1
|
Hofmann JJ, Poulos VC, Zhou J, Sharma M, Parraga G, McIntosh MJ. Review of quantitative and functional lung imaging evidence of vaping-related lung injury. Front Med (Lausanne) 2024; 11:1285361. [PMID: 38327710 PMCID: PMC10847544 DOI: 10.3389/fmed.2024.1285361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction The pulmonary effects of e-cigarette use (or vaping) became a healthcare concern in 2019, following the rapid increase of e-cigarette-related or vaping-associated lung injury (EVALI) in young people, which resulted in the critical care admission of thousands of teenagers and young adults. Pulmonary functional imaging is well-positioned to provide information about the acute and chronic effects of vaping. We generated a systematic review to retrieve relevant imaging studies that describe the acute and chronic imaging findings that underly vaping-related lung structure-function abnormalities. Methods A systematic review was undertaken on June 13th, 2023 using PubMed to search for published manuscripts using the following criteria: [("Vaping" OR "e-cigarette" OR "EVALI") AND ("MRI" OR "CT" OR "Imaging")]. We included only studies involving human participants, vaping/e-cigarette use, and MRI, CT and/or PET. Results The search identified 445 manuscripts, of which 110 (668 unique participants) specifically mentioned MRI, PET or CT imaging in cases or retrospective case series of patients who vaped. This included 105 manuscripts specific to CT (626 participants), three manuscripts which mainly used MRI (23 participants), and two manuscripts which described PET findings (20 participants). Most studies were conducted in North America (n = 90), with the remaining studies conducted in Europe (n = 15), Asia (n = 4) and South America (n = 1). The vast majority of publications described case studies (n = 93) and a few described larger retrospective or prospective studies (n = 17). In e-cigarette users and patients with EVALI, key CT findings included ground-glass opacities, consolidations and subpleural sparing, MRI revealed abnormal ventilation, perfusion and ventilation/perfusion matching, while PET showed evidence of pulmonary inflammation. Discussion and conclusion Pulmonary structural and functional imaging abnormalities were common in patients with EVALI and in e-cigarette users with or without respiratory symptoms, which suggests that functional MRI may be helpful in the investigation of the pulmonary health effects associated with e-cigarette use.
Collapse
Affiliation(s)
| | | | - Jiahai Zhou
- Robarts Research Institute, London, ON, Canada
| | - Maksym Sharma
- Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, London, ON, Canada
| | - Grace Parraga
- Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Marrissa J. McIntosh
- Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, London, ON, Canada
| |
Collapse
|
2
|
Ohno Y, Ozawa Y, Nagata H, Ueda T, Yoshikawa T, Takenaka D, Koyama H. Lung Magnetic Resonance Imaging: Technical Advancements and Clinical Applications. Invest Radiol 2024; 59:38-52. [PMID: 37707840 DOI: 10.1097/rli.0000000000001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Since lung magnetic resonance imaging (MRI) became clinically available, limited clinical utility has been suggested for applying MRI to lung diseases. Moreover, clinical applications of MRI for patients with lung diseases or thoracic oncology may vary from country to country due to clinical indications, type of health insurance, or number of MR units available. Because of this situation, members of the Fleischner Society and of the Japanese Society for Magnetic Resonance in Medicine have published new reports to provide appropriate clinical indications for lung MRI. This review article presents a brief history of lung MRI in terms of its technical aspects and major clinical indications, such as (1) what is currently available, (2) what is promising but requires further validation or evaluation, and (3) which developments warrant research-based evaluations in preclinical or patient studies. We hope this article will provide Investigative Radiology readers with further knowledge of the current status of lung MRI and will assist them with the application of appropriate protocols in routine clinical practice.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- From the Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno and H.N.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ozawa and T.U.); Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan (T.Y., D.T.); and Department of Radiology, Advanced Diagnostic Medical Imaging, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (H.K.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Bortolotto C, Messana G, Lo Tito A, Stella GM, Pinto A, Podrecca C, Bellazzi R, Gerbasi A, Agustoni F, Han F, Nickel MD, Zacà D, Filippi AR, Bottinelli OM, Preda L. The Role of Native T1 and T2 Mapping Times in Identifying PD-L1 Expression and the Histological Subtype of NSCLCs. Cancers (Basel) 2023; 15:3252. [PMID: 37370861 DOI: 10.3390/cancers15123252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
We investigated the association of T1/T2 mapping values with programmed death-ligand 1 protein (PD-L1) expression in lung cancer and their potential in distinguishing between different histological subtypes of non-small cell lung cancers (NSCLCs). Thirty-five patients diagnosed with stage III NSCLC from April 2021 to December 2022 were included. Conventional MRI sequences were acquired with a 1.5 T system. Mean T1 and T2 mapping values were computed for six manually traced ROIs on different areas of the tumor. Data were analyzed through RStudio. Correlation between T1/T2 mapping values and PD-L1 expression was studied with a Wilcoxon-Mann-Whitney test. A Kruskal-Wallis test with a post-hoc Dunn test was used to study the correlation between T1/T2 mapping values and the histological subtypes: squamocellular carcinoma (SCC), adenocarcinoma (ADK), and poorly differentiated NSCLC (PD). There was no statistically significant correlation between T1/T2 mapping values and PD-L1 expression in NSCLC. We found statistically significant differences in T1 mapping values between ADK and SCC for the periphery ROI (p-value 0.004), the core ROI (p-value 0.01), and the whole tumor ROI (p-value 0.02). No differences were found concerning the PD NSCLCs.
Collapse
Affiliation(s)
- Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gaia Messana
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonio Lo Tito
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Maria Stella
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Alessandra Pinto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Podrecca
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Alessia Gerbasi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Francesco Agustoni
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fei Han
- MR Application Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Marcel Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | | | - Andrea Riccardo Filippi
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Olivia Maria Bottinelli
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Preda
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
4
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Tibiletti M, Eaden JA, Naish JH, Hughes PJC, Waterton JC, Heaton MJ, Chaudhuri N, Skeoch S, Bruce IN, Bianchi S, Wild JM, Parker GJM. Imaging biomarkers of lung ventilation in interstitial lung disease from 129Xe and oxygen enhanced 1H MRI. Magn Reson Imaging 2023; 95:39-49. [PMID: 36252693 DOI: 10.1016/j.mri.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE To compare imaging biomarkers from hyperpolarised 129Xe ventilation MRI and dynamic oxygen-enhanced MRI (OE-MRI) with standard pulmonary function tests (PFT) in interstitial lung disease (ILD) patients. To evaluate if biomarkers can separate ILD subtypes and detect early signs of disease resolution or progression. STUDY TYPE Prospective longitudinal. POPULATION Forty-one ILD (fourteen idiopathic pulmonary fibrosis (IPF), eleven hypersensitivity pneumonitis (HP), eleven drug-induced ILD (DI-ILD), five connective tissue disease related-ILD (CTD-ILD)) patients and ten healthy volunteers imaged at visit 1. Thirty-four ILD patients completed visit 2 (eleven IPF, eight HP, ten DIILD, five CTD-ILD) after 6 or 26 weeks. FIELD STRENGTH/SEQUENCE MRI was performed at 1.5 T, including inversion recovery T1 mapping, dynamic MRI acquisition with varying oxygen levels, and hyperpolarised 129Xe ventilation MRI. Subjects underwent standard spirometry and gas transfer testing. ASSESSMENT Five 1H MRI and two 129Xe MRI ventilation metrics were compared with spirometry and gas transfer measurements. STATISTICAL TEST To evaluate differences at visit 1 among subgroups: ANOVA or Kruskal-Wallis rank tests with correction for multiple comparisons. To assess the relationships between imaging biomarkers, PFT, age and gender, at visit 1 and for the change between visit 1 and 2: Pearson correlations and multilinear regression models. RESULTS The global PFT tests could not distinguish ILD subtypes. Percentage ventilated volumes were lower in ILD patients than in HVs when measured with 129Xe MRI (HV 97.4 ± 2.6, CTD-ILD: 91.0 ± 4.8 p = 0.017, DI-ILD 90.1 ± 7.4 p = 0.003, HP 92.6 ± 4.0 p = 0.013, IPF 88.1 ± 6.5 p < 0.001), but not with OE-MRI. 129Xe reported more heterogeneous ventilation in DI-ILD and IPF than in HV, and OE-MRI reported more heterogeneous ventilation in DI-ILD and IPF than in HP or CTD-ILD. The longitudinal changes reported by the imaging biomarkers did not correlate with the PFT changes between visits. DATA CONCLUSION Neither 129Xe ventilation nor OE-MRI biomarkers investigated in this study were able to differentiate between ILD subtypes, suggesting that ventilation-only biomarkers are not indicated for this task. Limited but progressive loss of ventilated volume as measured by 129Xe-MRI may be present as the biomarker of focal disease progresses. OE-MRI biomarkers are feasible in ILD patients and do not correlate strongly with PFT. Both OE-MRI and 129Xe MRI revealed more spatially heterogeneous ventilation in DI-ILD and IPF.
Collapse
Affiliation(s)
- Marta Tibiletti
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom
| | - James A Eaden
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; MCMR, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, UK
| | - Paul J C Hughes
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - John C Waterton
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Matthew J Heaton
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom
| | - Nazia Chaudhuri
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sarah Skeoch
- Royal National Hospital for Rheumatic Diseases, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Ian N Bruce
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK; Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen Bianchi
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim M Wild
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK; Insigneo Insititute for in silico medicine, Sheffield, UK
| | - Geoff J M Parker
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| |
Collapse
|
6
|
Bluemke E, Bertrand A, Chu KY, Syed N, Murchison AG, Cooke R, Greenhalgh T, Burns B, Craig M, Taylor N, Shah K, Gleeson F, Bulte D. Oxygen-enhanced MRI and radiotherapy in patients with oropharyngeal squamous cell carcinoma. Clin Transl Radiat Oncol 2022; 39:100563. [PMID: 36655119 PMCID: PMC9841018 DOI: 10.1016/j.ctro.2022.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Background and purpose This study aimed to assess the role of T1 mapping and oxygen-enhanced MRI in patients undergoing radical dose radiotherapy for HPV positive oropharyngeal cancer, which has not yet been examined in an OE-MRI study. Materials and methods Variable Flip Angle T1 maps were acquired on a 3T MRI scanner while patients (n = 12) breathed air and/or 100 % oxygen, before and after fraction 10 of the planned 30 fractions of chemoradiotherapy ('visit 1' and 'visit 2', respectively). The analysis aimed to assess to what extent (1) native R1 relates to patient outcome; (2) OE-MRI response relates to patient outcome; (3) changes in mean R1 before and after radiotherapy related to clinical outcome in patients with oropharyngeal squamous cell carcinoma. Results Due to the radiotherapy being largely successful, the sample sizes of non-responder groups were small, and therefore it was not possible to properly assess the predictive nature of OE-MRI. The tumour R1 increased in some patients while decreasing in others, in a pattern that was overall consistent with the underlying OE-MRI theory and previously reported tumour OE-MRI responses. In addition, we discuss some practical challenges faced when integrating this technique into a clinical trial, with the aim that sharing this is helpful to researchers planning to use OE-MRI in future clinical studies. Conclusion Altogether, these results suggest that further clinical OE-MRI studies to assess hypoxia and radiotherapy response are worth pursuing, and that there is important work to be done to improve the robustness of the OE-MRI technique in human applications in order for it to be useful as a widespread clinical technique.
Collapse
Affiliation(s)
- Emma Bluemke
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK,Corresponding author at: Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Ambre Bertrand
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Kwun-Ye Chu
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, UK
| | - Nigar Syed
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK
| | - Andrew G. Murchison
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Rosie Cooke
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, UK
| | - Tessa Greenhalgh
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,University Hospital Southampton NHS Foundation Trust, UK
| | | | | | - Nia Taylor
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Ketan Shah
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, UK
| | - Fergus Gleeson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Daniel Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| |
Collapse
|
7
|
Bluemke E, Stride E, Bulte DP. Modeling the Effect of Hyperoxia on the Spin-Lattice Relaxation Rate R1 of Tissues. Magn Reson Med 2022; 88:1867-1885. [PMID: 35678239 PMCID: PMC9545427 DOI: 10.1002/mrm.29315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Inducing hyperoxia in tissues is common practice in several areas of research, including oxygen-enhanced MRI (OE-MRI), which attempts to use the resulting signal changes to detect regions of tumor hypoxia or pulmonary disease. The linear relationship between PO2 and R1 has been reproduced in phantom solutions and body fluids such as vitreous fluid; however, in tissue and blood experiments, factors such as changes in deoxyhemoglobin levels can also affect the ΔR1. THEORY AND METHODS This manuscript proposes a three-compartment model for estimating the hyperoxia-induced changes in R1 of tissues depending on B0, SO2 , blood volume, hematocrit, oxygen extraction fraction, and changes in blood and tissue PO2 . The model contains two blood compartments (arterial and venous) and a tissue compartment. This model has been designed to be easy for researchers to tailor to their tissue of interest by substituting their preferred model for tissue oxygen diffusion and consumption. A specific application of the model is demonstrated by calculating the resulting ΔR1 expected in healthy, hypoxic and necrotic tumor tissues. In addition, the effect of sex-based hematocrit differences on ΔR1 is assessed. RESULTS The ΔR1 values predicted by the model are consistent with reported literature OE-MRI results: with larger positive changes in the vascular periphery than hypoxic and necrotic regions. The observed sex-based differences in ΔR1 agree with findings by Kindvall et al. suggesting that differences in hematocrit levels may sometimes be a confounding factor in ΔR1. CONCLUSION This model can be used to estimate the expected tissue ΔR1 in oxygen-enhanced MRI experiments.
Collapse
Affiliation(s)
- Emma Bluemke
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, UK
| | - Daniel Peter Bulte
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Using Variable Flip Angle (VFA) and Modified Look-Locker Inversion Recovery (MOLLI) T1 mapping in clinical OE-MRI. Magn Reson Imaging 2022; 89:92-99. [PMID: 35341905 DOI: 10.1016/j.mri.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE The imaging technique known as Oxygen-Enhanced MRI is under development as a noninvasive technique for imaging hypoxia in tumours and pulmonary diseases. While promising results have been shown in preclinical experiments, clinical studies have mentioned experiencing difficulties with patient motion, image registration, and the limitations of single-slice images compared to 3D volumes. As clinical studies begin to assess feasibility of using OE-MRI in patients, it is important for researchers to communicate about the practical challenges experienced when using OE-MRI on patients to help the technique advance. MATERIALS AND METHODS We report on our experience with using two types of T1 mapping (MOLLI and VFA) for a recently completed OE-MRI clinical study on oropharyngeal squamous cell carcinoma. RESULTS We report: (1) the artefacts and practical difficulties encountered in this study; (2) the difference in estimated T1 from each method used - the VFA T1 estimation was higher than the MOLLI estimation by 27% on average; (3) the standard deviation within the tumour ROIs - there was no significant difference in the standard deviation seen within the tumour ROIs from the VFA versus MOLLI; and (4) the OE-MRI response collected from either method. Lastly, we collated the MRI acquisition details from over 45 relevant manuscripts as a convenient reference for researchers planning future studies. CONCLUSION We have reported our practical experience from an OE-MRI clinical study, with the aim that sharing this is helpful to researchers planning future studies. In this study, VFA was a more useful technique for using OE-MRI in tumours than MOLLI T1 mapping.
Collapse
|
9
|
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. State-of-the-art MR Imaging for Thoracic Diseases. Magn Reson Med Sci 2021; 21:212-234. [PMID: 33952785 PMCID: PMC9199970 DOI: 10.2463/mrms.rev.2020-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Radiology, Fujita Health University School of Medicine
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital
| | - Takashi Fukuba
- Department of Radiology, Fujita Health University Hospital
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | | | | | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine
| |
Collapse
|
10
|
Park S, Lee EJ. Diagnosis and treatment of drug-induced interstitial lung disease. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.4.286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drug-induced interstitial lung disease (DILD) is a group of adverse drug reactions that is rare but fatally toxic. Pulmonary toxicity causes inflammation and subsequent interstitial fibrosis. As novel drugs with a variety of purposes are introduced into the medical field, the number of culprit medications that are suspected to cause lung complications is accordingly increasing. In this review, DILD will be discussed from several aspects such as causality by numerous drugs, check points for a timely diagnosis, alongside some contemporary treatment options. The exact mechanism of DILD has not been elucidated, and a useful clinical, radiological, or pathological confirmation process is still lacking. Common drugs which casue DILD include bleomycin, amiodarone, epidermal growth factor receptor-targeted agents, and immune checkpoint inhibitors. Diagnosis is based on a suspicious drug administration history, somewhat inconsistent clinical symptoms and signs, radiological hints, and histopathological assistance, together with the exclusion of other lung-injuring etiologies. Cessation of the suspected drug, meticulous corticosteroid usage, and ancillary supportive management are the mainstay therapeutic strategy for DILD. Most cases of DILD respond to these countermeasures and reductions, but in some cases the fibrotic process worsens, leading to irreversible sequelae on the affected lung.
Collapse
|
11
|
Yang S, Shan F, Yan Q, Shen J, Ye P, Zhang Z, Shi Y, Zhang R. A pilot study of native T1-mapping for focal pulmonary lesions in 3.0 T magnetic resonance imaging: size estimation and differential diagnosis. J Thorac Dis 2020; 12:2517-2528. [PMID: 32642159 PMCID: PMC7330293 DOI: 10.21037/jtd.2020.03.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background To investigate the accuracy of size estimation and potential diagnosis efficacy of native T1-mapping in focal pulmonary lesion, compared to T1-star 3D-volumetric interpolated breath-hold sequence (VIBE), T2-fBLADE turbo-spin echo (TSE), and computed tomography (CT). Methods Thirty-nine patients with CT-detected focal pulmonary lesions underwent thoracic 3.0-T magnetic resonance imaging (MRI) using axial free-breathing 3D T1-star VIBE, respiratory triggered T2-fBLADE TSE, breath-hold T1-Turbo fast low angle shot (FLASH) and T1-FLASH 3D. Native T1-mapping images were generated by T1-FLASH 3D with B1-filed correction by T1-Turbo FLASH. The intraclass correlation coefficient (ICC) and Bland-Altman plots were used to evaluate intra-observer agreement and inter-method reliability of diameter measurements. Native T1-values were measured and compared among the malignancy, tuberculosis, non-tuberculosis benign groups using Mann-Whitney U tests. Results Forty-five focal pulmonary lesions were displayed by CT, native T1-mapping, T1-star VIBE, and T2-fBLADE TSE. T1-mapping-based diameter measurements yielded an intra-observer ICC of 0.995. Additionally, inter-method measurements were highly consistent (T1-mapping & T1-star VIBE: ICC 0.982, T1-mapping & T2-fBLADE TSE: ICC 0.978, T1-mapping & CT: ICC 0.972). For lesions <3.00 cm, T1-mapping intra-observer (ICC 0.982) and inter-method diameter measurements were also highly consistent (T1-mapping & CT: ICC 0.823). Native T1-values of malignant tumors were lower than those of the non-tuberculosis benign lesions (P=0.003). Native T1-values of tuberculosis were lower than those of the non-tuberculosis benign lesions (P=0.002). Native T1-values showed no statistically significant differences between malignant tumors and tuberculosis (P=0.059). Conclusions Native T1-mapping enable accurate and reliable diameter measurement. Native T1-values potentially differentiate malignant tumors or tuberculosis from non-tuberculosis benign lesions.
Collapse
Affiliation(s)
- Shuyi Yang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qinqin Yan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jie Shen
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Peiyan Ye
- Department of Hepatopathy, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhiyong Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.,Fudan University, Shanghai 200433, China
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Rengyin Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
12
|
Voskrebenzev A, Vogel-Claussen J. Proton MRI of the Lung: How to Tame Scarce Protons and Fast Signal Decay. J Magn Reson Imaging 2020; 53:1344-1357. [PMID: 32166832 DOI: 10.1002/jmri.27122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary proton MRI techniques offer the unique possibility of assessing lung function and structure without the requirement for hyperpolarization or dedicated hardware, which is mandatory for multinuclear acquisition. Five popular approaches are presented and discussed in this review: 1) oxygen enhanced (OE)-MRI; 2) arterial spin labeling (ASL); 3) Fourier decomposition (FD) MRI and other related methods including self-gated noncontrast-enhanced functional lung (SENCEFUL) MR and phase-resolved functional lung (PREFUL) imaging; 4) dynamic contrast-enhanced (DCE) MRI; and 5) ultrashort TE (UTE) MRI. While DCE MRI is the most established and well-studied perfusion measurement, FD MRI offers a free-breathing test without any contrast agent and is predestined for application in patients with renal failure or with low compliance. Additionally, FD MRI and related methods like PREFUL and SENCEFUL can act as an ionizing radiation-free V/Q scan, since ventilation and perfusion information is acquired simultaneously during one scan. For OE-MRI, different concentrations of oxygen are applied via a facemask to assess the regional change in T1 , which is caused by the paramagnetic property of oxygen. Since this change is governed by a combination of ventilation, diffusion, and perfusion, a compound functional measurement can be achieved with OE-MRI. The known problem of fast T2 * decay of the lung parenchyma leading to a low signal-to-noise ratio is bypassed by the UTE acquisition strategy. Computed tomography (CT)-like images allow the assessment of lung structure with high spatial resolution without ionizing radiation. Despite these different branches of proton MRI, common trends are evident among pulmonary proton MRI: 1) free-breathing acquisition with self-gating; 2) application of UTE to preserve a stronger parenchymal signal; and 3) transition from 2D to 3D acquisition. On that note, there is a visible convergence of the different methods and it is not difficult to imagine that future methods will combine different aspects of the presented methods.
Collapse
Affiliation(s)
- Andreas Voskrebenzev
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL), Hannover, Germany
| |
Collapse
|
13
|
Waterton JC, Hines CDG, Hockings PD, Laitinen I, Ziemian S, Campbell S, Gottschalk M, Green C, Haase M, Hassemer K, Juretschke HP, Koehler S, Lloyd W, Luo Y, Mahmutovic Persson I, O'Connor JPB, Olsson LE, Pindoria K, Schneider JE, Sourbron S, Steinmann D, Strobel K, Tadimalla S, Teh I, Veltien A, Zhang X, Schütz G. Repeatability and reproducibility of longitudinal relaxation rate in 12 small-animal MRI systems. Magn Reson Imaging 2019; 59:121-129. [PMID: 30872166 PMCID: PMC6477178 DOI: 10.1016/j.mri.2019.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/29/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Many translational MR biomarkers derive from measurements of the water proton longitudinal relaxation rate R1, but evidence for between-site reproducibility of R1 in small-animal MRI is lacking. OBJECTIVE To assess R1 repeatability and multi-site reproducibility in phantoms for preclinical MRI. METHODS R1 was measured by saturation recovery in 2% agarose phantoms with five nickel chloride concentrations in 12 magnets at 5 field strengths in 11 centres on two different occasions within 1-13 days. R1 was analysed in three different regions of interest, giving 360 measurements in total. Root-mean-square repeatability and reproducibility coefficients of variation (CoV) were calculated. Propagation of reproducibility errors into 21 translational MR measurements and biomarkers was estimated. Relaxivities were calculated. Dynamic signal stability was also measured. RESULTS CoV for day-to-day repeatability (N = 180 regions of interest) was 2.34% and for between-centre reproducibility (N = 9 centres) was 1.43%. Mostly, these do not propagate to biologically significant between-centre error, although a few R1-based MR biomarkers were found to be quite sensitive even to such small errors in R1, notably in myocardial fibrosis, in white matter, and in oxygen-enhanced MRI. The relaxivity of aqueous Ni2+ in 2% agarose varied between 0.66 s-1 mM-1 at 3 T and 0.94 s-1 mM-1 at 11.7T. INTERPRETATION While several factors affect the reproducibility of R1-based MR biomarkers measured preclinically, between-centre propagation of errors arising from intrinsic equipment irreproducibility should in most cases be small. However, in a few specific cases exceptional efforts might be required to ensure R1-reproducibility.
Collapse
Affiliation(s)
- John C Waterton
- Bioxydyn Ltd, Manchester Science Park, Rutherford House, Pencroft Way, MANCHESTER M15 6SZ, United Kingdom; Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, MANCHESTER M13 9PL, United Kingdom.
| | | | - Paul D Hockings
- Antaros Medical, BioVenture Hub, 43183 Mölndal, Sweden; MedTech West, Chalmers University of Technology, Gothenburg, Sweden.
| | - Iina Laitinen
- Sanofi-Aventis Deutschland GmbH, R&D TIM - Bioimaging Germany, Industriepark Höchst, D-65926 Frankfurt am Main, Germany.
| | - Sabina Ziemian
- Bayer AG, Research and Development, Pharmaceuticals, MR and CT Contrast Media Research, Müllerstraße 178, D-13353 Berlin, Germany.
| | - Simon Campbell
- In-Vivo Bioimaging UK, RD Platform Technology & Science, GSK Medicines Research Centre, Gunnels Wood Road, STEVENAGE, Hertfordshire, SG1 2NY, United Kingdom.
| | - Michael Gottschalk
- Lund University BioImaging Center, Klinikgatan 32, SE-222-42 Lund, Sweden.
| | - Claudia Green
- Bayer AG, Research and Development, Pharmaceuticals, MR and CT Contrast Media Research, Müllerstraße 178, D-13353 Berlin, Germany.
| | - Michael Haase
- In-Vivo Bioimaging UK, RD Platform Technology & Science, GSK Medicines Research Centre, Gunnels Wood Road, STEVENAGE, Hertfordshire, SG1 2NY, United Kingdom.
| | - Katja Hassemer
- Sanofi-Aventis Deutschland GmbH, R&D TIM - Bioimaging Germany, Industriepark Höchst, D-65926 Frankfurt am Main, Germany.
| | - Hans-Paul Juretschke
- Sanofi-Aventis Deutschland GmbH, R&D TIM - Bioimaging Germany, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Sascha Koehler
- Bruker BioSpin MRI GmbH, Rudolf-Plank-Straße 23, D-76275 Ettlingen, Germany.
| | - William Lloyd
- Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, MANCHESTER M13 9PL, United Kingdom.
| | - Yanping Luo
- iSAT Discovery, Abbvie, 1 North Waukegan Road, North Chicago, IL, 60064-1802, United States of America.
| | - Irma Mahmutovic Persson
- Department of Translational Sciences, Medical Radiation Physics, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden.
| | - James P B O'Connor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, MANCHESTER M20 4BX, United Kingdom. james.o'
| | - Lars E Olsson
- Department of Translational Sciences, Medical Radiation Physics, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden.
| | - Kashmira Pindoria
- In-Vivo Bioimaging UK, RD Platform Technology & Science, GSK Medicines Research Centre, Gunnels Wood Road, STEVENAGE, Hertfordshire, SG1 2NY, United Kingdom.
| | - Jurgen E Schneider
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Steven Sourbron
- Leeds Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, LIGHT Labs, Clarendon Way, LEEDS LS2 9JT, United Kingdom.
| | - Denise Steinmann
- Sanofi-Aventis Deutschland GmbH, R&D TIM - Bioimaging Germany, Industriepark Höchst, D-65926 Frankfurt am Main, Germany.
| | - Klaus Strobel
- Bruker BioSpin MRI GmbH, Rudolf-Plank-Straße 23, D-76275 Ettlingen, Germany.
| | - Sirisha Tadimalla
- Leeds Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, LIGHT Labs, Clarendon Way, LEEDS LS2 9JT, United Kingdom.
| | - Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Andor Veltien
- Radboud university medical center, Radiology (766), P.O.Box 9101, 6500, HB, Nijmegen, the Netherlands.
| | - Xiaomeng Zhang
- iSAT Discovery, Abbvie, 1 North Waukegan Road, North Chicago, IL, 60064-1802, United States of America.
| | - Gunnar Schütz
- Bayer AG, Research and Development, Pharmaceuticals, MR and CT Contrast Media Research, Müllerstraße 178, D-13353 Berlin, Germany.
| |
Collapse
|
14
|
O'Connor JPB, Robinson SP, Waterton JC. Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. Br J Radiol 2019; 92:20180642. [PMID: 30272998 PMCID: PMC6540855 DOI: 10.1259/bjr.20180642] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is known to be a poor prognostic indicator for nearly all solid tumours and also is predictive of treatment failure for radiotherapy, chemotherapy, surgery and targeted therapies. Imaging has potential to identify, spatially map and quantify tumour hypoxia prior to therapy, as well as track changes in hypoxia on treatment. At present no hypoxia imaging methods are available for routine clinical use. Research has largely focused on positron emission tomography (PET)-based techniques, but there is gathering evidence that MRI techniques may provide a practical and more readily translational alternative. In this review we focus on the potential for imaging hypoxia by measuring changes in longitudinal relaxation [R1; termed oxygen-enhanced MRI or tumour oxygenation level dependent (TOLD) MRI] and effective transverse relaxation [R2*; termed blood oxygenation level dependent (BOLD) MRI], induced by inhalation of either 100% oxygen or the radiosensitising hyperoxic gas carbogen. We explain the scientific principles behind oxygen-enhanced MRI and BOLD and discuss significant studies and their limitations. All imaging biomarkers require rigorous validation in order to translate into clinical use and the steps required to further develop oxygen-enhanced MRI and BOLD MRI into decision-making tools are discussed.
Collapse
Affiliation(s)
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | |
Collapse
|
15
|
Skeoch S, Weatherley N, Swift AJ, Oldroyd A, Johns C, Hayton C, Giollo A, Wild JM, Waterton JC, Buch M, Linton K, Bruce IN, Leonard C, Bianchi S, Chaudhuri N. Drug-Induced Interstitial Lung Disease: A Systematic Review. J Clin Med 2018; 7:jcm7100356. [PMID: 30326612 PMCID: PMC6209877 DOI: 10.3390/jcm7100356] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Drug-induced interstitial lung disease (DIILD) occurs as a result of numerous agents, but the risk often only becomes apparent after the marketing authorisation of such agents. Methods: In this PRISMA-compliant systematic review, we aimed to evaluate and synthesise the current literature on DIILD. Results: Following a quality assessment, 156 full-text papers describing more than 6000 DIILD cases were included in the review. However, the majority of the papers were of low or very low quality in relation to the review question (78%). Thus, it was not possible to perform a meta-analysis, and descriptive review was undertaken instead. DIILD incidence rates varied between 4.1 and 12.4 cases/million/year. DIILD accounted for 3–5% of prevalent ILD cases. Cancer drugs, followed by rheumatology drugs, amiodarone and antibiotics, were the most common causes of DIILD. The radiopathological phenotype of DIILD varied between and within agents, and no typical radiological pattern specific to DIILD was identified. Mortality rates of over 50% were reported in some studies. Severity at presentation was the most reliable predictor of mortality. Glucocorticoids (GCs) were commonly used to treat DIILD, but no prospective studies examined their effect on outcome. Conclusions: Overall high-quality evidence in DIILD is lacking, and the current review will inform larger prospective studies to investigate the diagnosis and management of DIILD.
Collapse
Affiliation(s)
- Sarah Skeoch
- Arthritis Research UK Centre for Epidemiology, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PL, UK.
- Royal National Hospital for Rheumatic Diseases, Royal United Hospitals Bath NHS Foundation Trust, Bath BA1 1RL, UK.
| | - Nicholas Weatherley
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK.
| | - Andrew J Swift
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK.
| | - Alexander Oldroyd
- Arthritis Research UK Centre for Epidemiology, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PL, UK.
| | - Christopher Johns
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK.
| | - Conal Hayton
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M6 8HD, UK.
| | - Alessandro Giollo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, NIHR Leeds Biomedical Research Centre, University of Leeds, Leeds LS2 9JT, UK.
- Rheumatology Unit, Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - James M Wild
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK.
| | - John C Waterton
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, UK.
- Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PL, UK.
| | - Maya Buch
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, NIHR Leeds Biomedical Research Centre, University of Leeds, Leeds LS2 9JT, UK.
| | - Kim Linton
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PL, UK.
| | - Ian N Bruce
- Arthritis Research UK Centre for Epidemiology, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PL, UK.
- The Kellgren Centre for Rheumatology, NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M6 8HD, UK.
| | - Colm Leonard
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M6 8HD, UK.
| | - Stephen Bianchi
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK.
| | - Nazia Chaudhuri
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M6 8HD, UK.
| |
Collapse
|
16
|
Guo F, Capaldi D, Kirby M, Sheikh K, Svenningsen S, McCormack DG, Fenster A, Parraga G. Development of a pulmonary imaging biomarker pipeline for phenotyping of chronic lung disease. J Med Imaging (Bellingham) 2018; 5:026002. [PMID: 29963580 DOI: 10.1117/1.jmi.5.2.026002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
We designed and generated pulmonary imaging biomarker pipelines to facilitate high-throughput research and point-of-care use in patients with chronic lung disease. Image processing modules and algorithm pipelines were embedded within a graphical user interface (based on the .NET framework) for pulmonary magnetic resonance imaging (MRI) and x-ray computed-tomography (CT) datasets. The software pipelines were generated using C++ and included: (1) inhaled He3/Xe129 MRI ventilation and apparent diffusion coefficients, (2) CT-MRI coregistration for lobar and segmental ventilation and perfusion measurements, (3) ultrashort echo-time H1 MRI proton density measurements, (4) free-breathing Fourier-decomposition H1 MRI ventilation/perfusion and free-breathing H1 MRI specific ventilation, (5) multivolume CT and MRI parametric response maps, and (6) MRI and CT texture analysis and radiomics. The image analysis framework was implemented on a desktop workstation/tablet to generate biomarkers of regional lung structure and function related to ventilation, perfusion, lung tissue texture, and integrity as well as multiparametric measures of gas trapping and airspace enlargement. All biomarkers were generated within 10 min with measurement reproducibility consistent with clinical and research requirements. The resultant pulmonary imaging biomarker pipeline provides real-time and automated lung imaging measurements for point-of-care and high-throughput research.
Collapse
Affiliation(s)
- Fumin Guo
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada.,University of Western Ontario, Graduate Program in Biomedical Engineering, London, Ontario, Canada.,University of Toronto, Sunnybrook Research Institute, Toronto, Canada
| | - Dante Capaldi
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada.,University of Western Ontario, Department of Medical Biophysics, London, Ontario, Canada
| | - Miranda Kirby
- University of British Columbia, St. Paul's Hospital, Centre for Heart Lung Innovation, Vancouver, Canada
| | - Khadija Sheikh
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada
| | - Sarah Svenningsen
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada
| | - David G McCormack
- University of Western Ontario, Division of Respirology, Department of Medicine, London, Ontario, Canada
| | - Aaron Fenster
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada.,University of Western Ontario, Graduate Program in Biomedical Engineering, London, Ontario, Canada.,University of Western Ontario, Department of Medical Biophysics, London, Ontario, Canada
| | - Grace Parraga
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada.,University of Western Ontario, Graduate Program in Biomedical Engineering, London, Ontario, Canada.,University of Western Ontario, Department of Medical Biophysics, London, Ontario, Canada
| | | |
Collapse
|
17
|
Alamidi DF, Smailagic A, Bidar AW, Parker NS, Olsson M, Hockings PD, Lagerstrand KM, Olsson LE. Variable flip angle 3D ultrashort echo time (UTE) T 1 mapping of mouse lung: A repeatability assessment. J Magn Reson Imaging 2018; 48:846-852. [PMID: 29517831 DOI: 10.1002/jmri.25999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/13/2018] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Lung T1 is a potential translational biomarker of lung disease. The precision and repeatability of variable flip angle (VFA) T1 mapping using modern 3D ultrashort echo time (UTE) imaging of the whole lung needs to be established before it can be used to assess response to disease and therapy. PURPOSE To evaluate the feasibility of regional lung T1 quantification with VFA 3D-UTE and to investigate long- and short-term T1 repeatability in the lungs of naive mice. STUDY TYPE Prospective preclinical animal study. POPULATION Eight naive mice and phantoms. FIELD STRENGTH/SEQUENCE 3D free-breathing radial UTE (8 μs) at 4.7T. ASSESSMENT VFA 3D-UTE T1 calculations were validated against T1 values measured with inversion recovery (IR) in phantoms. Lung T1 and proton density (S0 ) measurements of whole lung and muscle were repeated five times over 1 month in free-breathing naive mice. Two consecutive T1 measurements were performed during one of the imaging sessions. STATISTICAL TESTS Agreement in T1 between VFA 3D-UTE and IR in phantoms was assessed using Bland-Altman and Pearson 's correlation analysis. The T1 repeatability in mice was evaluated using coefficient of variation (CV), repeated-measures analysis of variance (ANOVA), and paired t-test. RESULTS Good T1 agreement between the VFA 3D-UTE and IR methods was found in phantoms. T1 in lung and muscle showed a 5% and 3% CV (1255 ± 63 msec and 1432 ± 42 msec, respectively, mean ± SD) with no changes in T1 or S0 over a month. Consecutive measurements resulted in an increase of 2% in both lung T1 and S0 . DATA CONCLUSION VFA 3D-UTE shows promise as a reliable T1 mapping method that enables full lung coverage, high signal-to-noise ratio (∼25), and spatial resolution (300 μm) in freely breathing animals. The precision of the VFA 3D-UTE method will enable better design and powering of studies. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Daniel F Alamidi
- Philips Health Systems, Stockholm, Sweden
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | - Paul D Hockings
- Antaros Medical, BioVenture Hub, Mölndal, Sweden
- Medtech West, Chalmers University of Technology, Gothenburg, Sweden
| | - Kerstin M Lagerstrand
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars E Olsson
- Department of Translational Sciences, Medical Radiation Physics, Malmö, Lund University, Sweden
| |
Collapse
|
18
|
Gutberlet M, Kaireit TF, Voskrebenzev A, Lasch F, Freise J, Welte T, Wacker F, Hohlfeld JM, Vogel-Claussen J. Free-breathing Dynamic 19F Gas MR Imaging for Mapping of Regional Lung Ventilation in Patients with COPD. Radiology 2017; 286:1040-1051. [PMID: 28972817 DOI: 10.1148/radiol.2017170591] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose To quantify regional lung ventilation in patients with chronic obstructive pulmonary disease (COPD) by using free-breathing dynamic fluorinated (fluorine 19 [19F]) gas magnetic resonance (MR) imaging. Materials and Methods In this institutional review board-approved prospective study, 27 patients with COPD were examined by using breath-hold 19F gas wash-in MR imaging during inhalation of a normoxic fluorinated gas mixture (perfluoropropane) and by using free-breathing dynamic 19F gas washout MR imaging after inhalation of the gas mixture was finished for a total of 25-30 L. Regional lung ventilation was quantified by using volume defect percentage (VDP), washout time, number of breaths, and fractional ventilation (FV). To compare different lung function parameters, Pearson correlation coefficient and Fisher z transformation were used, which were corrected for multiple comparisons with the Bonferroni method. Results Statistically significant correlations were observed for all evaluated lung function test parameters compared with median and interquartile range of 19F washout parameters. An inverse linear correlation of median number of breaths (r = -0.82; P < .0001) and median washout times (r = -0.77; P < .0001) with percentage predicted of forced expiratory volume in 1 second (FEV1) was observed; correspondingly median FV (r = 0.86; P < .0001) correlated positively with percentage predicted FEV1. Comparing initial with late phase, median VDP of all subjects decreased from 49% (25th-75th percentile, 35%-62%) to 6% (25th-75th percentile, 2%-10%; P < .0001). VDP at the beginning of the gas wash-in phase (VDPinitial) significantly correlated with percentage predicted FEV1 (r = -0.74; P = .0028) and FV (r = 0.74; P = .0002). Median FV was significantly increased in ventilated regions (11.1% [25th-75th percentile, 6.8%-14.5%]) compared with the defect regions identified by VDPinitial (5.8% [25th-75th percentile, 4.0%-7.4%]; P < .0001). Conclusion Quantification of regional lung ventilation by using dynamic 19F gas washout MR imaging in free breathing is feasible at 1.5 T even in obstructed lung segments. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Marcel Gutberlet
- From the Institute for Diagnostic and Interventional Radiology (M.G., T.F.K., A.V., F.W., J.V.C.), Institute of Biometry (F.L.), and Clinic of Pneumology (J.F., T.W., J.M.H.), Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, the German Center for Lung Research, Hannover, Germany (M.G., T.F.K., A.V., J.F., T.W., F.W., J.M.H., J.V.C.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Clinical Airway Research, Hannover, Germany (J.M.H.)
| | - Till F Kaireit
- From the Institute for Diagnostic and Interventional Radiology (M.G., T.F.K., A.V., F.W., J.V.C.), Institute of Biometry (F.L.), and Clinic of Pneumology (J.F., T.W., J.M.H.), Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, the German Center for Lung Research, Hannover, Germany (M.G., T.F.K., A.V., J.F., T.W., F.W., J.M.H., J.V.C.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Clinical Airway Research, Hannover, Germany (J.M.H.)
| | - Andreas Voskrebenzev
- From the Institute for Diagnostic and Interventional Radiology (M.G., T.F.K., A.V., F.W., J.V.C.), Institute of Biometry (F.L.), and Clinic of Pneumology (J.F., T.W., J.M.H.), Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, the German Center for Lung Research, Hannover, Germany (M.G., T.F.K., A.V., J.F., T.W., F.W., J.M.H., J.V.C.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Clinical Airway Research, Hannover, Germany (J.M.H.)
| | - Florian Lasch
- From the Institute for Diagnostic and Interventional Radiology (M.G., T.F.K., A.V., F.W., J.V.C.), Institute of Biometry (F.L.), and Clinic of Pneumology (J.F., T.W., J.M.H.), Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, the German Center for Lung Research, Hannover, Germany (M.G., T.F.K., A.V., J.F., T.W., F.W., J.M.H., J.V.C.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Clinical Airway Research, Hannover, Germany (J.M.H.)
| | - Julia Freise
- From the Institute for Diagnostic and Interventional Radiology (M.G., T.F.K., A.V., F.W., J.V.C.), Institute of Biometry (F.L.), and Clinic of Pneumology (J.F., T.W., J.M.H.), Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, the German Center for Lung Research, Hannover, Germany (M.G., T.F.K., A.V., J.F., T.W., F.W., J.M.H., J.V.C.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Clinical Airway Research, Hannover, Germany (J.M.H.)
| | - Tobias Welte
- From the Institute for Diagnostic and Interventional Radiology (M.G., T.F.K., A.V., F.W., J.V.C.), Institute of Biometry (F.L.), and Clinic of Pneumology (J.F., T.W., J.M.H.), Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, the German Center for Lung Research, Hannover, Germany (M.G., T.F.K., A.V., J.F., T.W., F.W., J.M.H., J.V.C.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Clinical Airway Research, Hannover, Germany (J.M.H.)
| | - Frank Wacker
- From the Institute for Diagnostic and Interventional Radiology (M.G., T.F.K., A.V., F.W., J.V.C.), Institute of Biometry (F.L.), and Clinic of Pneumology (J.F., T.W., J.M.H.), Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, the German Center for Lung Research, Hannover, Germany (M.G., T.F.K., A.V., J.F., T.W., F.W., J.M.H., J.V.C.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Clinical Airway Research, Hannover, Germany (J.M.H.)
| | - Jens M Hohlfeld
- From the Institute for Diagnostic and Interventional Radiology (M.G., T.F.K., A.V., F.W., J.V.C.), Institute of Biometry (F.L.), and Clinic of Pneumology (J.F., T.W., J.M.H.), Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, the German Center for Lung Research, Hannover, Germany (M.G., T.F.K., A.V., J.F., T.W., F.W., J.M.H., J.V.C.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Clinical Airway Research, Hannover, Germany (J.M.H.)
| | - Jens Vogel-Claussen
- From the Institute for Diagnostic and Interventional Radiology (M.G., T.F.K., A.V., F.W., J.V.C.), Institute of Biometry (F.L.), and Clinic of Pneumology (J.F., T.W., J.M.H.), Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, the German Center for Lung Research, Hannover, Germany (M.G., T.F.K., A.V., J.F., T.W., F.W., J.M.H., J.V.C.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Clinical Airway Research, Hannover, Germany (J.M.H.)
| |
Collapse
|
19
|
Singh D. Evaluation of New Drugs for Asthma and COPD: Endpoints, Biomarkers and Clinical Trial Design. Handb Exp Pharmacol 2017; 237:243-264. [PMID: 27838852 DOI: 10.1007/164_2016_70] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There remains a considerable need to develop novel therapies for patients with asthma and chronic obstructive pulmonary disease (COPD). The greatest challenge at the moment is measuring the effects of novel anti-inflammatory drugs, as these drugs often cause only small effects on lung function. Measurements that demonstrate the pharmacological and clinical effects of these drugs are needed. Furthermore, we now recognise that only subgroups of patients are likely to respond to these novel drugs, so using biomarkers to determine the clinical phenotype most suitable for such therapies is important. An endotype is a subtype of a (clinical) condition defined by a distinct pathophysiological mechanism. An endotype-driven approach may be more helpful in drug development, enabling drugs to be targeted specifically towards specific biological mechanisms rather than clinical characteristics. This requires the development of biomarkers to define endotypes and/or to measure drug effects. This newer approach should continue alongside efforts to optimise the measurement of clinical endpoints, including patient-reported outcome measurements, required by drug regulatory authorities.
Collapse
Affiliation(s)
- Dave Singh
- Medicines Evaluation Unit, University of Manchester, University Hospital of South Manchester Foundations Trust, Langley Building, Southmoor Road, Wythenshawe, Manchester, M23 9Q2, UK.
| |
Collapse
|
20
|
Kindvall SSI, Diaz S, Svensson J, Wollmer P, Olsson LE. The change of longitudinal relaxation rate in oxygen enhanced pulmonary MRI depends on age and BMI but not diffusing capacity of carbon monoxide in healthy never-smokers. PLoS One 2017; 12:e0177670. [PMID: 28494006 PMCID: PMC5426684 DOI: 10.1371/journal.pone.0177670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/01/2017] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO) in patients with lung disease. METHODS In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH) was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds. RESULTS In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003) and BMI (p = 0.0004), but not DL,CO (p = 0.33). Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term. CONCLUSION In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.
Collapse
Affiliation(s)
| | - Sandra Diaz
- Medical Radiology, Translational Medicine, Lund University, Malmö, Sweden
| | - Jonas Svensson
- Medical Imaging and Physiology, Skane University Hospital, Lund, Sweden
| | - Per Wollmer
- Clinical Physiology, Translational Medicine, Lund University, Malmö, Sweden
| | - Lars E. Olsson
- Medical Radiation Physics, Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
21
|
Horn FC, Marshall H, Collier GJ, Kay R, Siddiqui S, Brightling CE, Parra-Robles J, Wild JM. Regional Ventilation Changes in the Lung: Treatment Response Mapping by Using Hyperpolarized Gas MR Imaging as a Quantitative Biomarker. Radiology 2017; 284:854-861. [PMID: 28471738 DOI: 10.1148/radiol.2017160532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To assess the magnitude of regional response to respiratory therapeutic agents in the lungs by using treatment response mapping (TRM) with hyperpolarized gas magnetic resonance (MR) imaging. TRM was used to quantify regional physiologic response in adults with asthma who underwent a bronchodilator challenge. Materials and Methods This study was approved by the national research ethics committee and was performed with informed consent. Imaging was performed in 20 adult patients with asthma by using hyperpolarized helium 3 (3He) ventilation MR imaging. Two sets of baseline images were acquired before inhalation of a bronchodilating agent (salbutamol 400 μg), and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), was calculated as the difference in regional gas distribution (R[r] = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global treatment response map (ΔRnet) was then used as a global lung index for comparison with metrics of bronchodilator response measured by using spirometry and the global imaging metric percentage ventilated volume (%VV). Results ΔRnet showed significant correlation (P < .01) with changes in forced expiratory volume in 1 second (r = 0.70), forced vital capacity (r = 0.84), and %VV (r = 0.56). A significant (P < .01) positive treatment effect was detected with all metrics; however, ΔRnet showed a lower intersubject coefficient of variation (64%) than all of the other tests (coefficient of variation, ≥99%). Conclusion TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as a sensitive regional outcome metric for novel respiratory interventions. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Felix C Horn
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Helen Marshall
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Guilhem J Collier
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Richard Kay
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Salman Siddiqui
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Christopher E Brightling
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Juan Parra-Robles
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| | - Jim M Wild
- From the Unit of Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, C Floor, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (F.C.H., H.M., G.J.C., J.P., J.M.W.); Novartis, Basel, Switzerland (R.K.); Department of Respiratory Medicine, Glenfield Hospital, Leicester, England (S.S., C.E.B.); Insigneo Institute of In-Silico Medicine, University of Sheffield, Sheffield, England (J.M.W.)
| |
Collapse
|
22
|
Pusterla O, Bauman G, Bieri O. Three-dimensional oxygen-enhanced MRI of the human lung at 1.5T with ultra-fast balanced steady-state free precession. Magn Reson Med 2017; 79:246-255. [PMID: 28337782 DOI: 10.1002/mrm.26665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 11/12/2022]
Abstract
PURPOSE To assess the feasibility of 3D oxygen-enhanced (OE) MRI of the lung at 1.5T using multi-volumetric ultra-fast balanced steady-state free precession (ufSSFP) acquisitions. METHODS Isotropic imaging of the lung for OE-MRI was performed with an adapted 3D ufSSFP sequence using five breath-hold acquisitions ranging from functional residual capacity to tidal inspiration under both normoxic (room air) and hyperoxic (100% O2 ) gas conditions. For each O2 concentration, a sponge model (which captures the parenchymal signal intensity variation as a function of the lung volume) was fitted to the acquired multi-volumetric datasets after semiautomatic lung segmentation and deformable image registration. From the retrieved model parameters, 3D oxygen-enhancement maps were calculated. RESULTS For OE ufSSFP imaging, the maximum parenchymal signal is observed for flip angles around 23° under both normoxic and hyperoxic conditions. It is found that the sponge model accurately describes parenchymal signal at different breathing positions, thereby mitigating the confounding bias in the estimated oxygen enhancement from residual density modulations. From the model, an average lung oxygen enhancement of 7.0% ± 0.3% was found in the healthy volunteers, and the oxygen-enhancement maps indicate a ventral to dorsal gravitation-related gradient. CONCLUSION The study demonstrates the feasibility of whole-lung OE-MRI from multi-volumetric ufSSFP in healthy volunteers. Magn Reson Med 79:246-255, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Orso Pusterla
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Dietrich O, Gaass T, Reiser MF. T1 relaxation time constants, influence of oxygen, and the oxygen transfer function of the human lung at 1.5 T—A meta-analysis. Eur J Radiol 2017; 86:252-260. [DOI: 10.1016/j.ejrad.2016.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022]
|
24
|
Zurek M, Sladen L, Johansson E, Olsson M, Jackson S, Zhang H, Mayer G, Hockings PD. Assessing the Relationship between Lung Density and Function with Oxygen-Enhanced Magnetic Resonance Imaging in a Mouse Model of Emphysema. PLoS One 2016; 11:e0151211. [PMID: 26977928 PMCID: PMC4792441 DOI: 10.1371/journal.pone.0151211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Purpose A magnetic resonance imaging method is presented that allows for the simultaneous assessment of oxygen delivery, oxygen uptake, and parenchymal density. The technique is applied to a mouse model of porcine pancreatic elastase (PPE) induced lung emphysema in order to investigate how structural changes affect lung function. Method Nine-week-old female C57BL6 mice were instilled with saline or PPE at days 0 and 7. At day 19, oxygen delivery, oxygen uptake, and lung density were quantified from T1 and proton-density measurements obtained via oxygen-enhanced magnetic resonance imaging (OE-MRI) using an ultrashort echo-time imaging sequence. Subsequently, the lungs were sectioned for histological observation. Blood-gas analyses and pulmonary functional tests via FlexiVent were performed in separate cohorts. Principal Findings PPE-challenged mice had reduced density when assessed via MRI, consistent with the parenchyma loss observed in the histology sections, and an increased lung compliance was detected via FlexiVent. The oxygenation levels, as assessed via the blood-gas analysis, showed no difference between PPE-challenged animals and control. This finding was mirrored in the global MRI assessments of oxygen delivery and uptake, where the changes in relaxation time indices were matched between the groups. The heterogeneity of the same parameters however, were increased in PPE-challenged animals. When the oxygenation status was investigated in regions of varying density, a reduced oxygen-uptake was found in low-density regions of PPE-challenged mice. In high-density regions the uptake was higher than that of regions of corresponding density in control animals. The oxygen delivery was proportional to the oxygen uptake in both groups. Conclusions The proposed method allowed for the regional assessment of the relationship between lung density and two aspects of lung function, the oxygen delivery and uptake. When compared to global indices of lung function, an increased sensitivity for detecting heterogeneous lung disorders was found. This indicated that the technique has potential for early detection of lung dysfunction–before global changes occur.
Collapse
Affiliation(s)
- Magdalena Zurek
- Personalised Healthcare and Biomarkers, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| | - Louise Sladen
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Edvin Johansson
- Personalised Healthcare and Biomarkers, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marita Olsson
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Sonya Jackson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Hui Zhang
- Drug Safety and Metabolism, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Gaell Mayer
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Paul D. Hockings
- Personalised Healthcare and Biomarkers, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
- MedTech West, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
25
|
Alamidi DF, Kindvall SSI, Hubbard Cristinacce PL, McGrath DM, Young SS, Naish JH, Waterton JC, Wollmer P, Diaz S, Olsson M, Hockings PD, Lagerstrand KM, Parker GJM, Olsson LE. T1 Relaxation Time in Lungs of Asymptomatic Smokers. PLoS One 2016; 11:e0149760. [PMID: 26958856 PMCID: PMC4784914 DOI: 10.1371/journal.pone.0149760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/04/2016] [Indexed: 12/02/2022] Open
Abstract
Purpose Interest in using T1 as a potential MRI biomarker of chronic obstructive pulmonary disease (COPD) has recently increased. Since tobacco smoking is the major risk factor for development of COPD, the aim for this study was to examine whether tobacco smoking, pack-years (PY), influenced T1 of the lung parenchyma in asymptomatic current smokers. Materials and Methods Lung T1 measurements from 35 subjects, 23 never smokers and 12 current smokers were retrospectively analyzed from an institutional review board approved study. All 35 subjects underwent pulmonary function test (PFT) measurements and lung T1, with similar T1 measurement protocols. A backward linear model of T1 as a function of FEV1, FVC, weight, height, age and PY was tested. Results A significant correlation between lung T1 and PY was found with a negative slope of -3.2 ms/year (95% confidence interval [CI] [-5.8, -0.6], p = 0.02), when adjusted for age and height. Lung T1 shortens with ageing among all subjects, -4.0 ms/year (95%CI [-6.3, -1.7], p = 0.001), and among the never smokers, -3.7 ms/year (95%CI [-6.0, -1.3], p = 0.003). Conclusions A correlation between lung T1 and PY when adjusted for both age and height was found, and T1 of the lung shortens with ageing. Accordingly, PY and age can be significant confounding factors when T1 is used as a biomarker in lung MRI studies that must be taken into account to detect underlying patterns of disease.
Collapse
Affiliation(s)
- Daniel F. Alamidi
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Simon S. I. Kindvall
- Department of Medical Physics, Lund University, Translational Sciences, Malmö, Sweden
| | - Penny L. Hubbard Cristinacce
- Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Deirdre M. McGrath
- Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | | | - Josephine H. Naish
- Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - John C. Waterton
- Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Per Wollmer
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Sandra Diaz
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | - Paul D. Hockings
- Medtech West, Chalmers University of Technology, Gothenburg, Sweden
- Antaros Medical, BioVenture Hub, Mölndal, Sweden
| | - Kerstin M. Lagerstrand
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Geoffrey J. M. Parker
- Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Bioxydyn Ltd, Manchester, United Kingdom
| | - Lars E. Olsson
- Department of Medical Physics, Lund University, Translational Sciences, Malmö, Sweden
| |
Collapse
|
26
|
Kindvall SS, Diaz S, Svensson J, Wollmer P, Slusarczyk D, Olsson LE. Influence of age and sex on the longitudinal relaxation time, T1, of the lung in healthy never-smokers. J Magn Reson Imaging 2015; 43:1250-7. [DOI: 10.1002/jmri.25085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
- Simon S.I. Kindvall
- Medical Radiation Physics, Translational Medicine; Lund University; Malmö Sweden
| | - Sandra Diaz
- Medical Radiology, Translational Medicine; Lund University; Malmö Sweden
| | - Jonas Svensson
- Medical imaging and physiology; Skane University Hospital; Lund Sweden
| | - Per Wollmer
- Clinical Physiology, Translational Medicine; Lund University; Malmö Sweden
| | - Dariusz Slusarczyk
- Medical Radiology, Translational Medicine; Lund University; Malmö Sweden
| | - Lars E. Olsson
- Medical Radiation Physics, Translational Medicine; Lund University; Malmö Sweden
| |
Collapse
|
27
|
Alamidi DF, Morgan AR, Hubbard Cristinacce PL, Nordenmark LH, Hockings PD, Lagerstrand KM, Young SS, Naish JH, Waterton JC, Maguire NC, Olsson LE, Parker GJ. COPD Patients Have Short Lung Magnetic ResonanceT1Relaxation Time. COPD 2015; 13:153-9. [DOI: 10.3109/15412555.2015.1048851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|