1
|
Zhang Q, Wu J, Bai X, Liang T. Evaluation of Intra-Tumoral Vascularization in Hepatocellular Carcinomas. Front Med (Lausanne) 2020; 7:584250. [PMID: 33195338 PMCID: PMC7652932 DOI: 10.3389/fmed.2020.584250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Intratumoral neovascularization has intricate effects on tumor growth, metastasis, and treatment. Over the last 30 years, Microvessel density (MVD) has been the standard method for laboratory and clinical evaluation of angiogenesis. Hepatocellular carcinoma (HCC) is a typical hypervascularized tumor, and the predictive value of MVD for prognosis is still controversial. According to previous viewpoints, this has been attributed to the determination of hotspot, counting methods, vascular endothelial markers, and different definitions of high and low vascular density; however, the heterogeneity of tumor angiogenesis patterns should be factored. The breakthroughs in artificial intelligence and algorithm can improve the objectivity and repeatability of MVD measurement, thus saving a lot of manpower. Presently, anti-angiogenesis therapy is the only effective systematic treatment for liver cancer, and the use of imaging technology-assisted MVD measurement is expected to be a reliable index for evaluating the curative effect. MVD in multinodular hepatocellular carcinoma represents a subject area with huge understudied potential, and exploring it might advance our understanding of tumor heterogeneity.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Jiajun Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
2
|
Guo HL, Chen LD, Li W, Liang JY, Zhang JC, Li X, Xie XY, Lu MD, Kuang M, Wang W. Ultrasomics for Early Evaluation of the Tumor Response to MicroRNA-122 in a Nude Mouse Hepatocellular Carcinoma Model. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:61-71. [PMID: 31225651 DOI: 10.1002/jum.15071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVES To explore the value of ultrasomics in temporal monitoring of tumor changes in response to gene therapy in hepatocellular carcinoma compared with methods according to the Response Evaluation Criteria in Solid Tumors (RECIST) and modified RECIST (mRECIST). METHODS Hepatocellular carcinoma-bearing mice were injected intratumorally with microRNA-122 (miR-122) mimics and an miR-122 negative control in the treatment and control groups, respectively. The injections were performed every 3 days for 5 times (on days 0, 3, 6, 9, and 12). Before each injection and at the experiment ending, 2-dimensional ultrasound imaging was performed for tumor size measurement with RECIST and computing a quantitative imaging analysis with ultrasomics. To analyze the tumor perfusion by mRECIST, perfusion parameters were analyzed offline based on dynamic contrast-enhanced ultrasound image videos using SonoLiver software (TomTec, Unterschleissheim, Germany) on day 13. Tumor miR-122 expression was then analyzed by real-time reverse transcription-polymerase chain reaction experiments. RESULTS Tumors in mice treated with miR-122 mimics demonstrated a mean ± SD 763- ± 60-fold increase in miR-122 levels compared with tumors in the control group. With RECIST, a significant therapeutic response evaluated by tumor size changes was detected after day 9 (days 9, 12, and 13; P < .001). With mRECIST, no parameters showed significant differences (P > .05). Significant different features of the 2-dimensional ultrasound images between the groups were detected by the ultrasomics analysis, and the model could be successfully built. The ultrasomics score values between the groups were statistically significant after day 6 (days 6, 9, 12, and 13; P < .05). CONCLUSIONS Ultrasomics revealed significant changes after the second injection of miR-122, showing the potential as an important imaging biomarker for gene therapy.
Collapse
Affiliation(s)
- Huan-Ling Guo
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, China
| | - Li-da Chen
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, China
| | - Wei Li
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, China
| | - Jin-Yu Liang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, China
| | - Jian-Chao Zhang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, China
| | - Xin Li
- GE healthcare, Shanghai, China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, China
| | - Ming-de Lu
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Kuang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Wang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, China
| |
Collapse
|
3
|
Liang S, Gao Y, Liu Y, Qiu C, Chen Y, Zhu S. Contrast-enhanced Ultrasound in evaluating of angiogenesis and tumor staging of nasopharyngeal carcinoma in nude mice. PLoS One 2019; 14:e0221638. [PMID: 31442259 PMCID: PMC6707564 DOI: 10.1371/journal.pone.0221638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To explore the use of Contrast-enhanced Ultrasound (CEUS) in evaluating angiogenesis in a xenograft nasopharyngeal carcinoma (NPC) model in nude mice and the evolution of CEUS parameters according to the growth of NPC. METHODS Nude mice were divided into three groups according to experiments conducted at various times from tumor implantation (8 mice/group; group A: 4 weeks from implantation; group B:6 weeks from implantation; group C:8 weeks from implantation). CNE-2 cells were transplanted in 24 nude mice and CEUS evaluations of the tumors were performed at 4, 6 or 8 weeks from implantation. CEUS parametric perfusion images and pathological findings were recorded. R version 3.4.4 software was used to analyze the CEUS parameters and pathological findings. RESULTS One-way anova analysis indicated statistically significant differences among the three groups with the parameters of peak intensity (PI) (p<0.001), area wash in (AWI) (p<0.001), area wash out (AWO) (p<0.001) and tumor volumes (p<0.001).Pearson correlation coefficient analysis indicated that microvessel density (MVD) was correlated with tumor volume (r = 0.644, p = 0.001), PI (r = 0.904, p<0.0001), AWI (r = 0.547, p = 0.008) and AWO (r = 0.744, P<0.0001). Tumor volume was correlated with MVD (r = 0.644, p = 0.001), PI (r = 0.625, p = 0.002), AWI (r = 0.528, p = 0.012) and AWO (r = 0.784, p<0.001). The percentage of necrosis in histological sections was correlated with the percentage of CEUS unperfused area (r = 0.446,p = 0.038). Spearman rank correlation coefficient analysis indicated that vascular endothelial growth factor (VEGF) was correlated with PI (r = 0.462, P = 0.032). Welch t test indicated PI, AWI and AWO parameters were significantly lower than that of kidneys (p<0.001, p = 0.009, p = 0.005). CONCLUSIONS The CEUS parameters PI, AWI and AWO indirectly reflect the MVD and the tumor volume in our model of subcutaneous transplanted NPC in nude mice, providing precious information on angiogenesis and tumor growth. VEGF may play a role in promoting angiogenesis of NPC.
Collapse
Affiliation(s)
- ShouJun Liang
- Guangxi Medical University, Nanning, Guangxi, China
- Department of Diagnostic Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yong Gao
- Department of Diagnostic Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - YaoLi Liu
- Department of Diagnostic Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - ChengCheng Qiu
- Guangxi Medical University, Nanning, Guangxi, China
- Department of Diagnostic Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - YanHao Chen
- Guangxi Medical University, Nanning, Guangxi, China
- Department of Diagnostic Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - ShangYong Zhu
- Department of Diagnostic Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Zhou YT, Cai WW, Li Y, Jiang X, Feng L, Zhu QY, Liu YL, Chen YX, Li SS, Du B, Lang F, Wu PX, Qiu LY. Correlations between quantitative parameters of contrast-enhanced ultrasound and vasculogenic mimicry in murine tumor model: a novel noninvasive technique for assessment? Biol Proced Online 2019; 21:11. [PMID: 31205452 PMCID: PMC6560886 DOI: 10.1186/s12575-019-0101-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 01/14/2023] Open
Abstract
Objective Vasculogenic mimicry (VM) is a novel mechanism of tumor blood supply distinct from endothelial vessel (EV). VM is associated with malignancy, invasion, metastasis, and poor prognosis. Hitherto a noninvasive method for the assessment of VM in vivo has been lacking. Methods Contrast-enhanced ultrasound (CEUS) was performed to evaluate the quantitative parameters of tumors in mice. CD31 immunohistochemistry-Periodic Acid-Schiff double staining was conducted to identify the VM or EV in tumor tissues. Correlations between perfusion parameters and VM density was analyzed by Pearson correlation test. Results By the 15th day after tumor inoculation, the EV and VM density was 31.15 ± 7.14 and 14.11 ± 2.99 per 200× field. The maximal intensity (IMAX) was 301.19 ± 191.56%, and the rise time (RT), time to peak (TTP) and mean transit time (mTT) were 17.38 ± 7.82 s, 20.27 ± 9.61 s and 58.09 ± 26.44 s, respectively. VM density positively correlated to RT (r = 0.3598, P = 0.0226), TTP (r = 0.3733, P = 0.0177) and mTT(r = 0.6483, P < 0.0001), whereas EV density positively correlated to IMAX (r = 0.4519, P = 0.0034). The vascular diameter of VM was substantially larger than that of EV (43.81 ± 5.88 μm vs 11.21 ± 4.13 μm). Conclusion Three quantitative parameters related to VM were obtained and the relationships between CEUS and VM were established. CEUS might thus provide a novel noninvasive method to assess VM in vivo.
Collapse
Affiliation(s)
- Yue-Tao Zhou
- 1Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China
| | - Wei-Wei Cai
- 1Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China
| | - Yue Li
- 1Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China.,2Laboratory of Tumor Pharmacology, School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China
| | - Xiao Jiang
- 3Department of Ultrasound, Wuxi People's Hospital, Wuxi, 214023 Jiangsu Province, People's Republic of China
| | - Lei Feng
- 1Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China
| | - Qiao-Ying Zhu
- 3Department of Ultrasound, Wuxi People's Hospital, Wuxi, 214023 Jiangsu Province, People's Republic of China
| | - Yan-Ling Liu
- 1Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China.,2Laboratory of Tumor Pharmacology, School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China
| | - Yu-Xiao Chen
- 1Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China
| | - Shuang-Shuang Li
- 1Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China
| | - Bin Du
- 1Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China
| | - Florian Lang
- 4Department of Physiology, Eberhard-Karls-University, Wilhelmstr. 56, D-72076 Tübingen, Germany
| | - Peng-Xi Wu
- 3Department of Ultrasound, Wuxi People's Hospital, Wuxi, 214023 Jiangsu Province, People's Republic of China
| | - Li-Ying Qiu
- 1Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu Province, People's Republic of China
| |
Collapse
|
5
|
Chen Q, Tang L, Liu N, Han F, Guo L, Guo S, Wang J, Liu H, Ye Y, Zhang L, Liu L, Wang P, Li Y, He Q, Yang X, Tang Q, Li Y, Liang Y, Sun X, Xie C, Mo Y, Guo Y, Sun R, Mo H, Cao K, Guo X, Zeng M, Mai H, Ma J. Famitinib in combination with concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 1, open-label, dose-escalation Study. Cancer Commun (Lond) 2018; 38:66. [PMID: 30382933 PMCID: PMC6235389 DOI: 10.1186/s40880-018-0330-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Famitinib is a tyrosine kinase inhibitor against multiple targets, including vascular endothelial growth factor receptor 2/3, platelet-derived growth factor receptor, and stem cell factor receptor (c-kit). Previous studies have demonstrated anti-tumour activities of famitinib against a wide variety of advanced-stage solid cancers. We aimed to determine the safety and efficacy of famitinib with concurrent chemoradiotherapy (CCRT) in patients with locoregionally advanced nasopharyngeal carcinoma (NPC). We also evaluated the feasibility of contrast-enhanced ultrasound (D-CEUS) as a predictor of early tumour response to famitinib and to correlate functional parameters with clinical efficacy. METHODS The trial was conducted in subjects with stage III or IVa-b NPC using a 3 + 3 design of escalating famitinib doses. Briefly, subjects received 2 weeks of famitinib monotherapy followed by 7 weeks of famitinib plus CCRT. D-CEUS of the neck lymph nodes was performed at day 0, 8 and 15 after famitinib was administered before starting concurrent chemoradiotherapy. End points included safety, tolerability and anti-tumour activity. RESULTS Twenty patients were enrolled (six each for 12.5, 16.5 and 20 mg and two for 25 mg). Two patients in the 25 mg cohort developed dose-limiting toxicities, including grade 4 thrombocytopenia and grade 3 hypertension. The most common grade 3/4 adverse events were leukopenia, neutropenia and radiation mucositis. D-CEUS tests showed that more than 60% of patients achieved a perfusion parameter response after 2 weeks taking famitinib alone, and the parameter response was associated with disease improvement. In the famitinib monotherapy stage, three patients (15%) showed partial responses. The complete response rate was 65% at the completion of treatment and 95% 3 months after the treatment ended. After a median follow-up of 44 months, the 3-year progression-free survival (PFS) and distant metastasis-free survival were 70% and 75%, respectively. Subjects with a decrease of perfusion parameter response, such as peak intensity decreased at least 30% after 1 week of famitinib treatment, had higher 3-year PFS (90.9% vs. 44.4%, 95% CI 73.7%-100% vs. 11.9%-76.9%, P < 0.001) than those with an increase or a reduction of less than 30%. CONCLUSIONS The recommended famitinib dose for phase II trial is 20 mg with CCRT for patients with local advanced NPC. D-CEUS is a reliable and early measure of efficacy for famitinib therapies. Further investigation is required to confirm the effects of famitinib plus chemoradiotherapy.
Collapse
Affiliation(s)
- Qiuyan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Linquan Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Feng Han
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ling Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shanshan Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jianwei Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huai Liu
- Department of Radiation Oncology, Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P. R. China
| | - Yanfang Ye
- Department of Science and Education, Sun Yat-sen Memorial Hospital, Guangzhou, 510120, P. R. China
| | - Lu Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Liting Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Pan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yingqin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qingmei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiaoqun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qingnan Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - YuJing Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - XueSong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuanmiao Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yunxian Mo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ying Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Clinical Trial Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Rui Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Haoyuan Mo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kajia Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Haiqiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China. .,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
6
|
Wang D, Su Z, Zhang Y, Zhao X, Wang S, Wan M. DCEUS-based multiparametric perfusion imaging using pulse-inversion Bubblet decorrelation. Med Phys 2018; 45:2509-2517. [PMID: 29611197 DOI: 10.1002/mp.12897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE This study aimed to clarify the influences of composite dynamic contrast-enhanced ultrasound (DCEUS) on multiparametric perfusion imaging (PPI) and to develop a novel PPI scheme through pulse-inversion Bubblet decorrelation (PIBD) to improve its contrast and detailed discriminability. METHOD In in vivo perfusion experiments on rabbit kidneys, a pair of phase-inverted "Bubblets" was constructed. Phase-inverted raw radiofrequency echoes were reconstructed by using the maximum coefficients obtained from Bubblet decorrelation analysis and summed to form DCEUS loops. Nine perfusion parameters were estimated from these loops and color coded to create the corresponding PIBD-based PPIs. RESULTS In addition to time-related PPIs, the contrast and detailed discriminability quantified by the average contrast and information entropy of intensity- and ratio-related PPIs were proportional to the microbubble detection sensitivity and microvascular discriminability evaluated by CTR in DCEUS techniques. Compared with the second harmonic, the CTR of DCEUS and the average contrast and information entropy of PPI were significantly improved by 9.03 ± 5.39 dB (P < 0.01), 6.39 ± 1.38 dB (P < 0.01), and 0.57 ± 0.15 (P < 0.05) in PIBD technique, respectively. CONCLUSIONS As a multiparametric functional imaging technique, these improvements in the proposed scheme can be beneficial to accurately quantify and depict the hemodynamic perfusion features and details of tumor angiogenesis, and further can also assist clinicians in making a confirmed diagnosis.
Collapse
Affiliation(s)
- Diya Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an, 710049, China.,Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Quebec, H2X 0A9, Canada
| | - Zhe Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an, 710049, China
| | - Yu Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyan Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an, 710049, China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an, 710049, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
7
|
Wang D, Xiao M, Zhang Y, Wan M. Abdominal parametric perfusion imaging with respiratory motion-compensation based on contrast-enhanced ultrasound: In-vivo validation. Comput Med Imaging Graph 2018; 65:11-21. [DOI: 10.1016/j.compmedimag.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/03/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
8
|
Wang D, Xiao M, Hu H, Zhang Y, Su Z, Xu S, Zong Y, Wan M. DCEUS-based focal parametric perfusion imaging of microvessel with single-pixel resolution and high contrast. ULTRASONICS 2018; 84:392-403. [PMID: 29245119 DOI: 10.1016/j.ultras.2017.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to develop a focal microvascular contrast-enhanced ultrasonic parametric perfusion imaging (PPI) scheme to overcome the tradeoff between the resolution, contrast, and accuracy of focal PPI in the tumor. Its resolution was limited by the low signal-to-clutter ratio (SCR) of time-intensity-curves (TICs) induced by multiple limitations, which deteriorated the accuracy and contrast of focal PPI. The scheme was verified by the in-vivo perfusion experiments. Single-pixel TICs were first extracted to ensure PPI with the highest resolution. The SCR of focal TICs in the tumor was improved using respiratory motion compensation combined with detrended fluctuation analysis. The entire and focal PPIs of six perfusion parameters were then accurately created after filtrating the valid TICs and targeted perfusion parameters. Compared with those of the conventional PPIs, the axial and lateral resolutions of focal PPIs were improved by 30.29% (p < .05) and 32.77% (p < .05), respectively; the average contrast and accuracy evaluated by SCR improved by 7.24 ± 4.90 dB (p < .05) and 5.18 ± 1.28 dB (p < .05), respectively. The edge, morphostructure, inhomogeneous hyper-enhanced distribution, and ring-like perfusion features in intratumoral microvessel were accurately distinguished and highlighted by the focal PPIs. The developed focal PPI can assist clinicians in making confirmed diagnoses and in providing appropriate therapeutic strategies for liver tumor.
Collapse
Affiliation(s)
- Diya Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, PR China; Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, QC, Canada
| | - Mengnan Xiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, PR China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, PR China
| | - Yu Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, PR China
| | - Zhe Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, PR China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, PR China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, PR China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, PR China.
| |
Collapse
|
9
|
Malone CD, Mattrey RF, Fetzer DT. Contrast-Enhanced Ultrasound (CEUS) for the Diagnosis and Management of Hepatocellular Carcinoma: Current Status and Future Trends. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11901-016-0324-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Dynamic contrast-enhanced ultrasound parametric maps to evaluate intratumoral vascularization. Invest Radiol 2015; 50:212-7. [PMID: 25275834 DOI: 10.1097/rli.0000000000000101] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The purposes of this study were to assess the reliability of parametric maps from dynamic contrast-enhanced ultrasound (DCE-US) to reflect the heterogeneous distribution of intratumoral vascularization and to predict the tissue features linked to vasculature. This study was designed to compare DCE-US parametric maps with histologic vascularity measurements. MATERIALS AND METHODS Dynamic contrast-enhanced ultrasound was performed on 17 melanoma-bearing nude mice after a 0.1-mL bolus injection of SonoVue (Bracco SPA, Milan, Italy). The parametric maps were developed from raw linear data to extract pixelwise 2 semiquantitative parameters related to perfusion and blood volume, namely, area under the curve (AUC) and peak intensity (PI). The mathematical method to fit the time-intensity curve for each pixel was a polynomial model used in clinical routine and patented by the team. Regions of interest (ROIs) were drawn on DCE-US parametric maps for whole tumors and for several local areas of 15 mm within each tumor (iROI), the latter reflecting the heterogeneity of intratumoral blood volume. As the criterion standard correlation, microvessel densities (MVDs) were determined for both ROI categories. In detail, for all iROI of 15 mm, MVD and maturity were divided separately for vessels of 0 to 10 μm, 10 to 40 μm, and greater than 40 μm in diameter, and the results were correlated with the ultrasound findings. RESULTS Among the 17 studied mice, a total of 64 iROIs were analyzed. For the whole-tumor ROI set, AUC and PI values significantly correlated with MVD (rAUC = 0.52 [P = 0.0408] and rPI = 0.70 [P = 0.0026]). In the case of multiple iROI, a strong linear correlation was observed between the DCE-US parameters and the density of vessels ranging in their diameter from 0 to 10 μm (rAUC = 0.68 [P < 0.0001]; rPI = 0.63 [P < 0.0001]), 10 to 40 μm (rAUC = 0.98 [P = 0.0003]; rPI = 0.98 [P = 0.0004]), and greater than 40 μm (rAUC = 0.86 [P = 0.0120]; rPI = 0.92 [P = 0.0034]), respectively. However, the DCE-US parameter values of perfusion and blood volume were not significantly different according to the diameters (AUC: P = 0.1731; PI: P = 0.2918) and maturity of blood vessels. CONCLUSIONS Parametric maps of DCE-US can be reliably established from raw linear data and reflect the heterogeneous histological measures of vascularization within tumors. In contrast, the values of DCE-US parametric maps (AUC, PI) do not allow deduction of heterogeneous tissue features such as the diameters and maturity of vascular networks.
Collapse
|
11
|
Sun MZ, Cui Y, Guo C, Zhao B, Liu S. rAdinbitor, a disintegrin from Agkistrodon halys brevicaudus stejneger, inhibits tumorigenicity of hepatocarcinoma via enhanced anti-angiogenesis and immunocompetence. Biochimie 2015; 116:34-42. [PMID: 26133656 DOI: 10.1016/j.biochi.2015.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
Adinbitor is a disintegrin previously obtained from Agkistrodon halys brevicaudus stejneger by our group. Here, we investigated the in vitro and in vivo anti-tumor activities of recombinant Adinbitor (rAdinbitor). rAdinbitor stimulation can inhibit the in vitro proliferation, migration and invasion capacities of murine hepatocarcinoma H22 and Hca-F cells. The administrations of rAdinbitor either by gavage or intraperitoneal injection suppress the tumor malignancy and prolong the survival rate and time of H22-transplanted mice. The number and size of formed blood vessels decreased dramatically in tumorous tissues in that the expression levels of vascular endothelial growth factor (VEGF) and cluster of differentiation 34 (CD34) were significantly decreased in responding to rAdinbitor treatment. The protein levels of IL-18 and IgG increased significantly in the serum of H22-transplanted tumor mice with rAdinbitor treatment. rAdinbitor shows in vitro and in vivo anti-tumor effects as an angiogenesis inhibitor and immunocompetence enhancer.
Collapse
Affiliation(s)
- Ming-Zhong Sun
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Yanhua Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Chunmei Guo
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Baochang Zhao
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Shuqing Liu
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China; Liaoning Provincial Core Lab of Cell and Molecular Biology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
12
|
Wang H, Hristov D, Qin J, Tian L, Willmann JK. Three-dimensional Dynamic Contrast-enhanced US Imaging for Early Antiangiogenic Treatment Assessment in a Mouse Colon Cancer Model. Radiology 2015. [PMID: 26020439 DOI: 10.1148/radiol.2015142824]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate feasibility and reproducibility of three-dimensional (3D) dynamic contrast material-enhanced (DCE) ultrasonographic (US) imaging by using a clinical matrix array transducer to assess early antiangiogenic treatment effects in human colon cancer xenografts in mice. MATERIALS AND METHODS Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. Three-dimensional DCE US imaging with two techniques (bolus and destruction-replenishment) was performed in human colon cancer xenografts (n = 38) by using a clinical US system and transducer. Twenty-one mice were imaged twice to assess reproducibility. Seventeen mice were scanned before and 24 hours after either antiangiogenic (n = 9) or saline-only (n = 8) treatment. Data sets of 3D DCE US examinations were retrospectively segmented into consecutive 1-mm imaging planes to simulate two-dimensional (2D) DCE US imaging. Six perfusion parameters (peak enhancement [PE], area under the time-intensity curve [AUC], time to peak [TTP], relative blood volume [rBV], relative blood flow [rBF], and blood flow velocity) were measured on both 3D and 2D data sets. Percent area of blood vessels was quantified ex vivo with immunofluorescence. Statistical analyses were performed with the Wilcoxon rank test by calculating intraclass correlation coefficients and by using Pearson correlation analysis. RESULTS Reproducibility of both 3D DCE US imaging techniques was good to excellent (intraclass correlation coefficient, 0.73-0.86). PE, AUC, rBV, and rBF significantly decreased (P ≤ .04) in antiangiogenic versus saline-treated tumors. rBV (r = 0.74; P = .06) and rBF (r = 0.85; P = .02) correlated with ex vivo percent area of blood vessels, although the statistical significance of rBV was not reached, likely because of small sample size. Overall, 2D DCE-US overestimated and underestimated treatment effects from up to 125-fold to170-fold compared with 3D DCE US imaging. If the central tumor plane was assessed, treatment response was underestimated up to threefold or overestimated up to 57-fold on 2D versus 3D DCE US images. CONCLUSION Three-dimensional DCE US imaging with a clinical matrix array transducer is feasible and reproducible to assess tumor perfusion in human colon cancer xenografts in mice and allows for assessment of early treatment response after antiangiogenic therapy.
Collapse
Affiliation(s)
- Huaijun Wang
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Dimitre Hristov
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jiale Qin
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Lu Tian
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jürgen K Willmann
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| |
Collapse
|
13
|
Wang H, Hristov D, Qin J, Tian L, Willmann JK. Three-dimensional Dynamic Contrast-enhanced US Imaging for Early Antiangiogenic Treatment Assessment in a Mouse Colon Cancer Model. Radiology 2015; 277:424-34. [PMID: 26020439 DOI: 10.1148/radiol.2015142824] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To evaluate feasibility and reproducibility of three-dimensional (3D) dynamic contrast material-enhanced (DCE) ultrasonographic (US) imaging by using a clinical matrix array transducer to assess early antiangiogenic treatment effects in human colon cancer xenografts in mice. MATERIALS AND METHODS Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. Three-dimensional DCE US imaging with two techniques (bolus and destruction-replenishment) was performed in human colon cancer xenografts (n = 38) by using a clinical US system and transducer. Twenty-one mice were imaged twice to assess reproducibility. Seventeen mice were scanned before and 24 hours after either antiangiogenic (n = 9) or saline-only (n = 8) treatment. Data sets of 3D DCE US examinations were retrospectively segmented into consecutive 1-mm imaging planes to simulate two-dimensional (2D) DCE US imaging. Six perfusion parameters (peak enhancement [PE], area under the time-intensity curve [AUC], time to peak [TTP], relative blood volume [rBV], relative blood flow [rBF], and blood flow velocity) were measured on both 3D and 2D data sets. Percent area of blood vessels was quantified ex vivo with immunofluorescence. Statistical analyses were performed with the Wilcoxon rank test by calculating intraclass correlation coefficients and by using Pearson correlation analysis. RESULTS Reproducibility of both 3D DCE US imaging techniques was good to excellent (intraclass correlation coefficient, 0.73-0.86). PE, AUC, rBV, and rBF significantly decreased (P ≤ .04) in antiangiogenic versus saline-treated tumors. rBV (r = 0.74; P = .06) and rBF (r = 0.85; P = .02) correlated with ex vivo percent area of blood vessels, although the statistical significance of rBV was not reached, likely because of small sample size. Overall, 2D DCE-US overestimated and underestimated treatment effects from up to 125-fold to170-fold compared with 3D DCE US imaging. If the central tumor plane was assessed, treatment response was underestimated up to threefold or overestimated up to 57-fold on 2D versus 3D DCE US images. CONCLUSION Three-dimensional DCE US imaging with a clinical matrix array transducer is feasible and reproducible to assess tumor perfusion in human colon cancer xenografts in mice and allows for assessment of early treatment response after antiangiogenic therapy.
Collapse
Affiliation(s)
- Huaijun Wang
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Dimitre Hristov
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jiale Qin
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Lu Tian
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jürgen K Willmann
- From the Department of Radiology, Molecular Imaging Program at Stanford (H.W., J.Q., J.K.W.), Department of Radiation Oncology (D.H.), and Department of Health, Research & Policy (L.T.), Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| |
Collapse
|
14
|
Fröhlich E, Muller R, Cui XW, Schreiber-Dietrich D, Dietrich CF. Dynamic contrast-enhanced ultrasound for quantification of tissue perfusion. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:179-96. [PMID: 25614391 DOI: 10.7863/ultra.34.2.179] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dynamic contrast-enhanced ultrasound (US) imaging, a technique that uses microbubble contrast agents with diagnostic US, has recently been technically summarized and reviewed by a European Federation of Societies for Ultrasound in Medicine and Biology position paper. However, the practical applications of this imaging technique were not included. This article reviews and discusses the published literature on the clinical use of dynamic contrast-enhanced US. This review finds that dynamic contrast-enhanced US imaging is the most sensitive cross-sectional real-time method for measuring the perfusion of parenchymatous organs noninvasively. It can measure parenchymal perfusion and therefore can differentiate between benign and malignant tumors. The most important routine clinical role of dynamic contrast-enhanced US is the prediction of tumor responses to chemotherapy within a very short time, shorter than using Response Evaluation Criteria in Solid Tumors criteria. Other applications found include quantifying the hepatic transit time, diabetic kidneys, transplant grafts, and Crohn disease. In addition, the problems involved in using dynamic contrast-enhanced US are discussed.
Collapse
Affiliation(s)
- Eckhart Fröhlich
- Department of Internal Medicine I, Karl-Olga-Krankenhaus Stuttgart, Academic Teaching Hospital of the University of Ulm, Germany (E.F.); Tropical Health Solutions Pty, Ltd, and Anton-Breinl Center, James Cook University, Townsville City, Queensland, Australia (R.M.); Sino-German Research Center of Ultrasound in Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, and Department of Internal Medicine II, Caritas-Krankenhaus Bad Mergentheim, Academic Teaching Hospital of the University of Würzburg, Bad Mergentheim, Germany (X.-W.C., D.S.-D., C.F.D.)
| | - Reinhold Muller
- Department of Internal Medicine I, Karl-Olga-Krankenhaus Stuttgart, Academic Teaching Hospital of the University of Ulm, Germany (E.F.); Tropical Health Solutions Pty, Ltd, and Anton-Breinl Center, James Cook University, Townsville City, Queensland, Australia (R.M.); Sino-German Research Center of Ultrasound in Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, and Department of Internal Medicine II, Caritas-Krankenhaus Bad Mergentheim, Academic Teaching Hospital of the University of Würzburg, Bad Mergentheim, Germany (X.-W.C., D.S.-D., C.F.D.)
| | - Xin-Wu Cui
- Department of Internal Medicine I, Karl-Olga-Krankenhaus Stuttgart, Academic Teaching Hospital of the University of Ulm, Germany (E.F.); Tropical Health Solutions Pty, Ltd, and Anton-Breinl Center, James Cook University, Townsville City, Queensland, Australia (R.M.); Sino-German Research Center of Ultrasound in Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, and Department of Internal Medicine II, Caritas-Krankenhaus Bad Mergentheim, Academic Teaching Hospital of the University of Würzburg, Bad Mergentheim, Germany (X.-W.C., D.S.-D., C.F.D.)
| | - Dagmar Schreiber-Dietrich
- Department of Internal Medicine I, Karl-Olga-Krankenhaus Stuttgart, Academic Teaching Hospital of the University of Ulm, Germany (E.F.); Tropical Health Solutions Pty, Ltd, and Anton-Breinl Center, James Cook University, Townsville City, Queensland, Australia (R.M.); Sino-German Research Center of Ultrasound in Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, and Department of Internal Medicine II, Caritas-Krankenhaus Bad Mergentheim, Academic Teaching Hospital of the University of Würzburg, Bad Mergentheim, Germany (X.-W.C., D.S.-D., C.F.D.)
| | - Christoph F Dietrich
- Department of Internal Medicine I, Karl-Olga-Krankenhaus Stuttgart, Academic Teaching Hospital of the University of Ulm, Germany (E.F.); Tropical Health Solutions Pty, Ltd, and Anton-Breinl Center, James Cook University, Townsville City, Queensland, Australia (R.M.); Sino-German Research Center of Ultrasound in Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, and Department of Internal Medicine II, Caritas-Krankenhaus Bad Mergentheim, Academic Teaching Hospital of the University of Würzburg, Bad Mergentheim, Germany (X.-W.C., D.S.-D., C.F.D.).
| |
Collapse
|
15
|
Hu H, Yin J, Wang M, Liang C, Song H, Wang J, Nie Y, Liang J, Wu K. GX1 targeting delivery of rmhTNFα evaluated using multimodality imaging. Int J Pharm 2013; 461:181-91. [PMID: 24269209 DOI: 10.1016/j.ijpharm.2013.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/18/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022]
Abstract
GX1 is a tumor targeting peptide. In this study, we evaluated the antitumor efficacy of a GX1-derived fusion toxin, GX1-rmhTNFα, and investigated its targeting efficiency and pharmacokinetics in vivo using multimodality imaging. Flow cytometry revealed a greater level of cell apoptosis induced by GX1-rmhTNFα (27.1%) compared with rmhTNFα or a saline control (13.7% and 4.7%, respectively). SPECT (single-photon emission computed tomography) demonstrated high accumulation of GX1-rmhTNFα in tumor site. Biodistribution studies indicated GX1-rmhTNFα was cleared by the liver and kidney, and the drug may not cross the blood-brain barrier. In addition, bioluminescence imaging (BLI) showed that GX1-rmhTNFα caused a satisfactory delay in tumor growth in both subcutaneous and orthotopic cancer models. Contrast-enhanced ultrasound (CEUS) and CD31 staining revealed a loss in blood perfusion and vasculature. TUNEL and Ki67 staining validated the in vivo results. Biochemical analyses revealed limited renal and hepatic toxicity of GX1-rmhTNFα. This study demonstrated that GX1-rmhTNFα is a safe and potent anticancer agent that may have great potential for the targeted therapy of gastric cancer.
Collapse
Affiliation(s)
- Hao Hu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China
| | - Jipeng Yin
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China
| | - Min Wang
- Department of Gastroenterology, Xi'an Children's Hospital, China
| | - Cong Liang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China
| | - Hongping Song
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China.
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, China.
| |
Collapse
|
16
|
Sorace AG, Saini R, Mahoney M, Hoyt K. Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:1543-50. [PMID: 23011617 PMCID: PMC3464103 DOI: 10.7863/jum.2012.31.10.1543] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVES Contrast-enhanced ultrasound (US) and targeted microbubbles have been shown to be advantageous for angiogenesis evaluation and disease staging in cancer. This study explored molecular US imaging of a multitargeted microbubble for assessing the early tumor response to antiangiogenic therapy. METHODS Target receptor expression of 2LMP breast cancer cells was quantified by flow cytometric analysis and characterization established with antibodies against mouse α(V)β3- integrin, P-selectin, and vascular endothelial growth factor receptor 2. Tumor-bearing mice (n = 15 per group) underwent contrast-enhanced US imaging of multitargeted microbubbles. Microbubble accumulation was calculated by destruction-replenishment techniques and time-intensity curve analysis. On day 0, mice underwent baseline imaging. Next, therapy group mice were injected with a 0.2-mg dose of bevacizumab, and controls received matched saline injections. Imaging was repeated on days 1 and 3. After imaging was completed on day 3, the mice were euthanized and tumors excised. Histologic analysis of microvessel density and intratumoral necrosis was completed on tumor sections. RESULTS On day 3 after bevacizumab dosing, a 71.8% change in tumor vasculature was shown between the therapy and control groups (P = .01). The therapy group had a 15.4% decrease in tumor vascularity, whereas the control group had a 56.4% increase. CONCLUSIONS Molecular US imaging of angiogenic markers can detect the early tumor response to drug therapy.
Collapse
Affiliation(s)
- Anna G Sorace
- MBA, Department of Biomedical Engineering, University of Alabama at Birmingham, G082 Volker Hall, 1670 University Blvd, Birmingham, AL 35294-0019, USA
| | | | | | | |
Collapse
|
17
|
Early detection of ovarian cancer with conventional and contrast-enhanced transvaginal sonography: recent advances and potential improvements. JOURNAL OF ONCOLOGY 2012; 2012:302858. [PMID: 22619674 PMCID: PMC3351123 DOI: 10.1155/2012/302858] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/10/2012] [Accepted: 01/19/2012] [Indexed: 01/28/2023]
Abstract
Recently, there have been several major technical advances in the sonographic diagnosis of ovarian cancer in its early stages. These include improved assessment of tumor morphology with transvaginal sonography (TVS), and detection and characterization of tumor neovascularity with transvaginal color Doppler sonography (TV-CDS) and contrast-enhanced transvaginal sonography (CE-TVS). This paper will discuss and illustrate these improvements and describe how they enhance detection of early-stage ovarian cancer. Our initial experience with parametric mapping of CE-TVS will also be mentioned.
Collapse
|