1
|
Mohebbi A, Mohammadzadeh S, Moradi Z, Mohammadi A, Poustchi H, Tavangar SM. Staging of esophageal cancer using PET/MRI: a systematic review with head-to-head comparison. BMC Med Imaging 2025; 25:32. [PMID: 39885424 PMCID: PMC11783729 DOI: 10.1186/s12880-025-01565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
PURPOSE To evaluate the staging performance of positron emission tomography/magnetic resonance imaging (PET/MRI) for confirmed esophageal cancer based on the TNM classification system as well as compare it to other alternative modalities (e.g., endoscopic ultrasonography (EUS), computed tomography (CT), MRI, and PET/CT) in a full head-to-head manner. METHODS Protocol was pre-registered a priori at ( http://osf.io/6qj5m/ ). We searched PubMed, Web of Science, Embase, and Cochrane Library for studies until September 10, 2024. The risk of bias was assessed using Modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Quality Assessment of Diagnostic Accuracy Studies-Comparative (QUADAS-C). The classification performance of PET/MRI in T, N, and M staging of esophageal cancer and resectability status were evaluated and compared to other relative modalities. Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) was used for certainty evaluation. RESULTS Nine studies were included with 245 esophageal cancer patients. For T, N, and M staging, PET/MRI showed 9.1%, 2.0%, and 10.7% upstaging than the histopathological evaluation while these numbers were 19.4%, 12.4%, and 5.3% for downstaging. For direct comparison with PET/CT, PET/MRI showed 0.7% and 5.6% less downstaging and upstaging for N staging and 2.5% and 4.0% for M staging. As for predicting resectability status, pre-ADCmean and post-ADCmean were promising, unlike other parameters (i.e., ΔADCmean, pre-SUVmax, post-SUVmax, and ΔSUVmax). CONCLUSION With protocol adjustments, PET/MRI might be utilized in the future for preoperative staging of esophageal cancer. CLINICAL TRIAL NUMBER N/A.
Collapse
Affiliation(s)
- Alisa Mohebbi
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadzadeh
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Moradi
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Mohammadi
- Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| | - Hossein Poustchi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zou Y, Zhu S, Kong Y, Feng C, Wang R, Lei L, Zhao Y, Chen L, Chang L. Precision matters: the value of PET/CT and PET/MRI in the clinical management of cervical cancer. Strahlenther Onkol 2024:10.1007/s00066-024-02294-8. [PMID: 39331065 DOI: 10.1007/s00066-024-02294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 09/28/2024]
Abstract
The incidence of cervical cancer has been increasing recently, becoming an essential factor threatening patients' health. Positron emission computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI) are multimodal molecular imaging methods that combine functional imaging (PET) and anatomical imaging (CT) with MRI fusion technology. They play an important role in the clinical management of patients with cervical cancer. Precision radiotherapy refers to the use of advanced intensive modulated radiotherapy (IMRT) to give different doses of radiation to different treatment areas to achieve the purpose of killing tumors and protecting normal tissues to the greatest extent. At present, pelvic target delineation is mostly based on CT and MRI, but these mostly provide anatomical morphological information, which is difficult to show the internal metabolism of tumors. PET/CT and PET/MRI combine information on biological function, metabolism and anatomical structure, thereby more accurately distinguishing the boundaries between tumor and non-tumor tissues and playing a positive guiding role in improving radiotherapy planning (RTP) for cervical cancer and evaluating treatment effect.
Collapse
Affiliation(s)
- Yulin Zou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, 650118, Kunming, Yunnan, China
| | - Sijin Zhu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, 650118, Kunming, Yunnan, China
| | - Yinwu Kong
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, 650118, Kunming, Yunnan, China
| | - Chengtao Feng
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, No. 519 Kunzhou Road, Xishan District, 650118, Kunming, Yunnan, China
| | - Ru Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, 650118, Kunming, Yunnan, China
| | - Linping Lei
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, 650118, Kunming, Yunnan, China
| | - Yaomin Zhao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, 650118, Kunming, Yunnan, China
| | - Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, No. 519 Kunzhou Road, Xishan District, 650118, Kunming, Yunnan, China.
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, 650118, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Fu Y, Ruan W, Sun X, Hu F, Lan X, Liu F. Added value of regional 18F-FDG PET/MRI-assisted whole-body 18F-FDG PET/CT in malignant ascites with unknown primary origin. Eur J Hybrid Imaging 2023; 7:22. [PMID: 38044389 PMCID: PMC10694118 DOI: 10.1186/s41824-023-00179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/12/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Comparing to PET/CT, integrative PET/MRI imaging provides superior soft tissue resolution. This study aims to evaluate the added value of regional delayed 18F-FDG PET/MRI-assisted whole-body 18F-FDG PET/CT in diagnosing malignant ascites patients. RESULTS The final diagnosis included 22 patients with ovarian cancer (n = 11), peritoneal cancer (n = 3), colon cancer (n = 2), liver cancer (n = 2), pancreatic cancer (n = 2), gastric cancer (n = 1), and fallopian tube cancer (n = 1). The diagnosis of the primary tumor using whole-body PET/CT was correct in 11 cases. Regional PET/MRI-assisted whole-body PET/CT diagnosis was correct in 18 cases, including 6 more cases of ovarian cancer and 1 more case of fallopian tube cancer. Among 4 cases that were not diagnosed correctly, 1 case had the primary tumor outside of the PET/MRI scan area, 2 cases were peritoneal cancer, and 1 case was colon cancer. The diagnostic accuracy of regional PET/MRI-assisted whole-body PET/CT was higher than PET/CT alone (81.8% vs. 50.0%, κ 2 = 5.14, p = 0.023). The primary tumor conspicuity score of PET/MRI was higher than PET/CT (3.67 ± 0.66 vs. 2.76 ± 0.94, P < 0.01). In the same scan area, more metastases were detected in PET/MRI than in PET/CT (156 vs. 86 in total, and 7.43 ± 5.17 vs. 4.10 ± 1.92 per patient, t = 3.89, P < 0.01). Lesion-to-background ratio in PET/MRI was higher than that in PET/CT (10.76 ± 5.16 vs. 6.56 ± 3.45, t = 13.02, P < 0.01). CONCLUSION Comparing to whole-body PET/CT alone, additional delayed regional PET/MRI with high soft tissue resolution is helpful in diagnosing the location of the primary tumor and identifying more metastases in patients with malignant ascites. Yet larger sample size in multicenter and prospective clinical researches is still needed.
Collapse
Affiliation(s)
- Yiru Fu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China.
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China.
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China.
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
4
|
Allahqoli L, Hakimi S, Laganà AS, Momenimovahed Z, Mazidimoradi A, Rahmani A, Fallahi A, Salehiniya H, Ghiasvand MM, Alkatout I. 18F-FDG PET/MRI and 18F-FDG PET/CT for the Management of Gynecological Malignancies: A Comprehensive Review of the Literature. J Imaging 2023; 9:223. [PMID: 37888330 PMCID: PMC10607780 DOI: 10.3390/jimaging9100223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE Positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro- D-glucose integrated with computed tomography (18F-FDG PET/CT) or magnetic resonance imaging (18F-FDG PET/MRI) has emerged as a promising tool for managing various types of cancer. This review study was conducted to investigate the role of 18F- FDG PET/CT and FDG PET/MRI in the management of gynecological malignancies. SEARCH STRATEGY We searched for relevant articles in the three databases PubMed/MEDLINE, Scopus, and Web of Science. SELECTION CRITERIA All studies reporting data on the FDG PET/CT and FDG PET MRI in the management of gynecological cancer, performed anywhere in the world and published exclusively in the English language, were included in the present study. DATA COLLECTION AND ANALYSIS We used the EndNote software (EndNote X8.1, Thomson Reuters) to list the studies and screen them on the basis of the inclusion criteria. Data, including first author, publication year, sample size, clinical application, imaging type, and main result, were extracted and tabulated in Excel. The sensitivity, specificity, and diagnostic accuracy of the modalities were extracted and summarized. MAIN RESULTS After screening 988 records, 166 studies published between 2004 and 2022 were included, covering various methodologies. Studies were divided into the following five categories: the role of FDG PET/CT and FDG-PET/MRI in the management of: (a) endometrial cancer (n = 30); (b) ovarian cancer (n = 60); (c) cervical cancer (n = 50); (d) vulvar and vagina cancers (n = 12); and (e) gynecological cancers (n = 14). CONCLUSIONS FDG PET/CT and FDG PET/MRI have demonstrated potential as non-invasive imaging tools for enhancing the management of gynecological malignancies. Nevertheless, certain associated challenges warrant attention.
Collapse
Affiliation(s)
- Leila Allahqoli
- Ministry of Health and Medical Education, Tehran 1467664961, Iran
| | - Sevil Hakimi
- Faculty of Nursing and Midwifery, Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran;
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Zohre Momenimovahed
- Department of Midwifery and Reproductive Health, Qom University of Medical Sciences, Qom 3716993456, Iran;
| | - Afrooz Mazidimoradi
- Neyriz Public Health Clinic, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Azam Rahmani
- Nursing and Midwifery Care Research Center, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran 141973317, Iran;
| | - Arezoo Fallahi
- Department of Public Health, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj 6617713446, Iran;
| | - Hamid Salehiniya
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran;
| | - Mohammad Matin Ghiasvand
- Department of Computer Engineering, Amirkabir University of Technology (AUT), Tehran 1591634311, Iran;
| | - Ibrahim Alkatout
- University Hospitals Schleswig-Holstein, Campus Kiel, Kiel School of Gynaecological Endoscopy, Arnold-Heller-Str. 3, Haus 24, 24105 Kiel, Germany;
| |
Collapse
|
5
|
Virarkar M, Vulasala SS, Calimano-Ramirez L, Singh A, Lall C, Bhosale P. Current Update on PET/MRI in Gynecological Malignancies-A Review of the Literature. Curr Oncol 2023; 30:1077-1105. [PMID: 36661732 PMCID: PMC9858166 DOI: 10.3390/curroncol30010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Early detection of gynecological malignancies is vital for patient management and prolonging the patient's survival. Molecular imaging, such as positron emission tomography (PET)/computed tomography, has been increasingly utilized in gynecological malignancies. PET/magnetic resonance imaging (MRI) enables the assessment of gynecological malignancies by combining the metabolic information of PET with the anatomical and functional information from MRI. This article will review the updated applications of PET/MRI in gynecological malignancies.
Collapse
Affiliation(s)
- Mayur Virarkar
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Sai Swarupa Vulasala
- Department of Internal Medicine, East Carolina University Health Medical Center, 600 Moye Blvd., Greenville, NC 27834, USA
| | - Luis Calimano-Ramirez
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Anmol Singh
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Chandana Lall
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Priya Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
6
|
|
7
|
Abstract
PET/MR imaging is in routine clinical use and is at least as effective as PET/CT for oncologic and neurologic studies with advantages with certain PET radiopharmaceuticals and applications. In addition, whole body PET/MR imaging substantially reduces radiation dosages compared with PET/CT which is particularly relevant to pediatric and young adult population. For cancer imaging, assessment of hepatic, pelvic, and soft-tissue malignancies may benefit from PET/MR imaging. For neurologic imaging, volumetric brain MR imaging can detect regional volume loss relevant to cognitive impairment and epilepsy. In addition, the single-bed position acquisition enables dynamic brain PET imaging without extending the total study length which has the potential to enhance the diagnostic information from PET.
Collapse
Affiliation(s)
- Farshad Moradi
- Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| | - Andrei Iagaru
- Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, JT 773, Birmingham, AL 35249, USA
| |
Collapse
|
8
|
Gong J, Liu H, Bao Z, Bian L, Li X, Meng Y. Relative clinical utility of simultaneous 18F-fluorodeoxyglucose PET/MRI and PET/CT for preoperative cervical cancer diagnosis. J Int Med Res 2021; 49:3000605211019190. [PMID: 34162259 PMCID: PMC8236793 DOI: 10.1177/03000605211019190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Objective To investigate the utility of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) for the preoperative diagnosis of cervical cancer. Methods We retrospectively analyzed 114 patients who were diagnosed with cervical cancer and underwent PET/MRI (n = 59) or PET/computed tomography (PET/CT) (n = 65) before surgery. The maximal standardized uptake value (SUVmax) and mean SUV (SUVmean) were determined for regions of interest in the resultant radiographic images. Results Relative to PET/CT, 18F-FDG PET/MRI exhibited higher specificity and sensitivity in defining the primary tumor bounds and higher sensitivity for detection of bladder involvement. The SUVmax and SUVmean of PET/MRI were remarkably higher than those of PET/CT as a means of detecting primary tumors, bladder involvement, and the lymph node status. However, no significant differences in these values were detected when comparing the two imaging approaches as a means of detecting vaginal involvement or para-aortic lymph node metastasis. Conclusions These outcomes may demonstrate the capability of 18F-FDG PET/MRI to clarify preoperative cervical cancer diagnoses in the context of unclear PET/CT findings. However, studies directly comparing SUVs in different lesion types from patients who have undergone both PET/MRI and PET/CT scans are essential to validate and expand upon these findings.
Collapse
Affiliation(s)
- Jing Gong
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Honghong Liu
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaoliang Bao
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lihua Bian
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiuzhen Li
- Department of Obstetrics and Gynecology, People's Hospital of Shuangluan District, Chengde City, Hebei Province, China
| | - Yuanguang Meng
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Obmann VC, Grosse-Hokamp N, Alberts I, Fulton N, Rassouli N, Siegel C, Avril N, Herrmann KA. Diagnosis and staging of hepatobiliary malignancies: Potential incremental value of (18)F-FDG-PET/MRI compared to MRI of the liver. Nuklearmedizin 2021; 60:355-367. [PMID: 34102690 DOI: 10.1055/a-1486-3671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The purpose of the study was to investigate the potential added value of 18F-FDG-PET/MRI (functional information derived from PET) over standard diagnostic liver MRI (excellent soft tissue characterization) in diagnosing and staging suspected primary hepatobiliary malignancies including extrahepatic cholangiocarcinoma (ECC), intrahepatic cholangiocellular carcinoma (ICC) and gallbladder cancer (GBCA). METHODS Twenty consecutive patients with suspected hepatobiliary malignancy were included in this retrospective study. All patients underwent combined whole-body (WB) 18F-FDG-PET/MRI including contrast-enhanced MRI of the liver, contrast-enhanced WB-MRI and WB 18F-FDG-PET. Two experienced readers staged hepatobiliary disease using TNM criteria: first based on MRI alone and then based on combined 18F-FDG-PET/MRI. Subsequently, the impact of FDG-PET/MRI on clinical management compared to MRI alone was recorded. Histopathologic proof served as the reference standard. RESULTS Hepatobiliary neoplasms were present in 16/20 patients (ECC n = 3, ICC n = 8, GBCA n = 5), two patients revealed benign disease, two were excluded. TNM staging with 18F-FDG-PET/MRI was identical to MRI alone in 11/18 (61.1 %) patients and correctly changed the stage in 4/18 (22.2 %), resulting in a change in management for 2/4 patients (11.1 %). 18F-FDG-PET/MRI was false-positive in 3/18 cases (16.7 %). Both MRI and 18F-FDG-PET/MRI were falsely positive in 1 case without malignancy. CONCLUSIONS A small incremental benefit of 18F-FDG-PET/MRI over standard MRI of the liver was observed. However, in some cases 18F-FDG-PET/MRI may lead to false-positive findings. Overall there is seemingly limited role of 18F-FDG-PET/MRI in patients with suspected hepatobiliary malignancy.
Collapse
Affiliation(s)
- Verena Carola Obmann
- Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Switzerland.,Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
| | - Nils Grosse-Hokamp
- Department of Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Germany.,Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
| | - Ian Alberts
- Nuclear Medicine, Inselspital University Hospital Bern, Switzerland
| | | | - Negin Rassouli
- Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
| | - Christopher Siegel
- Department of General Surgery, Cleveland Clinic Foundation, Hillcrest Hospital, Mayfield Heights, United States
| | - Norbert Avril
- Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
| | - Karin Anna Herrmann
- Radiology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, United States
| |
Collapse
|
10
|
Abstract
Attenuation correction has been one of the main methodological challenges in the integrated positron emission tomography and magnetic resonance imaging (PET/MRI) field. As standard transmission or computed tomography approaches are not available in integrated PET/MRI scanners, MR-based attenuation correction approaches had to be developed. Aspects that have to be considered for implementing accurate methods include the need to account for attenuation in bone tissue, normal and pathological lung and the MR hardware present in the PET field-of-view, to reduce the impact of subject motion, to minimize truncation and susceptibility artifacts, and to address issues related to the data acquisition and processing both on the PET and MRI sides. The standard MR-based attenuation correction techniques implemented by the PET/MRI equipment manufacturers and their impact on clinical and research PET data interpretation and quantification are first discussed. Next, the more advanced methods, including the latest generation deep learning-based approaches that have been proposed for further minimizing the attenuation correction related bias are described. Finally, a future perspective focused on the needed developments in the field is given.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| |
Collapse
|
11
|
Nguyen NC, Beriwal S, Moon CH, D'Ardenne N, Mountz JM, Furlan A, Muthukrishnan A, Rangaswamy B. Diagnostic Value of FDG PET/MRI in Females With Pelvic Malignancy-A Systematic Review of the Literature. Front Oncol 2020; 10:519440. [PMID: 33123460 PMCID: PMC7571667 DOI: 10.3389/fonc.2020.519440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Hybrid imaging with F-18 fludeoxyglucose positron emission tomography/magnetic resonance imaging (FDG PET/MRI) has increasing clinical applications supplementing conventional ultrasound, CT, and MRI imaging as well as hybrid PET/CT imaging in assessing cervical, endometrial, and ovarian cancer. This article summarizes the existing literature and discusses the emerging role of hybrid PET/MRI in gynecologic malignancies. Thus, far, the published literature on the applications of FDG PET/MRI shows that it can have a significant impact on patient management by improving the staging of the cancers compared with PET/CT, influencing clinical decision and treatment strategy. For disease restaging, current literature indicates that PET/MRI performs equivalently to PET/CT. There appears to be a mild-moderate inverse correlation between standard-uptake-value (SUV) and apparent-diffusion-coefficient (ADC) values, which could be used to predict tumor grading and risk stratification. It remains to be seen as to whether multi-parametric PET/MRI imaging could prove valuable for prognostication and outcome. PET/MRI provides the opportunity for reduced radiation exposure, which is particularly relevant for a young female in need of multiple scans for treatment monitoring and follow-up. Fast acquisition protocols and optimized methods for attenuation correction are still evolving. Major limitations of PET/MRI remains such as suboptimal detection of small pulmonary nodules and lack of utility for radiation treatment planning, which pose an impediment in making PET/MRI a viable one-stop-shop imaging option to compete with PET/CT.
Collapse
Affiliation(s)
- Nghi Co Nguyen
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sushil Beriwal
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas D'Ardenne
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ashok Muthukrishnan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
12
|
Hancin EC, Borja AJ, Nikpanah M, Raynor WY, Haldar D, Werner TJ, Morris MA, Saboury B, Alavi A, Gholamrezanezhad A. PET/MR Imaging in Musculoskeletal Precision Imaging - Third wave after X-Ray and MR. PET Clin 2020; 15:521-534. [DOI: 10.1016/j.cpet.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Nguyen NC, Beriwal S, Moon CH, Furlan A, Mountz JM, Rangaswamy B. 18F-FDG PET/MRI Primary Staging of Cervical Cancer: A Pilot Study with PET/CT Comparison. J Nucl Med Technol 2020; 48:331-335. [PMID: 32709671 DOI: 10.2967/jnmt.120.247080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/23/2020] [Indexed: 11/16/2022] Open
Abstract
We report our PET/MRI experience from a pilot study that compared the diagnostic performance of 18F-FDG PET/MRI versus PET/CT in staging of cervical cancer. Methods: Six adults with newly diagnosed cervical cancer underwent a single 18F-FDG injection with a dual-imaging protocol: standard-of-care PET/CT followed by research PET/MRI. The diagnostic interpretation and SUVmax for the 2 modalities were compared. Results: Both modalities detected all primary tumors (median size, 3.9 cm) and all 4 metastases present in 2 of the 6 patients (median size, 0.9 cm). PET/MRI provided greater diagnostic confidence than PET/CT and upstaged the disease in 4 patients. On the basis of the imaging findings alone, the additional information from PET/MRI would have led to a change in clinical management in 3 of 6 patients. The primary lesion showed a median SUV of 12.8 on PET/CT and 18.2 on PET/MRI (P = 0.03). SUVs, however, correlated strongly between the 2 modalities (ρ = 0.96, P < 0.001). Conclusion: Our pilot study supports the notion that PET/MRI has the potential to impact clinical decisions and treatment strategies in women with cervical cancer. Further studies are, however, warranted to define the value that PET/MRI adds to PET/CT.
Collapse
Affiliation(s)
- Nghi C Nguyen
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Sushil Beriwal
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | | |
Collapse
|
14
|
Gratz M, Ruhlmann V, Umutlu L, Fenchel M, Hong I, Quick HH. Impact of respiratory motion correction on lesion visibility and quantification in thoracic PET/MR imaging. PLoS One 2020; 15:e0233209. [PMID: 32497135 PMCID: PMC7272064 DOI: 10.1371/journal.pone.0233209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 04/30/2020] [Indexed: 01/04/2023] Open
Abstract
The impact of a method for MR-based respiratory motion correction of PET data on lesion visibility and quantification in patients with oncologic findings in the lung was evaluated. Twenty patients with one or more lesions in the lung were included. Hybrid imaging was performed on an integrated PET/MR system using 18F-FDG as radiotracer. The standard thoracic imaging protocol was extended by a free-breathing self-gated acquisition of MR data for motion modelling. PET data was acquired simultaneously in list-mode for 5-10 mins. One experienced radiologist and one experienced nuclear medicine specialist evaluated and compared the post-processed data in consensus regarding lesion visibility (scores 1-4, 4 being best), image noise levels (scores 1-3, 3 being lowest noise), SUVmean and SUVmax. Motion-corrected (MoCo) images were additionally compared with gated images. Non-motion-corrected free-breathing data served as standard of reference in this study. Motion correction generally improved lesion visibility (3.19 ± 0.63) and noise ratings (2.95 ± 0.22) compared to uncorrected (2.81 ± 0.66 and 2.95 ± 0.22, respectively) or gated PET data (2.47 ± 0.93 and 1.30 ± 0.47, respectively). Furthermore, SUVs (mean and max) were compared for all methods to estimate their respective impact on the quantification. Deviations of SUVmax were smallest between the uncorrected and the MoCo lesion data (average increase of 9.1% of MoCo SUVs), while SUVmean agreed best for gated and MoCo reconstructions (MoCo SUVs increased by 1.2%). The studied method for MR-based respiratory motion correction of PET data combines increased lesion sharpness and improved lesion activity quantification with high signal-to-noise ratio in a clinical setting. In particular, the detection of small lesions in moving organs such as the lung and liver may thus be facilitated. These advantages justify the extension of the PET/MR imaging protocol by 5-10 minutes for motion correction.
Collapse
Affiliation(s)
- Marcel Gratz
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Verena Ruhlmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | | | - Inki Hong
- Siemens Medical Solutions Inc, Knoxville, Tennessee, United States of America
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Bekhor E, Carr J, Hofstedt M, Sullivan B, Solomon D, Leigh N, Bolton N, Golas B, Sarpel U, Labow D, Magge D. The Safety of Iterative Cytoreductive Surgery and HIPEC for Peritoneal Carcinomatosis: A High Volume Center Prospectively Maintained Database Analysis. Ann Surg Oncol 2019; 27:1448-1455. [PMID: 31873928 DOI: 10.1245/s10434-019-08141-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Offering iterative cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) for recurrence of peritoneal carcinomatosis (PC) poses a surgical dilemma. Safety of this repeated operation in the short and long term has not been largely investigated. METHODS Patients with PC who underwent 377 CRS/HIPEC procedures between 2007 and 2018 at our institution were included from a prospectively maintained database. Outcomes for patients who had singular CRS/HIPEC were compared with those for patients who had repeated CRS/HIPEC. RESULTS Overall, there were 325 singular and 52 iterative CRS/HIPEC procedures performed during this time period. Age, sex, and ASA class were comparable between cohorts (p = NS). Optimal cytoreduction, mean operative time, mean length of hospital stay, 90-day major morbidity, and 90-day mortality were also similar. At a median follow-up of 24 months, there was no significant difference in recurrence rate (%, 60 vs 63, p = 0.76), disease-free survival (mean months, 19 vs 15, p = 0.30), and overall survival (mean months, 32 vs 27, p = 0.69). The iterative CRS/HIPEC group had significantly higher rates of major late complications than the singular CRS/HIPEC group (%, 18 vs 40, p < 0.01). CONCLUSION Repeated CRS/HIPEC for PC has similar perioperative morbidity and mortality, as well as long-term oncological benefits, when compared with singular CRS/HIPEC. However, more than twice as many patients undergoing iterative CRS/HIPEC suffered from major late complications.
Collapse
Affiliation(s)
- Eliahu Bekhor
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA. .,Department of General Surgery, Rabin Medical Center, Petah Tikva, Israel.
| | - Jacquelyn Carr
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Margaret Hofstedt
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Brianne Sullivan
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniel Solomon
- Department of General Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Natasha Leigh
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nathan Bolton
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Benjamin Golas
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Umut Sarpel
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniel Labow
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Deepa Magge
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
16
|
18F-FDG PET/MR Refines Evaluation in Newly Diagnosed Metastatic Urethral Adenocarcinoma. Nucl Med Mol Imaging 2019; 53:296-299. [DOI: 10.1007/s13139-019-00597-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/06/2019] [Accepted: 05/20/2019] [Indexed: 11/30/2022] Open
|
17
|
Focal Liver Uptake on FDG PET/CT Without CT Correlate: Utility of MRI in the Evaluation of Patients With Known Malignancy. AJR Am J Roentgenol 2019; 213:175-181. [DOI: 10.2214/ajr.18.21035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Zhuang M, Karakatsanis NA, Dierckx RAJO, Zaidi H. Impact of Tissue Classification in MRI-Guided Attenuation Correction on Whole-Body Patlak PET/MRI. Mol Imaging Biol 2019; 21:1147-1156. [PMID: 30838550 DOI: 10.1007/s11307-019-01338-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this work is to investigate the impact of tissue classification in magnetic resonance imaging (MRI)-guided positron emission tomography (PET) attenuation correction (AC) for whole-body (WB) Patlak net uptake rate constant (Ki) imaging in PET/MRI studies. PROCEDURES WB dynamic PET/CT data were acquired for 14 patients. The CT images were utilized to generate attenuation maps (μ-mapCTAC) of continuous attenuation coefficient values (Acoeff). The μ-mapCTAC were then segmented into four tissue classes (μ-map4-classes), namely background (air), lung, fat, and soft tissue, where a predefined Acoeff was assigned to each class. To assess the impact of bone for AC, the bones in the μ-mapCTAC were then assigned a predefined soft tissue Acoeff (0.1 cm-1) to produce an AC μ-map without bones (μ-mapno-bones). Thereafter, both WB static SUV and dynamic PET images were reconstructed using μ-mapCTAC, μ-map4-classes, and μ-mapno-bones (PETCTAC, PET4-classes, and PETno-bones), respectively. WB indirect and direct parametric Ki images were generated using Patlak graphical analysis. Malignant lesions were delineated on PET images with an automatic segmentation method that uses an active contour model (MASAC). Then, the quantitative metrics of the metabolically active tumor volume (MATV), target-to-background (TBR), contrast-to-noise ratio (CNR), peak region-of-interest (ROIpeak), maximum region-of-interest (ROImax), mean region-of-interest (ROImean), and metabolic volume product (MVP) were analyzed. The Wilcoxon test was conducted to assess the difference between PET4-classes and PETno-bones against PETCTAC for all images. The same test was also adopted to compare the differences between SUV, indirect Ki, and direct Ki images for each evaluated AC method. RESULTS No significant differences in MATV, TBR, and CNR were observed between PET4-classes and PETCTAC for either SUV or Ki images. PET4-classes significantly overestimated ROIpeak, ROImax, ROImean, as well as MVP scores compared with PETCTAC in both SUV and Ki images. SUV images exhibited the highest median relative errors for PET4-classes with respect to PETCTAC (RE4-classes): 6.91 %, 6.55 %, 5.90 %, and 6.56 % for ROIpeak, ROImax, ROImean, and MVP, respectively. On the contrary, Ki images showed slightly reduced RE4-classes (indirect 5.52 %, 5.95 %, 4.43 %, and 5.70 %, direct 6.61 %, 6.33 %, 5.53 %, and 4.96 %) for ROIpeak, ROImax, ROImean, and MVP, respectively. A higher TBR was observed on indirect and direct Ki images relative to SUV, while direct Ki images demonstrated the highest CNR. CONCLUSIONS Four-tissue class AC may impact SUV and Ki parameter estimation but only to a limited extent, thereby suggesting that WB Patlak Ki imaging for dynamic WB PET/MRI studies is feasible. Patlak Ki imaging can enhance TBR, thereby facilitating lesion segmentation and quantification. However, patient-specific Acoeff for each tissue class should be used when possible to address the high inter-patient variability of Acoeff distributions.
Collapse
Affiliation(s)
- Mingzan Zhuang
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center, 9700 RB, Groningen, The Netherlands.,Department of Radiation Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Nicolas A Karakatsanis
- Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, 10021, USA
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center, 9700 RB, Groningen, The Netherlands
| | - Habib Zaidi
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center, 9700 RB, Groningen, The Netherlands. .,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland. .,Geneva University Neurocenter, University of Geneva, 1205, Geneva, Switzerland. .,Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark.
| |
Collapse
|
19
|
Shelgaonkar SL, Nandgaonkar AB. Deep Belief Network for the Enhancement of Ultrasound Images with Pelvic Lesions. JOURNAL OF INTELLIGENT SYSTEMS 2018. [DOI: 10.1515/jisys-2016-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIt is well known that ultrasound images are cost-efficient and exhibit hassle-free usage. However, very few works have focused on exploiting the ultrasound modality for lesion diagnosis. Moreover, there is no reliable contribution reported in the literature for diagnosing pelvic lesions from the pelvic portion of humans, especially females. While few contributions are found for diagnosis of lesions in the pelvic region, no effort has been made on enhancing the images. Inspired from the neural network (NN), our methodology adopts deep belief NN for enhancing the ultrasound image with pelvic lesions. The higher-order statistical characteristics of image textures, such as entropy and autocorrelation, are considered to enhance the image from its noisy environment. The alignment problem is considered using skewness. The proposed method is compared with the existing NN method to demonstrate its enhancement performance.
Collapse
|
20
|
Galgano S, Viets Z, Fowler K, Gore L, Thomas JV, McNamara M, McConathy J. Practical Considerations for Clinical PET/MR Imaging. PET Clin 2018; 13:97-112. [PMID: 29157390 DOI: 10.1016/j.cpet.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency.
Collapse
Affiliation(s)
- Samuel Galgano
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Zachary Viets
- Department of Radiology, Washington University in St Louis, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Kathryn Fowler
- Department of Radiology, Washington University in St Louis, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Lael Gore
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - John V Thomas
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Michelle McNamara
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA.
| |
Collapse
|
21
|
Tang G. Nuclear cardiology in China: 2017. J Nucl Cardiol 2017; 24:1810-1813. [PMID: 28695407 PMCID: PMC5629245 DOI: 10.1007/s12350-017-0985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/17/2017] [Indexed: 11/29/2022]
Abstract
This paper provides the current state of nuclear cardiology in China and contrasts it with the state of nuclear cardiology in the United States (US). The West China Hospital and New York-Presbyterian Hospital (NYPH) were used as representative hospitals to contrast nuclear cardiology in China and the US, respectively. In 2015, there were 101 medical cyclotrons, 774 SPECT or SPECT/CT, 240 PET/CT, and 6 PET/MR cameras in China. Most (~90%) of the nuclear cardiology studies are gated SPECT myocardial perfusion imaging (MPI), and ~10% are other types of studies including MUGA, PET/CT MPI, and viability studies. There are differences in nuclear cardiology between the West China Hospital and NYPH and these include those in cardiac stress tests, SPECT/CT acquisition protocols, PET/CT blood flow and viability studies, reimbursement, and fellowship training. In this paper, we aim to present status of nuclear cardiology in China and provide potential solutions.
Collapse
Affiliation(s)
- Gongshun Tang
- West China Hospital, Sichuan University, 37 Guoxuexiang Street, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
22
|
Baxa J, Ferdova E, Ferda J. PET/MRI of the thorax, abdomen and retroperitoneum: Benefits of the breathing-synchronized scanning. Eur J Radiol 2017; 94:A35-A43. [PMID: 28274619 DOI: 10.1016/j.ejrad.2017.02.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/23/2017] [Indexed: 01/16/2023]
Abstract
Hybrid imaging using various radiopharmaceuticals is currently essential not only in detection and therapy response monitoring of tumors, but also in assessment of inflammatory or systemic diseases. Combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) is still relatively new method with great prospects of comprehensive assessment using anatomical and multiple functional information. However, benefits of PET/MRI in thorax, abdomen and retroperitoneum are not completely defined. Breathing movements affect imaging of thoracic, abdominal and retroperitoneal organs and pathological structures using PET and MRI. Fast MRI sequences are performed using breath-hold technique; however, acquisition of longer sequences and PET scanning need to be breathing-synchronized. Review article summarizes concrete PET/MRI protocols and importance of concrete MRI sequences and radiopharmaceuticals in different pathological lesions with focus on benefit of breathing-synchronized techniques.
Collapse
Affiliation(s)
- Jan Baxa
- Department of Imaging Methods, University Hospital Pilsen,Czech Republic; Faculty of Medicine in Pilsen, Charles University, Czech Republic.
| | - Eva Ferdova
- Department of Imaging Methods, University Hospital Pilsen,Czech Republic
| | - Jiří Ferda
- Department of Imaging Methods, University Hospital Pilsen,Czech Republic; Faculty of Medicine in Pilsen, Charles University, Czech Republic
| |
Collapse
|
23
|
Galgano S, Viets Z, Fowler K, Gore L, Thomas JV, McNamara M, McConathy J. Practical Considerations for Clinical PET/MR Imaging. Magn Reson Imaging Clin N Am 2017; 25:281-296. [DOI: 10.1016/j.mric.2016.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
24
|
Suppiah S, Chang WL, Hassan HA, Kaewput C, Asri AAA, Saad FFA, Nordin AJ, Vinjamuri S. Systematic Review on the Accuracy of Positron Emission Tomography/Computed Tomography and Positron Emission Tomography/Magnetic Resonance Imaging in the Management of Ovarian Cancer: Is Functional Information Really Needed? World J Nucl Med 2017; 16:176-185. [PMID: 28670174 PMCID: PMC5460299 DOI: 10.4103/wjnm.wjnm_31_17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer (OC) often presents at an advanced stage with frequent relapses despite optimal treatment; thus, accurate staging and restaging are required for improving treatment outcomes and prognostication. Conventionally, staging of OC is performed using contrast-enhanced computed tomography (CT). Nevertheless, recent advances in the field of hybrid imaging have made positron emission tomography/CT (PET/CT) and PET/magnetic resonance imaging (PET/MRI) as emerging potential noninvasive imaging tools for improved management of OC. Several studies have championed the role of PET/CT for the detection of recurrence and prognostication of OC. We provide a systematic review and meta-analysis of the latest publications regarding the role of molecular imaging in the management of OC. We retrieved 57 original research articles with one article having overlap in both diagnosis and staging; 10 articles (734 patients) regarding the role of PET/CT in diagnosis of OC; 12 articles (604 patients) regarding staging of OC; 22 studies (1429 patients) for detection of recurrence; and 13 articles for prognostication and assessment of treatment response. We calculated pooled sensitivity and specificity of PET/CT performance in various aspects of imaging of OC. We also discussed the emerging role of PET/MRI in the management of OC. We aim to give the readers and objective overview on the role of molecular imaging in the management of OC.
Collapse
Affiliation(s)
- Subapriya Suppiah
- Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia, Selangor, Malaysia
| | - Wing Liong Chang
- Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia, Selangor, Malaysia
| | - Hasyma Abu Hassan
- Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chalermrat Kaewput
- Department of Radiology, Division of Nuclear Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Andi Anggeriana Andi Asri
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Abdul Jalil Nordin
- Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sobhan Vinjamuri
- Department of Nuclear Medicine, Royal Liverpool and Broadgreen University Hospitals, NHS Trusts, Liverpool, UK
| |
Collapse
|
25
|
Gao H, Liu X, Tang W, Niu D, Zhou B, Zhang H, Liu W, Gu B, Zhou X, Zheng Y, Sun Y, Jia X, Zhou L. 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. NANOSCALE 2016; 8:19573-19580. [PMID: 27874119 DOI: 10.1039/c6nr07062k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In recent decades, hybrid imaging techniques that exploit the advantages of multiple imaging technologies have aroused extensive attention due to the deficiencies of single imaging modes. Along with the development of single photon emission computed tomography-magnetic resonance imaging (SPECT-MRI), it is currently necessary to develop a series of dual probes that can combine the outstanding sensitivity of SPECT with the high spatial resolution of MRI. Herein, the commonly used technetium-99 (99mTc) was labelled on the surface of manganese oxide-based mesoporous silica nanoparticles (MnOx-MSNs) for use in SPECT-MRI dual-modal imaging. The radiolabelling yield was as high as 99.1 ± 0.6%, and the r1 value of the nanoprobes was able to reach 6.60 mM-1 s-1 due to the pH-responsive properties of the MnOx-MSNs. The high-performance SPECT-MRI dual-modal imaging was confirmed in vivo in tumour-bearing mice, which could also provide semi-quantitative information for tumour detection. Importantly, these nanoprobes can deliver anti-cancer drugs in cancer therapy due to their unique mesoporous structures. Thus, nanotheranostics combining dual-modal imaging with anti-cancer therapeutic properties were achieved.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China. and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaohang Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China. and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Tang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China. and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingni Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China. and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hua Zhang
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Wei Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China. and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bingxin Gu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China and Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiaobao Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, China
| | - Yingying Zheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China and Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yiyun Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China and Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiaobo Jia
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangping Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China. and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
26
|
Matthews R, Choi M. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers. Diagnostics (Basel) 2016; 6:diagnostics6030035. [PMID: 27618106 PMCID: PMC5039569 DOI: 10.3390/diagnostics6030035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it.
Collapse
Affiliation(s)
- Robert Matthews
- Department of Radiology, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | - Minsig Choi
- Department of Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| |
Collapse
|