatment efficacy in tumors, leading to better and more efficient personalized therapies. Finally, we demonstrate how the IGDD strategy outlined in this study could be implemented in human patients using a single case study.
Collapse
Affiliation(s)
- Aditi Bellary
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Arelly Villarreal
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Rojin Eslami
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Quincy J. Undseth
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Bianca Lec
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Ann M. Defnet
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Naina Bagrodia
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Jessica J. Kandel
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Mark A. Borden
- Biomedical Engineering, Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Sumbul Shaikh
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theodore W. Laetsch
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, USA
| | - Lauren J. Delaney
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Colette M. Shaw
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonia L. Hernandez
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Shashank R. Sirsi
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Nittayacharn P, Abenojar E, De Leon A, Wegierak D, Exner AA. Increasing Doxorubicin Loading in Lipid-Shelled Perfluoropropane Nanobubbles via a Simple Deprotonation Strategy. Front Pharmacol 2020; 11:644. [PMID: 32477125 PMCID: PMC7235281 DOI: 10.3389/fphar.2020.00644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/22/2020] [Indexed: 01/29/2023] Open
Abstract
Drug delivery to solid tumors using echogenic nanobubbles (NBs) and ultrasound (US) has recently gained significant interest. The approach combines attributes of nanomedicine and the enhanced permeation and retention (EPR) effect with the documented benefits of ultrasound to improve tumor drug distribution and treatment outcomes. However, optimized drug loading strategies, the drug-carrying capacity of NBs and their drug delivery efficiency have not been explored in depth and remain unclear. Here, we report for the first time on the development of a novel deprotonated hydrophobic doxorubicin-loaded C3F8 nanobubble (hDox-NB) for more effective US-mediated drug delivery. In this study, the size distribution and yield of hDox-NBs were measured via resonant mass measurement, while their drug-loading capacity was determined using a centrifugal filter technique. In vitro acoustic properties including contrast-imaging enhancement, initial echogenic signal, and decay were assessed and compared to doxorubicin hydrochloride loaded-NBs (Dox.HCl-NBs). In addition, in vitro therapeutic efficacy of hDox-NBs was evaluated by cytotoxicity assay in human ovarian cancer cells (OVCAR-3). The results showed that the hDox-NBs were small (300.7 ± 4.6 nm), and the drug loading content was significantly enhanced (2 fold higher) compared to Dox.HCl-NBs. Unexpectedly, the in vitro acoustic performance was also improved by inclusion of hDox into NBs. hDox-NB showed higher initial US signal and a reduced signal decay rate compared to Dox.HCl-NBs. Furthermore, hDox-NBs combined with higher intensity US exhibited an excellent therapeutic efficacy in human ovarian cancer cells as shown in a reduction in cell viability. These results suggest that hDox-NBs could be considered as a promising theranostic agent to achieve a more effective noninvasive US-mediated drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Al De Leon
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Dana Wegierak
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Agata A. Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
11
|
Camus M, Vienne A, Mestas JL, Pratico C, Nicco C, Chereau C, Marie JM, Moussatov A, Renault G, Batteux F, Lafon C, Prat F. Cavitation-induced release of liposomal chemotherapy in orthotopic murine pancreatic cancer models: A feasibility study. Clin Res Hepatol Gastroenterol 2019; 43:669-681. [PMID: 31031131 DOI: 10.1016/j.clinre.2019.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/10/2019] [Accepted: 02/27/2019] [Indexed: 02/04/2023]
Abstract
UNLABELLED Targeted and triggered release of liposomal drug using ultrasound (US) induced cavitation represents a promising treatment modality to increase the therapeutic-toxicity ratio of encapsulated chemotherapy. OBJECTIVES To study the feasibility and efficacy of a combination of focused US and liposomal doxorubicin (US-L-DOX) release in orthotopic murine models of pancreatic cancer. MATERIAL AND METHODS A confocal US setup was developed to generate US inertial cavitation delivery in a controlled and reproducible manner and designed for two distinct murine orthotopic pancreatic cancer models. Controlled cavitation at 1 MHz was applied within the tumors after L-DOX injection according to a preliminary pharmacokinetic study. RESULTS In vitro studies confirmed that L-DOX was cytostatic. In vivo pharmacokinetic study showed L-DOX peak tumor accumulation at 48h. Feasibility of L-DOX injection and US delivery was demonstrated in both murine models. In a nude mouse model, at W9 after implantation (W5 after treatment), US-L-DOX group (median [IQR] 51.43 mm3 [35.1-871.95]) exhibited significantly lower tumor volumes than the sham group (216.28 [96.12-1202.92]), the US group (359.44 [131.48-1649.25]), and the L-DOX group (255.94 [84.09-943.72]), and a trend, although not statistically significant, to a lower volume than Gemcitabine group (90.48 [42.14-367.78]). CONCLUSION This study demonstrates that inertial cavitation can be generated to increase the therapeutic effect of drug-carrying liposomes accumulated in the tumor. This approach is potentially an important step towards a therapeutic application of cavitation-induced drug delivery in pancreatic cancer.
Collapse
Affiliation(s)
- Marine Camus
- Inserm U1066, institut Cochin, 75014 Paris, France; Sorbonne université, AP-HP, hôpital Saint Antoine, 75012 Paris, France.
| | | | - Jean-Louis Mestas
- LabTAU, INSERM, Centre Léon Bérard, Université-Lyon 1, Lyon, 69003, Lyon, France
| | - Carlos Pratico
- Inserm U1066, institut Cochin, 75014 Paris, France; Université Paris Descartes, hôpital Cochin, AP-HP, 75014, Paris, France
| | - Carole Nicco
- Inserm U1066, institut Cochin, 75014 Paris, France; Université Paris Descartes, hôpital Cochin, AP-HP, 75014, Paris, France
| | - Christiane Chereau
- Inserm U1066, institut Cochin, 75014 Paris, France; Université Paris Descartes, hôpital Cochin, AP-HP, 75014, Paris, France
| | - Jean-Martial Marie
- LabTAU, INSERM, Centre Léon Bérard, Université-Lyon 1, Lyon, 69003, Lyon, France
| | - Alexei Moussatov
- LabTAU, INSERM, Centre Léon Bérard, Université-Lyon 1, Lyon, 69003, Lyon, France
| | - Gilles Renault
- Inserm U1066, institut Cochin, 75014 Paris, France; Université Paris Descartes, hôpital Cochin, AP-HP, 75014, Paris, France
| | - Frederic Batteux
- Inserm U1066, institut Cochin, 75014 Paris, France; Université Paris Descartes, hôpital Cochin, AP-HP, 75014, Paris, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université-Lyon 1, Lyon, 69003, Lyon, France
| | - Frederic Prat
- Inserm U1066, institut Cochin, 75014 Paris, France; Université Paris Descartes, hôpital Cochin, AP-HP, 75014, Paris, France
| |
Collapse
|
12
|
Jegal U, Lee JH, Lee J, Jeong H, Kim MJ, Kim KH. Ultrasound-assisted gatifloxacin delivery in mouse cornea, in vivo. Sci Rep 2019; 9:15532. [PMID: 31664145 PMCID: PMC6820539 DOI: 10.1038/s41598-019-52069-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
Gatifloxacin is a 4th generation fluoroquinolone antibiotic used in the clinic to treat ocular infection. One limitation of gatifloxacin is its relatively poor corneal penetration, and the increase of its trans-corneal delivery would be beneficial to reduce the amount or frequency of daily dose. In this study, ultrasound treatment was applied to enhance the trans-corneal delivery of gatifloxacin without damage. Experiments were conducted on mouse eyes in ex vivo and in vivo conditions. Ultrasound waves with 1 MHz in frequency, 1.3 W/cm2 in intensity were applied onto the mouse cornea for 5 minutes, and then gatifloxacin ophthalmic solution was instilled and left there for 10 minutes. 3D gatifloxacin distribution in the cornea was measured by two-photon microscopy (TPM) imaging based on its intrinsic fluorescence. Longitudinal TPM imaging of ultrasound treated mouse corneas showed the increase of initial gatifloxacin intensities on the corneal surface compared to untreated mouse corneas by 67%, and then the increased gatifloxacin delivery into the cornea from the surface at later time. The delivered gatifloxacin in the corneal epithelium stayed longer in the ultrasound treated corneas than in the untreated corneas. The enhanced trans-corneal delivery and extended stay of gatifloxacin in the mouse cornea by ultrasound treatment could be beneficial for therapeutic effects. This study demonstrated the detail process of enhanced trans-corneal gatifloxacin delivery by ultrasound treatment.
Collapse
Affiliation(s)
- Uk Jegal
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Jun Ho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Jungbin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea
| | - Hyerin Jeong
- Department of Ophthalmology, Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Myoung Joon Kim
- Department of Ophthalmology, Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea. .,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeoungbuk, 37673, Republic of Korea.
| |
Collapse
|
13
|
Nittayacharn P, Yuan HX, Hernandez C, Bielecki P, Zhou H, Exner AA. Enhancing Tumor Drug Distribution With Ultrasound-Triggered Nanobubbles. J Pharm Sci 2019; 108:3091-3098. [PMID: 31095958 PMCID: PMC6708467 DOI: 10.1016/j.xphs.2019.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
Abstract
Issues with limited intratumoral drug penetration and heterogeneous drug distribution continue to impede the therapeutic efficacy of nanomedicine-based delivery systems. Ultrasound (US)-enhanced drug delivery has emerged as one effective means of overcoming these challenges. Acoustic cavitation in the presence of nanoparticles has shown to increase the cellular uptake and distribution of chemotherapeutic agents in vivo. In this study, we investigated the potential of a drug-loaded echogenic nanoscale bubbles in combination with low frequency (3 MHz), high energy (2 W/cm2) US for antitumor therapy. The doxorubicin-loaded nanobubbles (Dox-NBs) stabilized with an interpenetrating polymer mesh were 171.5 ± 20.9 nm in diameter. When used in combination with therapeutic US, Dox-NBs combined with free drug showed significantly higher (*p < 0.05) intracellular uptake and therapeutic efficacy compared with free drug. When injected intravenously in vivo, Dox-NBs + therapeutic US showed significantly higher (*p < 0.05) accumulation and better distribution of Dox in tumors when compared with free drug. This strategy provides an effective and simple method to increase the local dose and distribution of otherwise systemically toxic chemotherapeutic agents for cancer therapies.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Hai-Xia Yuan
- Department of Ultrasound, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China; Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Christopher Hernandez
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Peter Bielecki
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Haoyan Zhou
- GSK 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426-0989
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106; Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106.
| |
Collapse
|
14
|
Jalili K, Abbasi F, Behboodpour L. In situ probing of switchable nanomechanical properties of responsive high-density polymer brushes on poly(dimethylsiloxane): An AFM nanoindentation approach. J Mech Behav Biomed Mater 2019; 93:118-129. [PMID: 30785077 DOI: 10.1016/j.jmbbm.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 12/01/2022]
Abstract
Nanomechanical characteristics of end grafted polymer brushes were studied by AFM based, colloidal probe nanoindentation measurements. A high-density polymer brush of poly(2-hydroxyethyl methacrylate) (PHEMA) was precisely prepared on the surface of a flexible poly(dimethylsiloxane) (PDMS) substrate oxidized in ultraviolet/ozone (UVO). Exposure times less than 10min resulted in laterally homogeneous oxidized surfaces, characterized by a SiOx thickness ∼35nm and an increased modulus up to 9MPa, as shown by AFM nanoindentation measurements. We have demonstrated that a high surface density of up to ∼0.63chains/nm2 of the well-defined PHEMA brushes can be grown from the surface of oxidized PDMS by surface-initiated atom transfer radical polymerization (SI-ATRP) from trimethoxysilane derivatives mixed-SAM. The reversible nanomechanical changes of PHEMA layer between extended (hydrated state) and collapsed (dehydrated state) chain upon immersing in selective and non-selective solvents were investigated by in situ AFM nanoindentation analysis in liquid environments. The elastic modulus derived from force-indentation curves obtained for swollen PHEMA grafted chains in water was estimated to be equal 2.7±0.2MPa, which is almost two orders of magnitude smaller than the modulus of dry PHEMA brush. Additionally, under cyclohexane immersion, the modulus of the PHEMA layer decreased by one order of magnitude, indicating a more compact chain packing at the PDMS surface.
Collapse
Affiliation(s)
- K Jalili
- Institute of Polymeric Materials, Sahand University of Technology, P.O.Box 51335-1996, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran; Max Planck Institute for Polymer Research, 10 Ackermannweg, 55128 Mainz, Germany.
| | - F Abbasi
- Institute of Polymeric Materials, Sahand University of Technology, P.O.Box 51335-1996, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - L Behboodpour
- Institute of Polymeric Materials, Sahand University of Technology, P.O.Box 51335-1996, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
15
|
Li X, Xie C, Xia H, Wang Z. pH and Ultrasound Dual-Responsive Polydopamine-Coated Mesoporous Silica Nanoparticles for Controlled Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9974-9981. [PMID: 30056720 DOI: 10.1021/acs.langmuir.8b01091] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A pH- and ultrasound dual-responsive drug release pattern was successfully achieved using mesoporous silica nanoparticles (MSNs) coated with polydopamine (PDA). In this paper, the PDA shell on the MSN surface was obtained through oxidative self-polymerization under the alkaline condition. The morphology and structure of this composite nanoparticle were fully characterized by a series of analyses, such as infrared (IR), transmission electron microscopy, and thermogravimetric analysis. Doxorubicin hydrochloride (DOX)-loaded composite nanoparticles were used to study the performances of responsive drug storage/release behavior, and this kind of hybrid material displayed an apparent pH response in DOX releasing under the acidic condition. Beyond that, upon high-intensity focused ultrasound exposure, loaded DOX in composite nanoparticles was successfully triggered to release from pores because of the ultrasonic cavitation effect, and the DOX-releasing pattern could be optimized into a unique pulsatile fashion by switching the on/off status. From the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, it was observed that our blank nanoparticles showed no toxicity to HeLa cells, but DOX-loaded nanoparticles could inhibit the growth of tumor cells. Furthermore, these composite nanoparticles displayed an effective near-IR photothermal conversion capability with a relatively high conversion efficiency (∼37%). These as-desired drug delivery carriers might have a great potential for future cancer treatment that combine the chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Xiaochong Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Chuan Xie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
16
|
Abstract
Although viral vectors comprise the majority of gene delivery vectors, their various safety, production, and other practical concerns have left a research gap to be addressed. The non-viral vector space encompasses a growing variety of physical and chemical methods capable of gene delivery into the nuclei of target cells. Major physical methods described in this chapter are microinjection, electroporation, and ballistic injection, magnetofection, sonoporation, optical transfection, and localized hyperthermia. Major chemical methods described in this chapter are lipofection, polyfection, gold complexation, and carbon-based methods. Combination approaches to improve transfection efficiency or reduce immunological response have shown great promise in expanding the scope of non-viral gene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | | - Shirley Wong
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | |
Collapse
|
17
|
de la Puente P, Azab AK. Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma. Eur J Haematol 2017; 98:529-541. [PMID: 28208215 DOI: 10.1111/ejh.12870] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 12/25/2022]
Abstract
Multiple myeloma (MM) is a hematological malignancy that remains incurable, with relapse rates >90%. The main limiting factor for the effective use of chemotherapies in MM is the serious side effects caused by these drugs. The emphasis in cancer treatment has shifted from cytotoxic, non-specific chemotherapies to molecularly targeted and rationally designed therapies showing greater efficacy and fewer side effects. Traditional chemotherapy has shown several disadvantages such as lack of targeting capabilities, systemic toxicity, and side effects; low therapeutic index, as well as most anticancer drugs, has poor water solubility. Nanoparticle delivery systems (NPs) are capable of targeting large doses of chemotherapies into the target area while sparing healthy tissues, overcoming the limitations of traditional chemotherapy. Here, we review the current state of the art in nanoparticle-based strategies designed to treat MM. Many nanoparticle delivery systems have been studied for myeloma using non-targeted NPs (liposomes, polymeric NPs, and inorganic NPs), triggered NPs, as well as targeted NPs (VLA-4, ABC drug transporters, bone microenvironment targeting). The results in preclinical and clinical studies are promising; however, there remains much to be learned in the emerging field of nanomedicine in myeloma.
Collapse
Affiliation(s)
- Pilar de la Puente
- Cancer Biology Division, Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Cancer Biology Division, Department of Radiation Oncology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Lock LL, Li Y, Mao X, Chen H, Staedtke V, Bai R, Ma W, Lin R, Li Y, Liu G, Cui H. One-Component Supramolecular Filament Hydrogels as Theranostic Label-Free Magnetic Resonance Imaging Agents. ACS NANO 2017; 11:797-805. [PMID: 28075559 PMCID: PMC5773287 DOI: 10.1021/acsnano.6b07196] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gadolinium (Gd)-based compounds and materials are the most commonly used magnetic resonance imaging (MRI) contrast agents in the clinic; however, safety concerns associated with their toxicities in the free ionic form have promoted the development of new generations of metal-free contrast agents. Here we report a supramolecular strategy to convert an FDA-approved anticancer drug, Pemetrexed (Pem), to a molecular hydrogelator with inherent chemical exchange saturation transfer (CEST) MRI signals. The rationally designed drug-peptide conjugate can spontaneously associate into filamentous assemblies under physiological conditions and consequently form theranostic supramolecular hydrogels for injectable delivery. We demonstrated that the local delivery and distribution of Pem-peptide nanofiber hydrogels can be directly assessed using CEST MRI in a mouse glioma model. Our work lays out the foundation for the development of drug-constructed theranostic supramolecular materials with an inherent CEST MRI signal that enables noninvasive monitoring of their in vivo distribution and drug release.
Collapse
Affiliation(s)
- Lye Lin Lock
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Xinpei Mao
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hanwei Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Verena Staedtke
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Renyuan Bai
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yi Li
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
| | - Honggang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
19
|
Blum NT, Yildirim A, Chattaraj R, Goodwin AP. Nanoparticles Formed by Acoustic Destruction of Microbubbles and Their Utilization for Imaging and Effects on Therapy by High Intensity Focused Ultrasound. Theranostics 2017; 7:694-702. [PMID: 28255360 PMCID: PMC5327643 DOI: 10.7150/thno.17522] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/26/2016] [Indexed: 01/20/2023] Open
Abstract
This work reports that when PEG-lipid-shelled microbubbles with fluorocarbon interior (C4F10, C5F12, or C6F14) are subjected to ultrasound pulses, they produce metastable, fluid-filled nanoparticles that can be re-imaged upon administration of HIFU. The nanoparticles produced by destruction of the microbubbles (MBNPs) are of 150 nm average diameter and can be re-imaged for up to an hour after creation for C 4F10, and for at least one day for C5F12. The active species were found to be fluid (gas or liquid) filled nanoparticles rather than lipid debris. The acoustic droplet vaporization threshold of the nanoparticles was found to vary with the vapor pressure of the encapsulated fluorocarbon, and integrated image brightness was found to increase dramatically when the temperature was raised above the normal boiling point of the fluorocarbon. Finally, the vaporization threshold decreases in serum as compared to buffer, and administration of HIFU to the nanoparticles caused breast cancer cells to completely detach from their culture substrate. This work demonstrates a new functionality of microbubbles that could serve as a platform technology for ultrasound-based theranostics.
Collapse
|
20
|
Keravnou CP, De Cock I, Lentacker I, Izamis ML, Averkiou MA. Microvascular Injury and Perfusion Changes Induced by Ultrasound and Microbubbles in a Machine-Perfused Pig Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2676-2686. [PMID: 27554068 DOI: 10.1016/j.ultrasmedbio.2016.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Localized drug delivery and uptake can benefit from the combined action of ultrasound and microbubbles at a specific site. Some of the possible mechanisms suggested are vessel poration and/or cell poration, but the exact acoustic parameters that trigger those phenomena remain unknown. Ex vivo machine perfusion of human-sized organs is a technique that provides an ideal environment for pre-clinical investigations with high physiologic relevance not possible with in vitro experiments. In this work, ex vivo machine-perfused pig livers were combined with an image-guided therapy system to investigate microvascular flow changes caused by the interaction of ultrasound-driven microbubbles with the vasculature. The effects of acoustic pressure (1.7-4 MPa peak negative pressures) and number of cycles (1000 or 20 cycles) were examined. Perfusion changes caused by the action of ultrasound on microbubbles in the microcirculation were qualitatively and quantitatively assessed with contrast-enhanced ultrasound and used as a metric of the extent of vessel perforation, thus, extravasation. Areas that were exposed to peak negative pressures above 1.7 MPa underwent a detectable and irreversible perfusion change. Complete devascularization of the area exposed to ultrasound was observed at much larger acoustic pressures (∼4 MPa). Shorter acoustic pulses (20 cycles) produced markedly fewer perfusion changes than longer pulses (1000 cycles) under the same acoustic amplitude exposure.
Collapse
Affiliation(s)
- Christina P Keravnou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus; Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Ine De Cock
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Ine Lentacker
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Maria-Louisa Izamis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
21
|
Hoogenboom TC, Thursz M, Aboagye EO, Sharma R. Functional imaging of hepatocellular carcinoma. Hepat Oncol 2016; 3:137-153. [PMID: 30191034 DOI: 10.2217/hep-2015-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Imaging plays a key role in the clinical management of hepatocellular carcinoma (HCC), but conventional imaging techniques have limited sensitivity in visualizing small tumors and assessing response to locoregional treatments and sorafenib. Functional imaging techniques allow visualization of organ and tumor physiology. Assessment of functional characteristics of tissue, such as metabolism, proliferation and stiffness, may overcome some of the limitations of structural imaging. In particular, novel molecular imaging agents offer a potential tool for early diagnosis of HCC, and radiomics may aid in response assessment and generate prognostic models. Further prospective research is warranted to evaluate emerging techniques and their cost-effectiveness in the context of HCC in order to improve detection and response assessment.
Collapse
Affiliation(s)
- Tim Ch Hoogenboom
- Department of Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK.,Department of Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Mark Thursz
- Department of Hepatology, Imperial College NHS Trust, 10th Floor, Norfolk Place, St Mary's Hospital, London, UK.,Department of Hepatology, Imperial College NHS Trust, 10th Floor, Norfolk Place, St Mary's Hospital, London, UK
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre at Imperial College, Faculty of Medicine, Imperial College London, GN1, Ground Floor, Commonwealth building, Hammersmith Campus, London, UK.,Comprehensive Cancer Imaging Centre at Imperial College, Faculty of Medicine, Imperial College London, GN1, Ground Floor, Commonwealth building, Hammersmith Campus, London, UK
| | - Rohini Sharma
- Department of Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK.,Department of Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| |
Collapse
|
22
|
Sawalha H, Sahin S, Schroën K. Preparation of polylactide microcapsules at a high throughput with a packed-bed premix emulsification system. J Appl Polym Sci 2016. [DOI: 10.1002/app.43536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hassan Sawalha
- Chemical Engineering Department; An-Najah National University; P.O. Box 7 Nablus Palestine
- Environmental Technology Engineering Department; Palestine Polytechnic University; Hebron Palestine
- Food Process Engineering Group; Wageningen University; Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Sami Sahin
- Food Process Engineering Group; Wageningen University; Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Karin Schroën
- Food Process Engineering Group; Wageningen University; Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| |
Collapse
|
23
|
Hu J, Zong Y, Li J, Zhou X, Zhang J, Zhu T, Jiao M, Su H, Bo B. In Vitro and In Vivo Evaluation of Targeted Sunitinib-Loaded Polymer Microbubbles Against Proliferation of Renal Cell Carcinoma. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:589-597. [PMID: 26921089 DOI: 10.7863/ultra.14.10038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVES The poor safety profile of sunitinib capsules has encouraged the identification of targeted drug delivery systems against renal cell carcinoma. This study aimed to explore the effect of sunitinib-loaded microbubbles along with ultrasound (US) treatment on proliferation and apoptosis of human GRC-1 granulocyte renal carcinoma cells in vitro and in vivo (xenograft tumor growth in nude mice). METHODS Liposomes containing sunitinib were prepared by using the transmembrane ammonium sulfate gradient method and then absorbed into polymer microbubbles to generate sunitinib-loaded microbubbles. Entrapment of sunitinib was verified by 25-25-[N-[(7-nitro-2-1,3-benzoxadiazol-4-yl)methyl]amino]-27-norcholesterol staining. GRC-1 cells were treated with microbubbles alone, liposomes alone, sunitinib alone, sunitinib-loaded microbubbles without and with US, and no treatment (control). Cell survival and apoptosis were assessed at 12, 24, and 48 hours after treatment. Xenograft tumors were induced by implantation of GRC-1 cells in nude mice. The animals with tumors were then randomly assigned to sunitinib alone, sunitinib-loaded microbubbles - US, sunitinib-loaded microbubbles + US, and no treatment (control; n = 10 per group). The tumor volumes were analyzed on the 7th, 15th, and 21st days. RESULTS The sunitinib entrapment efficiency in the liposomes was approximately 78%. The effective sunitinib concentration in each group was 0.1 μg/mL. The sunitinib-loaded microbubble + US group showed a lower in vitro cell survival rate (P < .001) compared with the other groups. Greater in vivo inhibition of xenograft tumor growth was also observed in the sunitinib-loaded microbubble + US group compared with the other groups. CONCLUSIONS Combined sunitinib-loaded microbubbles and US treatment significantly inhibits growth of renal carcinoma cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Jie Hu
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Yujin Zong
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Jun Li
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Xiaodong Zhou
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Jun Zhang
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Ting Zhu
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Mingke Jiao
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Haili Su
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| | - Bin Bo
- Departments of Ultrasound (J.H., J.L., X.Z., J.Z., T.Z., H.S.) and Oral and Maxillofacial Surgery, School of Stomatology (B.B.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Echocardiography, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, China (J.H.); Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China (Y.Z.); and Department of Biomedical Engineering, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China (M.J.)
| |
Collapse
|
24
|
Zhou C, Li R, Luo W, Chen Y, Zou H, Liang M, Li Y. The preparation and properties study of polydimethylsiloxane-based coatings modified by epoxy resin. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-015-0903-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Effect of pH, ultrasound frequency and power density on the release of calcein from stealth liposomes. EUROPEAN JOURNAL OF NANOMEDICINE 2016. [DOI: 10.1515/ejnm-2015-0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe use of liposomes as carriers for chemotherapeutic agents in combination with ultrasound as a stimulus to control the time and space of the drug release is a promising approach for cancer treatment, as it can reduce the side effects caused by conventional chemotherapy. This in vitro study investigated the triggered release of calcein from stealth (PEGylated) and non-stealth (non-PEGylated) liposomes, using ultrasound at low (20 kHz) and high (1 and 3 MHz) frequencies, and at different power densities. Release was monitored by the increase in fluorescence due to relieving of calcein’s self-quenching upon dilution when the model drug leaks out of the liposomes. The results showed that, independent of the power density, the release was highest at 20 kHz. For the same frequency, release usually increased with increasing power densities. Additionally, for release at 20 kHz, a comparison was done for PEGylated and non-PEGylated liposomes, at two pH values: 5.2 and 7.4. The results were then compared to previously published studies. In all cases, the mechanism of release seems to involve cavitation events that either pierce a hole in or shear open the liposomes, as all the determined power densities are above the transient cavitation threshold.
Collapse
|
26
|
Kapadia CH, Perry JL, Tian S, Luft JC, DeSimone JM. Nanoparticulate immunotherapy for cancer. J Control Release 2015; 219:167-180. [DOI: 10.1016/j.jconrel.2015.09.062] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
|
27
|
Vladisavljević GT. Structured microparticles with tailored properties produced by membrane emulsification. Adv Colloid Interface Sci 2015; 225:53-87. [PMID: 26329593 DOI: 10.1016/j.cis.2015.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 01/30/2023]
Abstract
This paper provides an overview of membrane emulsification routes for fabrication of structured microparticles with tailored properties for specific applications. Direct (bottom-up) and premix (top-down) membrane emulsification processes are discussed including operational, formulation and membrane factors that control the droplet size and droplet generation regimes. A special emphasis was put on different methods of controlled shear generation on membrane surface, such as cross flow on the membrane surface, swirl flow, forward and backward flow pulsations in the continuous phase and membrane oscillations and rotations. Droplets produced by membrane emulsification can be used for synthesis of particles with versatile morphology (solid and hollow, matrix and core/shell, spherical and non-spherical, porous and coherent, composite and homogeneous), which can be surface functionalised and coated or loaded with macromolecules, nanoparticles, quantum dots, drugs, phase change materials and high molecular weight gases to achieve controlled/targeted drug release and impart special optical, chemical, electrical, acoustic, thermal and magnetic properties. The template emulsions including metal-in-oil, solid-in-oil-in-water, oil-in-oil, multilayer, and Pickering emulsions can be produced with high encapsulation efficiency of encapsulated materials and narrow size distribution and transformed into structured particles using a variety of solidification processes, such as polymerisation (suspension, mini-emulsion, interfacial and in-situ), ionic gelation, chemical crosslinking, melt solidification, internal phase separation, layer-by-layer electrostatic deposition, particle self-assembly, complex coacervation, spray drying, sol-gel processing, and molecular imprinting. Particles fabricated from droplets produced by membrane emulsification include nanoclusters, colloidosomes, carbon aerogel particles, nanoshells, polymeric (molecularly imprinted, hypercrosslinked, Janus and core/shell) particles, solder metal powders and inorganic particles. Membrane emulsification devices operate under constant temperature due to low shear rates on the membrane surface, which range from (1-10)×10(3) s(-1) in a direct process to (1-10)×10(4) s(-1) in a premix process.
Collapse
Affiliation(s)
- Goran T Vladisavljević
- Chemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom; Laboratory of Chemical Dynamics, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| |
Collapse
|
28
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|
29
|
Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive Imaging of Nanomedicines and Nanotheranostics: Principles, Progress, and Prospects. Chem Rev 2015; 115:10907-37. [PMID: 26166537 DOI: 10.1021/cr500314d] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sijumon Kunjachan
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Josef Ehling
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Gert Storm
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Fabian Kiessling
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
30
|
Gourevich D, Volovick A, Dogadkin O, Wang L, Mulvana H, Medan Y, Melzer A, Cochran S. In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1853-64. [PMID: 25887690 DOI: 10.1016/j.ultrasmedbio.2015.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/01/2015] [Accepted: 03/11/2015] [Indexed: 05/23/2023]
Abstract
Ultrasound-mediated targeted drug delivery is a therapeutic modality under development with the potential to treat cancer. Its ability to produce local hyperthermia and cell poration through cavitation non-invasively makes it a candidate to trigger drug delivery. Hyperthermia offers greater potential for control, particularly with magnetic resonance imaging temperature measurement. However, cavitation may offer reduced treatment times, with real-time measurement of ultrasonic spectra indicating drug dose and treatment success. Here, a clinical magnetic resonance imaging-guided focused ultrasound surgery system was used to study ultrasound-mediated targeted drug delivery in vitro. Drug uptake into breast cancer cells in the vicinity of ultrasound contrast agent was correlated with occurrence and quantity of stable and inertial cavitation, classified according to subharmonic spectra. During stable cavitation, intracellular drug uptake increased by a factor up to 3.2 compared with the control. Reported here are the value of cavitation monitoring with a clinical system and its subsequent employment for dose optimization.
Collapse
Affiliation(s)
- Dana Gourevich
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom; Capsutech Ltd., Nazareth, Israel
| | - Alexander Volovick
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom; InSightec Ltd., Haifa, Israel
| | - Osnat Dogadkin
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom; InSightec Ltd., Haifa, Israel
| | - Lijun Wang
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Helen Mulvana
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Yoav Medan
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Andreas Melzer
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Sandy Cochran
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
31
|
Adhikary RR, More P, Banerjee R. Smart nanoparticles as targeting platforms for HIV infections. NANOSCALE 2015; 7:7520-7534. [PMID: 25874901 DOI: 10.1039/c5nr01285f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.
Collapse
Affiliation(s)
- Rishi Rajat Adhikary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | | | | |
Collapse
|
32
|
Chen HP, Chen MH, Tung FI, Liu TY. A Novel Micelle-Forming Material Used for Preparing a Theranostic Vehicle Exhibiting Enhanced in Vivo Therapeutic Efficacy. J Med Chem 2015; 58:3704-19. [DOI: 10.1021/jm501996y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hsiao-Ping Chen
- Institute
of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Ming-Hong Chen
- Institute
of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, R.O.C
- Division
of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Taipei, Taiwan, R.O.C
- Department
of Surgery, School of Medicine, Tzu Chi University, Hualien City, Taiwan, R.O.C
- Department
of Biomedical Engineering, Ming Chuang University, Taipei, Taiwan, R.O.C
| | - Fu-I Tung
- Department
of Orthopaedic Surgery, Taipei City Hospital, Taipei, Taiwan, R.O.C
| | - Tse-Ying Liu
- Institute
of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, R.O.C
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, R.O.C
| |
Collapse
|
33
|
Koppolu S, Chitnis PV, Mamou J, Allen JS, Ketterling JA. Correlation of rupture dynamics to the nonlinear backscatter response from polymer-shelled ultrasound contrast agents. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:494-501. [PMID: 25935932 PMCID: PMC4998738 DOI: 10.1109/tuffc.2014.006828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polymer-shelled ultrasound contrast agents (UCAs) may expel their encapsulated gas subject to ultrasound-induced shell buckling or rupture. Nonlinear oscillations of this gas bubble can produce a subharmonic component in the ultrasound backscatter. This study investigated the relationship between this gas-release mechanism and shell-thickness-to-radius ratios (STRRs) of polymer-shelled UCAs. Three types of polylactide-shelled UCAs with STRRs of 7.5, 40, and 100 nm/μm were studied. Each UCA population had a nominal mean diameter of 2 μm. UCAs were subjected to increasing static overpressure ranging from 2 to 330 kPa over a duration of 2 h in a custom-designed test chamber while being imaged using a 200× magnification video microscope at a frame rate of 5 frames/s. Digitized video images were binarized and processed to obtain the cross-sectional area of individual UCAs. Integration of the normalized cross-sectional area over normalized time, defined as buckling factor (Bf), provided a dimensionless parameter for quantifying and comparing the degree of pre-rupture buckling exhibited by the UCAs of different STRRs in response to overpressure. The UCAs with an STRR of 7.5 nm/μm exhibited a distinct shell-buckling phase before shell rupture (Bf < 1), whereas the UCAs with higher STRRs (40 and 100 nm/μm) did not undergo significant prerupture buckling (Bf ≈ 1). The difference in the overpressure response was correlated with the subharmonic response produced by these UCAs. When excited using 20-MHz ultrasound, individual UCAs (N = 3000) in populations that did not exhibit a buckling phase produced a subharmonic response that was an order of magnitude greater than the UCA population with a prominent pre-rupture buckling phase. These results indicate the mechanism of gas expulsion from these UCAs might be a relevant factor in determining the level of subharmonic response in response to high-frequency ultrasound.
Collapse
|
34
|
Perry JL, Kai MP, Reuter KG, Bowerman C, Christopher Luft J, DeSimone JM. Calibration-quality cancer nanotherapeutics. Cancer Treat Res 2015; 166:275-291. [PMID: 25895873 DOI: 10.1007/978-3-319-16555-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoparticle properties such as size, shape, deformability, and surface chemistry all play a role in nanomedicine drug delivery in cancer. While many studies address the behavior of particle systems in a biological setting, revealing how these properties work together presents unique challenges on the nanoscale. "Calibration-quality" control over such properties is needed to draw adequate conclusions that are independent of parameter variability. Furthermore, active targeting and drug loading strategies introduce even greater complexities via their potential to alter particle pharmacokinetics. Ultimately, the investigation and optimization of particle properties should be carried out in the appropriate preclinical tumor model. In doing so, translational efficacy improves as clinical tumor properties increase. Looking forward, the field of nanomedicine will continue to have significant clinical impacts as the capabilities of nanoparticulate drug delivery are further enhanced.
Collapse
Affiliation(s)
- Jillian L Perry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA,
| | | | | | | | | | | |
Collapse
|
35
|
Targeted Drug Delivery Systems: Strategies and Challenges. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
36
|
Keravnou CP, Mannaris C, Averkiou MA. Accurate measurement of microbubble response to ultrasound with a diagnostic ultrasound scanner. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:176-184. [PMID: 25585401 DOI: 10.1109/tuffc.2014.006664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ultrasound and microbubbles are often used to enhance drug delivery and the suggested mechanisms are extravasation and sonoporation. Drug delivery schemes with ultrasound and microbubbles at both low and high acoustic amplitudes have been suggested. A diagnostic ultrasound scanner may play a double role as both an imaging and a therapy device. It was not possible to accurately measure microbubble response with an ultrasound scanner for a large range of acoustic pressures and microbubble concentrations until now, mainly because of signal saturation issues. A method for continuously adjusting the receive gain of a scanner and limiting signal saturation was developed to accurately measure backscattered echoes from microbubbles for mechanical indexes (MIs) up to 2.1. The intensity of backscattered echoes from microbubbles increased quarticly with MI without reaching any limit. The signal intensity from microbubbles was found to be linear with concentration at both low and high MIs. However, at very high concentrations, acoustic shadowing occurs which limits the delivered acoustic pressure in deeper areas. The contrastto- tissue ratio was also measured and found to stay constant with MI. These results can be used to better guide drug delivery approaches and to also develop imaging techniques for therapy procedures.
Collapse
|
37
|
Contrast-enhanced ultrasound (CEUS) in nephrology: Has the time come for its widespread use? Clin Exp Nephrol 2014; 19:606-15. [PMID: 25351822 DOI: 10.1007/s10157-014-1040-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022]
Abstract
Grey-scale ultrasound has an important diagnostic role in nephrology. The absence of ionizing radiations and nephrotoxicity, rapidity of execution, excellent repeatability, the possibility to perform the test at the patient's bed and the low cost represent important advantages of this technique. Paired with real-time sonography and colour-power-Doppler contrast-enhanced ultrasound (CEUS) reduces the diagnostic gap with computed tomography (CT) and magnetic resonance (MR) and represents a major step in the evolution of clinical ultrasound. Although there are several situations in which contrast-enhanced CT and MR are indicated (i.e. evaluation of cystic or ischemic lesions, traumatisms and ablative therapies of the native and transplanted kidney), the use of CT contrast media presents a high risk of contrast-induced nephropathy (i.e. in elderly people, subjects with comorbidities and those with renal dysfunction), while gadolinium-based RM contrast agents are contraindicated for the risk of nephrogenic systemic fibrosis (i.e. in patients with severe renal dysfunction). In these situations, CEUS may be a viable alternative, however, as any technique associated with the infusion of pharmacological substances, the potential advantages and risks of CEUS should be critically evaluated. In this regard, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) has published the guidelines for the use of CEUS for the kidney imaging and the International Contrast Ultrasound Society (ICUS) has been recently founded. The aim of this review is to offer an updated overview of the potential applications of CEUS in nephrology, reporting some indications and possible risks associated to its use.
Collapse
|
38
|
Skachkov I, Luan Y, van der Steen AFW, de Jong N, Kooiman K. Targeted microbubble mediated sonoporation of endothelial cells in vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1661-1667. [PMID: 25265175 DOI: 10.1109/tuffc.2014.006440] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ultrasound contrast agents as drug-delivery systems are an emerging field. Recently, we reported that targeted microbubbles are able to sonoporate endothelial cells in vitro. In this study, we investigated whether targeted microbubbles can also induce sonoporation of endothelial cells in vivo, thereby making it possible to combine molecular imaging and drug delivery. Live chicken embryos were chosen as the in vivo model. αvß3-targeted microbubbles attached to the vessel wall of the chicken embryo were insonified at 1 MHz at 150 kPa (1 × 10,000 cycles) and at 200 kPa (1 × 1000 cycles) peak negative acoustic pressure. Sonoporation was studied by intravital microscopy using the model drug propidium iodide (PI). Endothelial cell PI uptake was observed in 48% of microbubble-vessel-wall complexes at 150 kPa (n = 140) and in 33% at 200 kPa (n = 140). Efficiency of PI uptake depended on the local targeted microbubble concentration and increased up to 80% for clusters of 10 to 16 targeted microbubbles. Ultrasound or targeted microbubbles alone did not induce PI uptake. This intravital microscopy study reveals that sonoporation can be visualized and induced in vivo using targeted microbubbles.
Collapse
|
39
|
Ahmed SE, Martins AM, Husseini GA. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J Drug Target 2014; 23:16-42. [PMID: 25203857 DOI: 10.3109/1061186x.2014.954119] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several drug delivery systems have been investigated to reduce the side effects of chemotherapy by encapsulating the therapeutic agent in a nanosized carrier until it reaches the tumor site. Many of these particles are designed to be responsive to the mechanical and thermal perturbations delivered by ultrasound. Once the nanoparticle reaches the desired location, ultrasound is applied to release the chemotherapy drug only in the vicinity of the targeted (cancer) site, thus avoiding any detrimental interaction with healthy cells in the body. Studies using liposomes and micelles have shown promising results in this area, as these nanoparticles with simple, yet effective structures, showed high efficiency as drug delivery vehicles both in vitro and in vivo. This article reviews the design and application of two novel nanosized chemotherapeutic carriers (i.e. micelles and liposomes) intended to be actuated by ultrasound.
Collapse
Affiliation(s)
- Salma E Ahmed
- Department of Chemical Engineering, American University of Sharjah , Sharjah , United Arab Emirates
| | | | | |
Collapse
|
40
|
Yang PS, Tung FI, Chen HP, Liu TY, Lin YY. A novel bubble-forming material for preparing hydrophobic-agent-loaded bubbles with theranostic functionality. Acta Biomater 2014; 10:3762-74. [PMID: 24830551 DOI: 10.1016/j.actbio.2014.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 01/01/2023]
Abstract
In the present study, a new bubble-forming material (carboxymethyl hexanoyl chitosan, CHC), together with superparamagnetic iron oxide (SPIO) nanoparticles, was employed to prepare image-guided bubbles for efficiently encapsulating and delivering hydrophobic agents to kill tumor cells. The results showed that CHC could be used for preparing not only micronized bubbles (CHC/SPIO MBs) to exhibit ultrasound imaging functionality but also nanosized bubbles (CHC/SPIO NBs) to exhibit magnetic resonance T2 image contrast. It was found that the amounts of SPIO nanoparticles and hexane during preparation process were the key factors to obtaining CHC/SPIO NBs. Most importantly, under in vitro cell culture conditions with the same amount of camptothecin (CPT) and therapeutic sonication, CPT-loaded CHC/SPIO NBs demonstrated more significant transcellular delivery and cytotoxicity than free CPT. Subsequently, an intratumoral injection was proposed for the in vivo administration of hydrophobic-agent-loaded CHC/SPIO NBs. After injection, the distribution of a hydrophobic dye (DiR, an agent with near-infrared (NIR) fluorescence used as a model drug) released from the CHC/SPIO NBs was tracked by an NIR imaging technique. A significant tumor-specific accumulation was observed in the mouse that received the DiR-loaded CHC/SPIO NBs; the same was not observed in the mouse that received the free dye (without incorporating with CHC/SPIO NBs). It is expected, in the future, both the dose of the therapeutic agent administered and its side effects can be significantly lowered by using novel CHC/SPIO NBs together with local delivery (intratumoral injection), targeted imaging and enhanced cellular uptake of the drug.
Collapse
Affiliation(s)
- Pei-Sin Yang
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Fu-I Tung
- Department of Orthopaedic Surgery, Taipei City Hospital, Taipei, Taiwan, ROC
| | - Hsiao-Ping Chen
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Tse-Ying Liu
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, ROC; Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, ROC.
| | - Yi-Ying Lin
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
41
|
Preparation of nanobubbles carrying androgen receptor siRNA and their inhibitory effects on androgen-independent prostate cancer when combined with ultrasonic irradiation. PLoS One 2014; 9:e96586. [PMID: 24798477 PMCID: PMC4010541 DOI: 10.1371/journal.pone.0096586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/09/2014] [Indexed: 01/20/2023] Open
Abstract
Objective The objective of this study was to investigate nanobubbles carrying androgen receptor (AR) siRNA and their in vitro and in vivo anti-tumor effects, when combined with ultrasonic irradiation, on androgen-independent prostate cancer (AIPC). Materials and Methods Nanobubbles carrying AR siRNA were prepared using poly-L-lysine and electrostatic adsorption methods. Using C4-2 cell activity as a testing index, the optimal irradiation parameters (including the nanobubble number/cell number ratio, mechanical index [MI], and irradiation time) were determined and used for transfection of three human prostate cancer cell lines (C4-2, LNCaP, and PC-3 cells). The AR expression levels were investigated with RT-PCR and Western blot analysis. Additionally, the effects of the nanobubbles and control microbubbles named SonoVue were assessed via imaging in a C4-2 xenograft model. Finally, the growth and AR expression of seven groups of tumor tissues were assessed using the C4-2 xenograft mouse model. Results The nanobubbles had an average diameter of 609.5±15.6 nm and could effectively bind to AR siRNA. Under the optimized conditions of a nanobubble number/cell number ratio of 100∶1, an MI of 1.2, and an irradiation time of 2 min, the highest transfection rates in C4-2, LNCaP, and PC-3 cells were 67.4%, 74.0%, and 63.96%, respectively. In the C4-2 and LNCaP cells, treatment with these binding nanobubbles plus ultrasonic irradiation significantly inhibited cell growth and resulted in the suppression of AR mRNA and protein expression. Additionally, contrast-enhanced ultrasound showed that the nanobubbles achieved stronger signals than the SonoVue control in the central hypovascular area of the tumors. Finally, the anti-tumor effect of these nanobubbles plus ultrasonic irradiation was most significant in the xenograft tumor model compared with the other groups. Conclusion Nanobubbles carrying AR siRNA could be potentially used as gene vectors in combination with ultrasonic irradiation for the treatment of AIPC.
Collapse
|
42
|
Mestas JL, Fowler RA, Evjen TJ, Somaglino L, Moussatov A, Ngo J, Chesnais S, Røgnvaldsson S, Fossheim SL, Nilssen EA, Lafon C. Therapeutic efficacy of the combination of doxorubicin-loaded liposomes with inertial cavitation generated by confocal ultrasound in AT2 Dunning rat tumour model. J Drug Target 2014; 22:688-97. [DOI: 10.3109/1061186x.2014.906604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Vladisavljević GT, Shahmohamadi H, Das DB, Ekanem EE, Tauanov Z, Sharma L. Glass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations. J Colloid Interface Sci 2013; 418:163-70. [PMID: 24461831 DOI: 10.1016/j.jcis.2013.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/29/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
Abstract
HYPOTHESIS Droplet size in microfluidic devices is affected by wettability of the microfluidic channels. Three-dimensional countercurrent flow focusing using assemblies of chemically inert glass capillaries is expected to minimize wetting of the channel walls by the organic solvent. EXPERIMENTS Monodispersed polycaprolactone and poly(lactic acid) particles with a diameter of 18-150 μm were produced by evaporation of solvent (dichloromethane or 1:2 mixture of chloroform and toluene) from oil-in-water or water-in-oil-in-water emulsions produced in three-dimensional flow focusing glass capillary devices. The drop generation behaviour was simulated numerically using the volume of fluid method. FINDINGS The numerical results showed good agreement with high-speed video recordings. Monodispersed droplets were produced in the dripping regime when the ratio of the continuous phase flow rate to dispersed phase flow rate was 5-20 and the Weber number of the dispersed phase was less than 0.01. The porosity of polycaprolactone particles increased from 8 to 62% when 30 wt% of the water phase was incorporated in the organic phase prior to emulsification. The inner water phase was loaded with 0.156 wt% lidocaine hydrochloride to achieve a sustained drug release. 26% of lidocaine was released after 1 h and more than 93% of the drug was released after 130 h.
Collapse
Affiliation(s)
- Goran T Vladisavljević
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Hamed Shahmohamadi
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Ekanem E Ekanem
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Zhandos Tauanov
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Lav Sharma
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
44
|
Coupling of drug containing liposomes to microbubbles improves ultrasound triggered drug delivery in mice. J Control Release 2013; 172:885-93. [DOI: 10.1016/j.jconrel.2013.09.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/10/2013] [Accepted: 09/15/2013] [Indexed: 11/17/2022]
|
45
|
McLaughlan J, Ingram N, Smith PR, Harput S, Coletta PL, Evans S, Freear S. Increasing the sonoporation efficiency of targeted polydisperse microbubble populations using chirp excitation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:2511-20. [PMID: 24297017 DOI: 10.1109/tuffc.2013.2850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The therapeutic use of microbubbles for targeted drug or gene delivery is a highly active area of research. Phospholipid- encapsulated microbubbles typically have a polydisperse size distribution over the 1 to 10 μm range and can be functionalized for molecular targeting and loaded with drugcarrying liposomes. Sonoporation through the generation of shear stress on the cell membrane by microbubble oscillations is one mechanism that results in pore formation in the cell membrane and can improve drug delivery. A microbubble oscillating at its resonant frequency would generate maximum shear stress on a membrane. However, because of the polydisperse nature of phospholipid microbubbles, a range of resonant frequencies would exist in a single population. In this study, the use of linear chirp excitations was compared with equivalent duration and acoustic pressure tone excitations when measuring the sonoporation efficiency of targeted microbubbles on human colorectal cancer cells. A 3 to 7 MHz chirp had the greatest sonoporation efficiency of 26.9 ± 5.6%, compared with 16.4 ± 1.1% for the 1.32 to 3.08 MHz chirp. The equivalent 2.2- and 5-MHz tone excitations have efficiencies of 12.8 ± 2.1% and 15.6 ± 1.1%, respectively, which were all above the efficiency of 4.1 ± 3.1% from the control exposure.
Collapse
|
46
|
Gourevich D, Dogadkin O, Volovick A, Wang L, Gnaim J, Cochran S, Melzer A. Ultrasound-mediated targeted drug delivery with a novel cyclodextrin-based drug carrier by mechanical and thermal mechanisms. J Control Release 2013; 170:316-24. [DOI: 10.1016/j.jconrel.2013.05.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/25/2013] [Accepted: 05/29/2013] [Indexed: 01/10/2023]
|
47
|
Kooiman K, van der Steen AFW, de Jong N. Role of intracellular calcium and reactive oxygen species in microbubble-mediated alterations of endothelial layer permeability. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1811-5. [PMID: 24658714 DOI: 10.1109/tuffc.2013.2767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Drugs will be delivered to diseased tissue more efficiently if the vascular endothelial permeability is increased. Ultrasound in combination with an ultrasound contrast agent is known to increase the permeability of the endothelial layer, but the mechanism is not known. The goal of this study was to elucidate whether intracellular calcium ions, [Ca(2+)]i, and reactive oxygen species (ROS) are part of the mechanism that leads to an increased endothelial layer permeability following ultrasound and microbubble treatment. Human umbilical vein endothelial cells (HUVECs) treated for 2 min with ultrasound-activated microbubbles (1 MHz, 210 kPa, 10 000 cycles, 20 Hz repetition rate) had an increased permeability that lasted up to 12 h. Recovery of permeability after 2 h was only found when HUVECs were preincubated with the [Ca(2+)]i chelator BAPTA-AM or the antioxidant butylated hydroxytoluene (BHT). This suggests that both [Ca(2+)]i and ROS play an important role in the mechanism of increased permeability following ultrasound in combination with microbubble treatment.
Collapse
|
48
|
Cho SK, Wee TI, Ha J, Cho SH, Han K, Han HD, Shin BC. Ultrasound-Triggered Drug Release of Hydroxyapatite Coated Liposomes. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2013. [DOI: 10.5012/jkcs.2013.57.4.493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Sridhar-Keralapura M, Thirumalai S, Mobed-Miremadi M. Structural changes and imaging signatures of acoustically sensitive microcapsules under ultrasound. ULTRASONICS 2013; 53:1044-1057. [PMID: 23499137 DOI: 10.1016/j.ultras.2013.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/19/2013] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
The ultrasound drug delivery field is actively designing new agents that would obviate the problems of just using microbubbles for drug delivery. Microbubbles have very short circulation time (minutes), low payload and large size (2-10μm), all of these aspects are not ideal for systemic drug delivery. However, microbubble carriers provide excellent image contrast and their use for image guidance can be exploited. In this paper, we suggest an alternative approach by developing acoustically sensitive microcapsule reservoirs that have future applications for treating large ischemic tumors through intratumoral therapy. We call these agents Acoustically Sensitized Microcapsules (ASMs) and these are not planned for the circulation. ASMs are very simple in their formulation, robust and reproducible. They have been designed to offer high payload (because of their large size), be acoustically sensitive and reactive (because of the Ultrasound Contrast Agents (UCAs) encapsulated) and mechanically robust for future injections/implantations within tumors. We describe three different aspects - (1) effect of therapeutic ultrasound; (2) mechanical properties and (3) imaging signatures of these agents. Under therapeutic ultrasound, the formation of a cavitational bubble was seen prior to rupture. The time to rupture was size dependent. Size dependency was also seen when measuring mechanical properties of these ASMs. % Alginate and permeability also affected the Young's modulus estimates. For study of imaging signatures of these agents, we show six schemes. For example, with harmonic imaging, tissue phantoms and controls did not generate higher harmonic components. Only ASM phantoms created a harmonic signal, whose sensitivity increased with applied acoustic pressure. Future work includes developing schemes combining both sonication and imaging to help detect ASMs before, during and after release of drug substance.
Collapse
|
50
|
Jalili K, Abbasi F, Milchev A. Surface Microdynamics Phase Transition and Internal Structure of High-Density, Ultrathin PHEMA-b-PNIPAM Diblock Copolymer Brushes on Silicone Rubber. Macromolecules 2013. [DOI: 10.1021/ma4003962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Jalili
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - F. Abbasi
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - A. Milchev
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute for Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|