1
|
Iacomino M, Houerbi N, Fortuna S, Howe J, Li S, Scorrano G, Riva A, Cheng KW, Steiman M, Peltekova I, Yusuf A, Baldassari S, Tamburro S, Scudieri P, Musante I, Di Ludovico A, Guerrisi S, Balagura G, Corsello A, Efthymiou S, Murphy D, Uva P, Verrotti A, Fiorillo C, Delvecchio M, Accogli A, Elsabbagh M, Houlden H, Scherer SW, Striano P, Zara F, Chou TF, Salpietro V. Allelic heterogeneity and abnormal vesicle recycling in PLAA-related neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1268013. [PMID: 38650658 PMCID: PMC11033462 DOI: 10.3389/fnmol.2024.1268013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/16/2024] [Indexed: 04/25/2024] Open
Abstract
The human PLAA gene encodes Phospholipase-A2-Activating-Protein (PLAA) involved in trafficking of membrane proteins. Through its PUL domain (PLAP, Ufd3p, and Lub1p), PLAA interacts with p97/VCP modulating synaptic vesicles recycling. Although few families carrying biallelic PLAA variants were reported with progressive neurodegeneration, consequences of monoallelic PLAA variants have not been elucidated. Using exome or genome sequencing we identified PLAA de-novo missense variants, affecting conserved residues within the PUL domain, in children affected with neurodevelopmental disorders (NDDs), including psychomotor regression, intellectual disability (ID) and autism spectrum disorders (ASDs). Computational and in-vitro studies of the identified variants revealed abnormal chain arrangements at C-terminal and reduced PLAA-p97/VCP interaction, respectively. These findings expand both allelic and phenotypic heterogeneity associated to PLAA-related neurological disorders, highlighting perturbed vesicle recycling as a potential disease mechanism in NDDs due to genetic defects of PLAA.
Collapse
Affiliation(s)
- Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nadia Houerbi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Jennifer Howe
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Giovanna Scorrano
- Department of Pediatrics, Sant'Annunziata Hospital, University "G. D'Annunzio", Chieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Riva
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Mandy Steiman
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Iskra Peltekova
- McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Afiqah Yusuf
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Tamburro
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, Sant'Annunziata Hospital, University "G. D'Annunzio", Chieti, Italy
| | - Sara Guerrisi
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, QC, Canada
| | - Mayada Elsabbagh
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, United States
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
2
|
Boussetta A, Abida N, Jellouli M, Ziadi J, Gargah T. Delayed Graft Function in Pediatric Kidney Transplant: Risk Factors and Outcomes. EXP CLIN TRANSPLANT 2024; 22:110-117. [PMID: 38385384 DOI: 10.6002/ect.mesot2023.o20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVES We aimed to identify risk factors and outcomes of delayed graft function in pediatric kidney transplant. MATERIALS AND METHODS This retrospective study included all kidney transplant recipients ≤19 years old followed up in our department for a period of 34 years, from January 1989 to December 2022. RESULTS We included 113 kidney transplant recipients. Delayed graft function occurred in 17 cases (15%). Posttransplant red blood cell transfusion was strongly associated with delayed graft function (adjusted odds ratio = 23.91; 95% CI, 2.889-197.915). Use of allografts with multiple arteries and cold ischemia time >20 hours were risk factors for delayed graft function (adjusted odds ratio = 52.51 and 49.4; 95% CI, 2.576-1070.407 and 1.833-1334.204, respectively). Sex-matched transplants and living donors were protective factors for delayed graft function (adjusted odds ratio = 0.043 and 0.027; 95% CI, 0.005-0.344 and 0.003-0.247, respectively). Total HLA mismatches <3 played a protective role for delayed graft function (adjusted odds ratio = 0.114; 95% CI, 0.020-0.662), whereas transplant within compatible but different blood types increased the risk of delayed graft function (adjusted odds ratio = 20.54; 95% CI, 1.960- 215.263). No significant correlation was shown between delayed graft function and allograft survival (P = .190). Our study suggested delayed graft function as a key factor in allograft rejection-free survival (adjusted odds ratio = 3.832; 95% CI, 1.186-12.377). Delayed graft function was a negative factor for early graft function; patients with delayed graft function had a lower estimated glomerular filtration rate at discharge (P = .024) and at 3 (P = .034), 6 (P = .019), and 12 months (P = .011) posttransplant. CONCLUSIONS Delayed graft function is a major determinant of early graft function and allograft rejection-free survival. Further research is required to establish proper preventive measures.
Collapse
Affiliation(s)
- Abir Boussetta
- From the Pediatric Nephrology Department, Charles Nicolle Hospital and the University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
3
|
Scorrano G, Battaglia L, Spiaggia R, Basile A, Palmucci S, Foti PV, David E, Marinangeli F, Mascilini I, Corsello A, Comisi F, Vittori A, Salpietro V. Neuroimaging in PRUNE1 syndrome: a mini-review of the literature. Front Neurol 2023; 14:1301147. [PMID: 38178891 PMCID: PMC10764560 DOI: 10.3389/fneur.2023.1301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Prune exopolyphosphatase 1 (PRUNE1) is a short-chain phosphatase that is part of the aspartic acid-histidine-histidine (DHH) family of proteins. PRUNE1 is highly expressed in the central nervous system and is crucially involved in neurodevelopment, cytoskeletal rearrangement, cell migration, and proliferation. Recently, biallelic PRUNE1 variants have been identified in patients with neurodevelopmental disorders, hypotonia, microcephaly, variable cerebral anomalies, and other features. PRUNE1 hypomorphic mutations mainly affect the DHH1 domain, leading to an impactful decrease in enzymatic activity with a loss-of-function mechanism. In this review, we explored both the clinical and radiological spectrum related to PRUNE1 pathogenic variants described to date. Specifically, we focused on neuroradiological findings that, together with clinical phenotypes and genetic data, allow us to best characterize affected children with diagnostic and potential prognostic implications.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Mascilini
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
4
|
Battaglia L, Scorrano G, Spiaggia R, Basile A, Palmucci S, Foti PV, Spatola C, Iacomino M, Marinangeli F, Francia E, Comisi F, Corsello A, Salpietro V, Vittori A, David E. Neuroimaging features of WOREE syndrome: a mini-review of the literature. Front Pediatr 2023; 11:1301166. [PMID: 38161429 PMCID: PMC10757851 DOI: 10.3389/fped.2023.1301166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The WWOX gene encodes a 414-amino-acid protein composed of two N-terminal WW domains and a C-terminal short-chain dehydrogenase/reductase (SDR) domain. WWOX protein is highly conserved among species and mainly expressed in the cerebellum, cerebral cortex, brain stem, thyroid, hypophysis, and reproductive organs. It plays a crucial role in the biology of the central nervous system, and it is involved in neuronal development, migration, and proliferation. Biallelic pathogenic variants in WWOX have been associated with an early infantile epileptic encephalopathy known as WOREE syndrome. Both missense and null variants have been described in affected patients, leading to a reduction in protein function and stability. The most severe WOREE phenotypes have been related to biallelic null/null variants, associated with the complete loss of function of the protein. All affected patients showed brain anomalies on magnetic resonance imaging (MRI), suggesting the pivotal role of WWOX protein in brain homeostasis and developmental processes. We provided a literature review, exploring both the clinical and radiological spectrum related to WWOX pathogenic variants, described to date. We focused on neuroradiological findings to better delineate the WOREE phenotype with diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Corrado Spatola
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L’aquila, L’aquila, Italy
| | - Elisa Francia
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| |
Collapse
|
5
|
Gambadauro A, Mangano GD, Galletta K, Granata F, Riva A, Massella L, Guzzo I, Farello G, Scorrano G, Di Francesco L, Di Donato G, Ianni C, Di Ludovico A, La Bella S, Striano P, Efthymiou S, Houlden H, Nardello R, Chimenz R. NUP85 as a Neurodevelopmental Gene: From Podocyte to Neuron. Genes (Basel) 2023; 14:2143. [PMID: 38136965 PMCID: PMC10743110 DOI: 10.3390/genes14122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Pathogenic gene variants encoding nuclear pore complex (NPC) proteins were previously implicated in the pathogenesis of steroid-resistant nephrotic syndrome (SRNS). The NUP85 gene, encoding nucleoporin, is related to a very rare form of SRNS with limited genotype-phenotype information. We identified an Italian boy affected with an SRNS associated with severe neurodevelopmental impairment characterized by microcephaly, axial hypotonia, lack of achievement of motor milestones, and refractory seizures with an associated hypsarrhythmic pattern on electroencephalography. Brain magnetic resonance imaging (MRI) showed hypoplasia of the corpus callosum and a simplified gyration of the cerebral cortex. Since the age of 3 years, the boy was followed up at our Pediatric Nephrology Department for an SRNS, with a focal segmental glomerulosclerosis at renal biopsy. The boy died 32 months after SRNS onset, and a Whole-Exome Sequencing analysis revealed a novel compound heterozygous variant in NUP85 (NM_024844.5): 611T>A (p.Val204Glu), c.1904T>G (p.Leu635Arg), inherited from the father and mother, respectively. We delineated the clinical phenotypes of NUP85-related disorders, reviewed the affected individuals so far reported in the literature, and overall expanded both the phenotypic and the molecular spectrum associated with this ultra-rare genetic condition. Our study suggests a potential occurrence of severe neurological phenotypes as part of the NUP85-related clinical spectrum and highlights an important involvement of nucleoporin in brain developmental processes and neurological function.
Collapse
Affiliation(s)
- Antonella Gambadauro
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (R.C.)
| | - Giuseppe Donato Mangano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Karol Galletta
- Department of Biomedical, Dental Science and Morphological and Functional Images, Neuroradiology Unit, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (K.G.); (F.G.)
| | - Francesca Granata
- Department of Biomedical, Dental Science and Morphological and Functional Images, Neuroradiology Unit, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (K.G.); (F.G.)
| | - Antonella Riva
- Unit of Medical Genetics, IRCSS Giannina Gaslini Institute, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.R.); (P.S.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Laura Massella
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy; (L.M.); (I.G.)
| | - Isabella Guzzo
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy; (L.M.); (I.G.)
| | - Giovanni Farello
- Department of Pediatrics, University of L’Aquila, 67100 L’Aquila, Italy; (G.F.); (G.S.); (L.D.F.); (G.D.D.); (C.I.); (A.D.L.)
| | - Giovanna Scorrano
- Department of Pediatrics, University of L’Aquila, 67100 L’Aquila, Italy; (G.F.); (G.S.); (L.D.F.); (G.D.D.); (C.I.); (A.D.L.)
| | - Ludovica Di Francesco
- Department of Pediatrics, University of L’Aquila, 67100 L’Aquila, Italy; (G.F.); (G.S.); (L.D.F.); (G.D.D.); (C.I.); (A.D.L.)
| | - Giulio Di Donato
- Department of Pediatrics, University of L’Aquila, 67100 L’Aquila, Italy; (G.F.); (G.S.); (L.D.F.); (G.D.D.); (C.I.); (A.D.L.)
| | - Carolina Ianni
- Department of Pediatrics, University of L’Aquila, 67100 L’Aquila, Italy; (G.F.); (G.S.); (L.D.F.); (G.D.D.); (C.I.); (A.D.L.)
| | - Armando Di Ludovico
- Department of Pediatrics, University of L’Aquila, 67100 L’Aquila, Italy; (G.F.); (G.S.); (L.D.F.); (G.D.D.); (C.I.); (A.D.L.)
| | - Saverio La Bella
- Department of Pediatrics, University of L’Aquila, 67100 L’Aquila, Italy; (G.F.); (G.S.); (L.D.F.); (G.D.D.); (C.I.); (A.D.L.)
| | - Pasquale Striano
- Unit of Medical Genetics, IRCSS Giannina Gaslini Institute, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.R.); (P.S.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Stephanie Efthymiou
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (S.E.); (H.H.)
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (S.E.); (H.H.)
| | - Rosaria Nardello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Roberto Chimenz
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (R.C.)
| |
Collapse
|
6
|
Scorrano G, David E, Calì E, Chimenz R, La Bella S, Di Ludovico A, Di Rosa G, Gitto E, Mankad K, Nardello R, Mangano GD, Leoni C, Ceravolo G. The Cardiofaciocutaneous Syndrome: From Genetics to Prognostic-Therapeutic Implications. Genes (Basel) 2023; 14:2111. [PMID: 38136934 PMCID: PMC10742720 DOI: 10.3390/genes14122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiofaciocutaneous (CFC) syndrome is one of the rarest RASopathies characterized by multiple congenital ectodermal, cardiac and craniofacial abnormalities with a mild to severe ocular, gastrointestinal and neurological involvement. It is an autosomal dominant syndrome, with complete penetrance, caused by heterozygous pathogenic variants in the genes BRAF, MAP2K1/MEK1, MAP2K2/MEK2, KRAS or, rarely, YWHAZ, all part of the RAS-MAPK pathway. This pathway is a signal transduction cascade that plays a crucial role in normal cellular processes such as cell growth, proliferation, differentiation, survival, metabolism and migration. CFC syndrome overlaps with Noonan syndrome, Costello syndrome, neurofibromatosis type 1 and Legius syndrome, therefore making the diagnosis challenging. Neurological involvement in CFC is more severe than in other RASopathies. Phenotypic variability in CFC patients is related to the specific gene affected, without a recognized genotype-phenotype correlation for distinct pathogenic variants. Currently, there is no specific treatment for CFC syndrome. Encouraging zebrafish model system studies suggested that, in the future, MEK inhibitors could be a suitable treatment of progressive phenotypes of CFC in children. A multidisciplinary care is necessary for appropriate medical management.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Emanuele David
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Elisa Calì
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (E.C.); (G.C.)
| | - Roberto Chimenz
- Pediatric Nephrology and Dialysis Unit, University Hospital “G. Martino”, 98124 Messina, Italy;
| | - Saverio La Bella
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Armando Di Ludovico
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Gabriella Di Rosa
- Child Neuropsychiatry Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy;
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98122 Messina, Italy;
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK;
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, “G. D’Alessandro” University of Palermo, 90127 Palermo, Italy; (R.N.); (G.D.M.)
| | - Giuseppe Donato Mangano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, “G. D’Alessandro” University of Palermo, 90127 Palermo, Italy; (R.N.); (G.D.M.)
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgia Ceravolo
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (E.C.); (G.C.)
| |
Collapse
|
7
|
Manti S, Gitto E, Ceravolo I, Mancuso A, Ceravolo A, Salpietro A, Farello G, Chimenz R, Iapadre G, Battaglia F, Cuppari C. A Brief Focus on Joubert Syndrome and Related Acute Complications. JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1760240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) and related disorders are a group of congenital anomalies syndromes in which the obligatory hallmark is the molar tooth sign, a complex midbrain–hindbrain malformation. Moreover, JS may be associated with multiorgan involvement, mainly nephronophthisis, hepatic fibrosis, retinal dystrophy, and other abnormalities with both inter- and intra-familial variability. Therefore, these patients should be followed by both diagnostic protocol and multidisciplinary approach to assess multiorgan involvement. Here, we briefly summarize the possible complications in patients with JS.
Collapse
Affiliation(s)
- Sara Manti
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age Gaetano Barresi, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Francesco Battaglia
- Department of Biomedical Sciences and Advanced Therapies, Orthopaedic Clinic, University of Ferrara, Ferrara, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
8
|
Amorini M, Iapadre G, Mancuso A, Ceravolo I, Farello G, Scardamaglia A, Gramaglia S, Ceravolo A, Salpietro A, Cuppari C. An Overview of Genes Involved in the Pure Joubert Syndrome and in Joubert Syndrome-Related Disorders (JSRD). JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1760242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disease characterized by a peculiar brain malformation, hypotonia, ataxia, developmental delay, abnormal eye movements, and neonatal breathing abnormalities. This picture is often associated with variable multiorgan involvement, mainly of the retina, kidneys and liver, defining a group of conditions termed syndrome and Joubert syndrome-related disorders (JSRD). Currently, more than 30 causative genes have been identified, involved in the development and stability of the primary cilium. Correlations genotype–phenotype are emerging between clinical presentations and mutations in JSRD genes, with implications in terms of molecular diagnosis, prenatal diagnosis, follow-up, and management of mutated patients.
Collapse
Affiliation(s)
- Maria Amorini
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Simone Gramaglia
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
9
|
Prato A, Scuderi A, Amore G, Spoto G, Salpietro V, Ceravolo A, Farello G, Iapadre G, Pironti E, Dicanio D, Rosa GD. Epilepsy in Joubert Syndrome: A Still Few Explored Matter. JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1759540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractEpilepsy is rarely associated with Joubert's syndrome and related disorders (JSRD), being reported only in 3% of cases. Few patients have been described, moreover, with poor evidences of specific seizures' semiology or standard of practice for pharmacological treatment. Epilepsy is likely to be related to brain malformations in ciliopathies. Beyond the typical hindbrain malformation, the molar tooth sign, other cerebral anomalies variably reported in JSRD, such as generalized polymicrogyria, hamartomas, periventricular nodular heterotopia, and hippocampal defects, have been described. Herein, we aimed to revise the main clinical and etiopathogenetic characteristics of epilepsy associated with JSRD.
Collapse
Affiliation(s)
- Adriana Prato
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Anna Scuderi
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito, L'Aquila, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| | - Daniela Dicanio
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
10
|
Stroscio G, Cuppari C, Ceravolo MD, Salpietro A, Battaglia F, Sallemi A, Fusco M, Ceravolo A, Iapadre G, Calì E, Impollonia D, Granata F. Radiological Features of Joubert's Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1760241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disorder. All patients affected by this syndrome presented a characteristic picture of cranial fossa malformations, called “molar tooth sign.” This sign is defined by the presence in axial section at the level of a deck/midbrain, of hypo/dysplasia of the cerebellar vermis, abnormally deep interpeduncular fossa and horizontalized thickened and elongated superior cerebellar peduncles. Although “molar tooth sign” is peculiar of JS, other radiological findings have been also reported in these patients. Here, the authors briefly assumed the principal magnetic resonance imaging findings of JS.
Collapse
Affiliation(s)
- Giovanni Stroscio
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Francesco Battaglia
- Orthopaedic and Traumatology Department, “S. Anna” Hospital, University of Ferrara, Ferrara, Italy
| | - Alessia Sallemi
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Elisa Calì
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Daniela Impollonia
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Francesca Granata
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| |
Collapse
|
11
|
Cuppari C, Ceravolo I, Mancuso A, Farello G, Iapadre G, Zagaroli L, Nanni G, Ceravolo MD. Joubert Syndrome: Diagnostic Evaluation and Follow-up. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe follow-up of a child with genetic syndrome is necessarily multidisciplinary because of the multiplicity of problems and calls for close collaboration between different specialists. The primary objective is the total care of the child and his family, regardless of the rarity and complexity of the disease, to obtain the highest possible degree of mental and physical health and autonomy.
Collapse
Affiliation(s)
- Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
12
|
Valentini G, Saia M, Farello G, Salpietro V, Mancuso A, Ceravolo I, Colucci PV, Torre M, Iapadre G, Rosa GD, Cucinotta F. Meckel Syndrome: A Clinical and Molecular Overview. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractMeckel syndrome (MKS) is a lethal, autosomal recessive, congenital syndrome caused by mutations in genes that encode proteins structurally or functionally related to the primary cilium. MKS is a malformative syndrome, most commonly characterized by occipital meningoencephalocele, polycystic kidney disease, liver fibrosis, and post- and (occasionally) preaxial polydactyly. To date, more than 10 genes are known to constitute the molecular background of MKS, displaying genetic heterogeneity. Individuals with MKS may resemble some phenotypic features of Joubert syndrome and related disorders, thus making diagnostic setting quite challenging. Here, we systematically reviewed the main clinical and genetic characteristics of MKS and its role among ciliopathies.
Collapse
Affiliation(s)
- Giulia Valentini
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Maria Saia
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore Tommasi 1, Coppito (AQ), Italy
| | | | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, Messina, Italy
| | - Pia V. Colucci
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Manuela Torre
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “G. Barresi,” University Hospital of Messina, Messina, Italy
| | | |
Collapse
|
13
|
Mancuso A, Ceravolo I, Cuppari C, Sallemi A, Fusco M, Ceravolo A, Farello G, Iapadre G, Zagaroli L, Nanni G, Conti G. The Function and Role of the Cilium in the Development of Ciliopathies. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract“Ciliopathies” are a group of genetic disorders described by the malformation or dysfunction of cilia. The disorders of ciliary proteins lead to a range of phenotype from organ-specific (e.g., cystic disease of the kidney, liver, and pancreas, neural tube defects, postaxial polydactyly, situs inversus, and retinal degeneration) to sketchily pleiotropic (e.g., Bardet-Biedl syndrome and Joubert syndrome). The mechanism below the disfunction of cilia to reach new therapeutic strategies.
Collapse
Affiliation(s)
- Alessio Mancuso
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Caterina Cuppari
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Alessia Sallemi
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Monica Fusco
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | | | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Via Vetoio, 1. Coppito, 67100 L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, Via Vetoio, 1. Coppito, 67100 L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, Via Vetoio, 1. Coppito, 67100 L'Aquila, Italy
| | - Giovanni Conti
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Nephrology and Rheumatology, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Scuderi A, Prato A, Dicanio D, Spoto G, Salpietro V, Ceravolo G, Granata F, Farello G, Iapadre G, Zagaroli L, Nanni G, Ceravolo I, Pironti E, Amore G, Rosa GD. Age-Related Neurodevelopmental Features in Children with Joubert Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert syndrome (JS) is a rare inherited disorder of central nervous system with neonatal/infantile onset, mainly affecting cerebellum and brainstem, and clinically characterized by agenesis or dysgenesis of the cerebellar vermis with accompanying brainstem malformations. More than 20 disease-causing genes have been associated with JS but a clear genotype–phenotype correlation has not been assessed yet. Diagnosis is usually confirmed by detection of the JS neuroradiological hallmark, the molar tooth sign. Patients with JS typically present with neurological manifestations, moreover, a heterogeneous spectrum of multisystemic anomalies may be observed. Signs and symptoms onset varies according to the age range and clinical diagnosis might become complicated. Moreover, specific neurodevelopmental disorders can be associated with JS such as autism spectrum disorders, attention deficit with hyperactivity, and a wide range of behavioral disturbances. Here, we examined the main neurological and neurodevelopmental features of JS according to an age-dependent mode of presentation. Furthermore, differential diagnosis with other neurological syndromes was closely reviewed.
Collapse
Affiliation(s)
- Anna Scuderi
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Adriana Prato
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Daniela Dicanio
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Giorgia Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Francesca Granata
- Department of Biomedical Sciences and Morphological and Functional, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
15
|
La Macchia T, Mancuso A, Ceravolo MD, Cuppari C, Chimenz R, Farello G, Gitto E, Iapadre G, Ceravolo I. Alström Syndrome: A Systematic Review. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractAlström syndrome (AS) is a rare multisystem disorder characterized by cone-rod retinal dystrophy leading to vision loss, hearing deficiency, obesity, type 2 diabetes mellitus, and insulin resistance with hyperinsulinemia. The conditions include dilated cardiomyopathy, recurrent fibrotic pulmonary infections, and progressive renal, hepatic, and endocrinological dysfunction. Other clinical findings consist of thyroid problems, short height, and growth hormone insufficiency. In addition, patients present with normal IQ, but in some cases delay in psychomotor and cognitive development is described. There is no treatment for AS, and life expectancy is around 40 years. However, an early identification of the disease can help in reducing the progression to severe conditions and in ameliorating the patient's quality of life. Our intent was to analyze the clinical data in literature on AS and provide an up-to-date review.
Collapse
Affiliation(s)
- Tommaso La Macchia
- Unit of Cardiology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Department of Human Pathology and Evolutive Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Department of Human Pathology and Evolutive Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Caterina Cuppari
- Department of Human Pathology and Evolutive Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore Tommasi 1, Coppito (AQ), Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Cuppari C, Salpietro A, Chimenz R, Colavita L, Ceravolo MD, Gitto E, Sallemi A, Fusco M, Ceravolo I, Farello G, Iapadre G, Rocca C, Salazar A, Mancuso A. Joubert Syndrome with Oral-Facial-Digital Defect (JS-OFD): A Brief Overview on Clinics and Genetics. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert's syndrome with digital facial oral defects represents a rare subgroup of Joubert's syndrome with related disorders. There are 11 forms of oral-facial-digital syndromes and are characterized by having neurological signs of JS associated with orofacial anomalies and often polydactyly. The most severe variant is the OFD type VI (Varadi-Papp syndrome) in which there are tongue hamartomas, multiple frenula, midline notch of the upper lip, mesoaxial polydactyly, and hypothalamic hamartomas. Treatments are symptomatic and supportive with reconstructive surgery for correctable malformation and physical therapy, occupational therapy, speech therapy, and infant stimulation for mental delay.
Collapse
Affiliation(s)
- Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Laura Colavita
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age Gaetano Barresi, University of Messina, Messina, Italy
| | - Alessia Sallemi
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Ainara Salazar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
17
|
Amore G, Spoto G, Scuderi A, Prato A, Dicanio D, Nicotera A, Farello G, Chimenz R, Ceravolo I, Salpietro V, Gitto E, Ceravolo G, Iapadre G, Rosa GD, Pironti E. Bardet–Biedl Syndrome: A Brief Overview on Clinics and Genetics. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractBardet–Biedl syndrome is a genetically pleiotropic disorder characterized by high clinical heterogeneity with severe multiorgan impairment. Clinically, it encompasses primary and secondary manifestations, mainly including retinal dystrophy, mental retardation, obesity, polydactyly, hypogonadism in male, and renal abnormalities. At least 21 different genes have been identified, all involved into primary cilium structure or function. To date, genotype–phenotype correlation is still poor.
Collapse
Affiliation(s)
- Greta Amore
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Giulia Spoto
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Anna Scuderi
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Adriana Prato
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Daniela Dicanio
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Antonio Nicotera
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore Tommasi 1, Coppito (AQ), Italy
| | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giorgia Ceravolo
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Gabriella Di Rosa
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| |
Collapse
|
18
|
Ceravolo I, Granata F, Gitto E, Iapadre G, Chimenz R, Giannitto N, Mancuso A, Ceravolo MD, Macchia TL, Rissotto F, Farello G, Cuppari C. Ophthalmological Findings in Joubert Syndrome and Related Disorders. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert syndrome (JS) is a rare genetic condition characterized by congenital malformation of the mid-hindbrain, cerebellar ataxia, hypotonia, oculomotor apraxia, hypoplasia of the cerebellar vermis resulting in breathing defects, ataxia, and delayed development. Ophthalmological examination reveals eye involvement with nystagmus and retinal defects. Genetic counseling is important for the prevention of new cases. Great advances have been made in recent years. Management is symptomatic and multidisciplinary. In the present review, we discussed the most frequent ophthalmological anomalies associated with JS and speculated on the role of ciliary physiology in eye development.
Collapse
Affiliation(s)
- Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Nino Giannitto
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Tommaso La Macchia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federico Rissotto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
19
|
Cuppari C, Salpietro A, Ceravolo I, Iapadre G, Fusco M, Sallemi A, Mancuso A, Farello G, Ceravolo MD. Ciliopathies: Genetic Counseling. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractJoubert syndrome (JS) follows autosomal recessive inheritance, with rare X-linked recessive cases. The disease is genetically heterogeneous with neurological features associated with multiorgan involvement (e.g., retinal dystrophy, nephronophthisis, hepatic fibrosis, and polydactyly). The incidence of JS and related disorders is between 1/80,000 and 1/100,000 live births. Many causative genes have been identified, all encoding for proteins of the cilium or the centrosome, making the JS part of a group of diseases called “ciliopathies.” The identification of the molecular defect in couples at risk is allowed by prenatal genetic testing, whereas fetal ultrasound and brain neuroimaging are informative in the first and second trimester of pregnancy.
Collapse
Affiliation(s)
- Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Coppito, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessia Sallemi
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ), Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
20
|
Conti G, Farello G, Ceravolo MD, Fusco M, Cuppari C, Mancuso A, Ceravolo I, David E, Iapadre G, Scorrano G, Fiorile MF, Chimenz R. Joubert Syndrome and Renal Implication. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractTwenty-five to 30% of patients with Joubert syndrome (JS) have renal involvement. Two forms of renal disease (RD) have traditionally been described. The less common form is the Dekaban–Arima syndrome, a JS RD that includes congenital blindness and occasional encephalocele. The other, more common RD is juvenile nephronophthisis (NPHP), that presents a progressive interstitial fibrosis, associated with small cysts at the corticomedullary junction. NPHP is the most frequent genetic cause for end-stage RD in the first three decades of life. Symptoms start at approximately 6 years of age with urine concentrating defects, polydipsia, polyuria, and secondary enuresis.
Collapse
Affiliation(s)
- Giovanni Conti
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emanuele David
- Ragnostic Unit, A. O. Papardo, Messina, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | | | | | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
21
|
Three-Dimensional Constructive Interference in Steady State (3D CISS) Imaging and Clinical Applications in Brain Pathology. Biomedicines 2022; 10:biomedicines10112997. [PMID: 36428564 PMCID: PMC9687637 DOI: 10.3390/biomedicines10112997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional constructive interference in steady state (3D CISS) is a steady-state gradient-echo sequence in magnetic resonance imaging (MRI) that has been used in an increasing number of applications in the study of brain disease in recent years. Owing to the very high spatial resolution, the strong hyperintensity of the cerebrospinal fluid signal and the high contrast-to-noise ratio, 3D CISS can be employed in a wide range of scenarios, ranging from the traditional study of cranial nerves, the ventricular system, the subarachnoid cisterns and related pathology to more recently discussed applications, such as the fundamental role it can assume in the setting of acute ischemic stroke, vascular malformations, infections and several brain tumors. In this review, after briefly summarizing its fundamental physical principles, we examine in detail the various applications of 3D CISS in brain imaging, providing numerous representative cases, so as to help radiologists improve its use in imaging protocols in daily clinical practice.
Collapse
|
22
|
Aly MAA, Saleh TM, Elfatatry AMA, Montasser MM. The value of double inversion recovery MRI sequence in assessment of epilepsy patients. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The double inversion recovery (DIR) pulse sequence was introduced several years ago and since that it grew important value in clinical neuroimaging. We aimed to assess the added value of double inversion recovery in evaluation of epileptic patients.
Results
In mesial temporal sclerosis, the measured contrast parameters (SNR, CR, CNR and AI) were found to be significantly higher in DIR than in FLAIR and T2 sequences. In cases of focal cortical dysplasia, significantly higher CNR and AI in DIR than in T2 and FLAIR. Also DIR showed higher detection of the increased cortical thickness and cortical signal intensity than the T2 and FLAIR sequences. In tuberous sclerosis cases, the DIR showed higher visibility of the lesions than the T2 and FLAIR. Also DIR showed higher ability to detected grey-white matters junction blurring.
Conclusions
Our study concluded that the greatest value of the double inversion recovery sequence is its higher ability in detecting multiple characteristics of the lesions in a one sequence.
Collapse
|
23
|
Beheshti I, Sone D, Maikusa N, Kimura Y, Shigemoto Y, Sato N, Matsuda H. Accurate lateralization and classification of MRI-negative 18F-FDG-PET-positive temporal lobe epilepsy using double inversion recovery and machine-learning. Comput Biol Med 2021; 137:104805. [PMID: 34464851 DOI: 10.1016/j.compbiomed.2021.104805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The main objective of this study was to determine the ability of double inversion recovery (DIR) data coupled with machine-learning algorithms to distinguish normal individuals from epileptic subjects and to identify the laterality of the focus side in MRI-negative, PET-positive temporal lobe epilepsy (TLE) patients. MATERIALS AND METHODS We used whole-brain DIR data as the input features with which to train a linear support-vector machine model in 63 participants who underwent high-resolution structural MRI and DIR scans. The subjects included 20 left TLE patients, 19 right TLE patients, and 24 healthy controls (HCs). RESULTS Using the DIR data, we achieved a robust accuracy of 87.30% for discriminating among the left TLE, right TLE, and HC groups as well as 84.61%, 97.72%, and 93.02% prediction accuracies for distinguishing left TLE from right TLE, HC from right TLE, and HC from left TLE, respectively. INTERPRETATION Our experimental results suggest that DIR data coupled with machine-learning algorithms provide a promising approach to identifying MRI-negative TLE patients, especially when fluorodeoxyglucose-PET is not available.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Cyclotron and Drug Discovery Research Center, Southern TOHOKU Research Institute for Neuroscience, 7- 61-2, Yatsuyamada, Koriyama, 963-8052, Japan.
| | - Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom; Department of Psychiatry, The Jikei University School of Medicine, 3-25-8, Nishishimbashi, Minato, Tokyo, 105-8461, Japan
| | - Norihide Maikusa
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| | - Hiroshi Matsuda
- Cyclotron and Drug Discovery Research Center, Southern TOHOKU Research Institute for Neuroscience, 7- 61-2, Yatsuyamada, Koriyama, 963-8052, Japan; Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, 187-8551, Japan
| |
Collapse
|
24
|
Sone D. Making the Invisible Visible: Advanced Neuroimaging Techniques in Focal Epilepsy. Front Neurosci 2021; 15:699176. [PMID: 34385902 PMCID: PMC8353251 DOI: 10.3389/fnins.2021.699176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
It has been a clinically important, long-standing challenge to accurately localize epileptogenic focus in drug-resistant focal epilepsy because more intensive intervention to the detected focus, including resection neurosurgery, can provide significant seizure reduction. In addition to neurophysiological examinations, neuroimaging plays a crucial role in the detection of focus by providing morphological and neuroanatomical information. On the other hand, epileptogenic lesions in the brain may sometimes show only subtle or even invisible abnormalities on conventional MRI sequences, and thus, efforts have been made for better visualization and improved detection of the focus lesions. Recent advance in neuroimaging has been attracting attention because of the potentials to better visualize the epileptogenic lesions as well as provide novel information about the pathophysiology of epilepsy. While the progress of newer neuroimaging techniques, including the non-Gaussian diffusion model and arterial spin labeling, could non-invasively detect decreased neurite parameters or hypoperfusion within the focus lesions, advances in analytic technology may also provide usefulness for both focus detection and understanding of epilepsy. There has been an increasing number of clinical and experimental applications of machine learning and network analysis in the field of epilepsy. This review article will shed light on recent advances in neuroimaging for focal epilepsy, including both technical progress of images and newer analytical methodologies and discuss about the potential usefulness in clinical practice.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
25
|
Sun K, Yu T, Yang D, Ren Z, Qiao L, Ni D, Wang X, Zhao Y, Chen X, Xiang J, Chen N, Gao R, Yang K, Lin Y, Kober T, Zhang G. Fluid and White Matter Suppression Imaging and Voxel-Based Morphometric Analysis in Conventional Magnetic Resonance Imaging-Negative Epilepsy. Front Neurol 2021; 12:651592. [PMID: 33995250 PMCID: PMC8116947 DOI: 10.3389/fneur.2021.651592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/18/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose: Delineation of subtle lesions in magnetic resonance imaging (MRI)-negative patients is of great importance in preoperative epilepsy evaluation. The aim of our study was to explore the diagnostic value of the novel fluid and white matter suppression (FLAWS) sequence in comparison with a voxel-based MRI postprocessing morphometric analysis program (MAP) in a consecutive cohort of non-lesional patients. Methods: Surgical candidates with a negative finding on an official neuroradiology report were enrolled. High-resolution FLAWS image and MAP maps generated based on high-resolution three-dimensional (3D) T1 image were visually inspected for each patient. The findings of FLAWS or MAP-positive (FLAWS/MAP+) regions were compared with the surgical resection cavity in correlation with surgical outcome and pathology. Results: Forty-five patients were enrolled; the pathological examination revealed focal cortical dysplasia (FCD) in 32 patients and other findings in 13 patients. The positive rate, sensitivity, and specificity were 48.9%, 0.43, and 0.87, respectively, for FLAWS and 64.4%, 0.57, and 0.8, respectively, for MAP. Concordance between surgical resection and FLAWS+ or MAP+ regions was significantly associated with a seizure-free outcome (FLAWS: p = 0.002; MAP: p = 0.0003). A positive finding in FLAWS and MAP together with abnormalities in the same gyrus (FLAWS–MAP gyral+) was detected in 31.1% of patients. FLAWS+ only and MAP+ only were found in 7 (15.5%) and 14 (31.1%) patients, respectively. Conclusions: FLAWS showed a promising value for identifying subtle epileptogenic lesions and can be used as a complement to current MAP in patients with MRI-negative epilepsy.
Collapse
Affiliation(s)
- Ke Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongju Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Zhao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Xiang
- Department of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Evidence-Based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Sone D, Sato N, Kimura Y, Maikusa N, Shigemoto Y, Matsuda H. Quantitative analysis of double inversion recovery and FLAIR signals in temporal lobe epilepsy. Epilepsy Res 2020; 170:106540. [PMID: 33385946 DOI: 10.1016/j.eplepsyres.2020.106540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/29/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
This study aimed to quantitatively compare the signals from double inversion recovery (DIR) and fluid-attenuated inversion recovery (FLAIR) in temporal lobe epilepsy (TLE) with a focus on anterior temporal lobe white matter abnormal signal (ATLAS) lesions. We recruited 59 patients with TLE (32 left, 27 right) and 24 healthy controls (HCs). All patients underwent 3T-MRI scans including 3D DIR and FLAIR images, and the images were normalized and compared among the three groups by the software program SPM 12. We also explored the association of the ATLAS with disease duration, seizure types, and the existence of hippocampal sclerosis (HS). As a result, compared to the HCs, there were significantly increased DIR signals in the ipsilateral anterior temporal white matter of both the left and right TLE patients. There was no significant signal difference in FLAIR images between the HCs and patients except for a trend-level increase in left TLE. There was also no significant association between the ATLAS and disease duration, seizure type, or HS. These results quantitatively confirmed the significant signal increases of DIR in the ipsilateral anterior temporal lobe in both left and right TLE, whereas FLAIR revealed no significant between-group differences. These findings may indicate greater usefulness of DIR compared to FLAIR for detecting ATLAS lesions.
Collapse
Affiliation(s)
- Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan; Department of Psychiatry, The Jikei University School of Medicine, 3-25-8, Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| | - Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| |
Collapse
|
27
|
Allone C, Bonanno L, Lo Buono V, Corallo F, Palmeri R, Micchia K, Pollicino P, Bramanti A, Marino S. Neuropsychological assessment and clinical evaluation in temporal lobe epilepsy with associated cortical dysplasia. J Clin Neurosci 2020; 72:146-150. [PMID: 31918906 DOI: 10.1016/j.jocn.2019.12.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022]
Abstract
Temporal Lobe Epilepsy (TLE) is a chronic neurological disorder, often associated to cognitive deficits. Focal cortical dysplasia (FCD), frequently associated to high risk of epilepsy, can lead to abnormalities in cognition. The aim of this study was to explore neuropsychological performance and to identify potential risk factors for cognitive impairment in TLE subjects with associated FCD. Our sample was composed by 46 TLE patients with FCD (37.76 ± 12.60 years; 29 females and 16 males) and 44 healthy controls (41.05 ± 9.74 years; 25 females and 19 males). All subjects performed a neuropsychological battery associated to a measurement of depression and anxiety. Results showed a poor performance of all domains of cognitive functioning and identified age of epilepsy onset as potential risk factor of cognitive impairment. These findings support the importance to focus on cognitive impairment in TLE patients with FCD to better clarify the impact of epilepsy features and FCD in therapeutic and everyday management.
Collapse
Affiliation(s)
| | - Lilla Bonanno
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | | | | | | | - Katia Micchia
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | | | - Alessia Bramanti
- Institute of Applied Science and Intelligent Systems "ISASI Eduardo Caianiello", CNR, Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy; Department of Biomedical Sciences and Morphological and Fuctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
28
|
Predictors of meaningful improvement in quality of life after selective amygdalohippocampectomy in Chinese patients with refractory temporal lobe epilepsy: A prospective study. Epilepsy Behav 2019; 97:1-7. [PMID: 31181423 DOI: 10.1016/j.yebeh.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Our aim was to determine the independent predictors of minimum clinically important difference (MCID) in quality of life (QOL) after selective amygdalohippocampectomy (SAH) among Chinese patients with refractory mesial temporal lobe epilepsy (MTLE). METHODS We conducted a prospective study and enrolled 50 consecutive patients with refractory MTLE who underwent SAH after their presurgical evaluations. The variables independently associated with MCID in the Quality of Life in Epilepsy Inventory-31 (QOLIE-31) overall score 1 year after SAH were analyzed by multiple binary logistic regression analysis. RESULTS Significant improvements in the QOLIE-31 overall score and all subscale scores were observed after SAH (p < 0.001). Among 50 patients with refractory MTLE, 78% reached the criteria for MCID of QOL overall score after SAH. In the multiple binary logistic regression model, the presurgical independent predictors of significant improvement by MCID in QOL were absence of depression diagnosis (adjusted odds ratio [OR] = 8.391, 95% confidence interval [CI] = 1.240-56.776, p = 0.029) and good cognitive function (adjusted OR = 8.427, 95% CI = 1.115-63.670, p = 0.039); the postoperative independent predictor was seizure freedom (adjusted OR = 8.477, 95% CI = 1.195-60.122, p = 0.032). The sensitivity and specificity for significant improvement in the QOL were 97.4% and 45.5% respectively, with an overall model accuracy of 86.0%. CONCLUSIONS Presurgical depression, cognitive function, and postsurgical seizure freedom are independent predictors for meaningful improvement in QOL after SAH among the Chinese patients with refractory MTLE. Preoperative evaluation of patients with refractory MTLE should consider the cognitive dysfunction and psychological disorders.
Collapse
|
29
|
Umino M, Maeda M, Ii Y, Tomimoto H, Sakuma H. 3D double inversion recovery MR imaging: Clinical applications and usefulness in a wide spectrum of central nervous system diseases. J Neuroradiol 2018; 46:107-116. [PMID: 30016704 DOI: 10.1016/j.neurad.2018.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/03/2018] [Accepted: 06/23/2018] [Indexed: 12/31/2022]
Abstract
Double inversion recovery (DIR) imaging provides two inversion pulses that attenuate signals from cerebrospinal fluid and normal white matter. This review was undertaken to describe the principle of the DIR sequence, the clinical applications of 3D DIR in various central nervous system diseases and the clinical benefits of the 3D DIR compared with those of other MR sequences. 3D DIR imaging provides better lesion conspicuity and topography than other MR techniques. It is particularly useful for diagnosing the following disease entities: cortical and subcortical abnormalities such as multiple sclerosis, cortical microinfarcts and cortical development anomalies; sulcal abnormalities such as meningitis and subacute/chronic subarachnoid hemorrhage; and optic neuritis caused by multiple sclerosis or neuromyelitis optica.
Collapse
Affiliation(s)
- Maki Umino
- Department of Radiology, Mie University School of Medicine, 2-174 Edobashi, 514-8507 Tsu, Mie, Japan.
| | - Masayuki Maeda
- Department of Advanced Diagnostic Imaging, Mie University School of Medicine, Tsu, Mie, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University School of Medicine, 2-174 Edobashi, 514-8507 Tsu, Mie, Japan
| |
Collapse
|
30
|
Allone C, Lo Buono V, Corallo F, Pisani LR, Pollicino P, Bramanti P, Marino S. Neuroimaging and cognitive functions in temporal lobe epilepsy: A review of the literature. J Neurol Sci 2017; 381:7-15. [DOI: 10.1016/j.jns.2017.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 02/05/2023]
|
31
|
Abstract
In recent years, the field of neuroimaging has undergone dramatic development. Specifically, of importance for clinicians and researchers managing patients with epilepsies, new methods of brain imaging in search of the seizure-producing abnormalities have been implemented, and older methods have undergone additional refinement. Methodology to predict seizure freedom and cognitive outcome has also rapidly progressed. In general, the image data processing methods are very different and more complicated than even a decade ago. In this review, we identify the recent developments in neuroimaging that are aimed at improved management of epilepsy patients. Advances in structural imaging, diffusion imaging, fMRI, structural and functional connectivity, hybrid imaging methods, quantitative neuroimaging, and machine-learning are discussed. We also briefly summarize the potential new developments that may shape the field of neuroimaging in the near future and may advance not only our understanding of epileptic networks as the source of treatment-resistant seizures but also better define the areas that need to be treated in order to provide the patients with better long-term outcomes.
Collapse
|
32
|
Saranathan M, Worters PW, Rettmann DW, Winegar B, Becker J. Physics for clinicians: Fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) Imaging. J Magn Reson Imaging 2017; 46:1590-1600. [DOI: 10.1002/jmri.25737] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/30/2017] [Indexed: 01/05/2023] Open
Affiliation(s)
| | | | | | - Blair Winegar
- Department of Medical Imaging; University of Arizona; Tucson Arizona USA
| | - Jennifer Becker
- Department of Medical Imaging; University of Arizona; Tucson Arizona USA
| |
Collapse
|
33
|
Abstract
Investigators from the Mayo Clinic, Rochester Minnesota investigated the utility of three-dimensional (3D) double inversion recovery (DIR) sequences in magnetic resonance imaging (MRI) detection of focal cortical dysplasia (FCD) in children and young adults with epilepsy.
Collapse
Affiliation(s)
- Maura E Ryan
- Division of Neuroradiology, Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
34
|
Wychowski T, Hussain A, Tivarus ME, Birbeck GL, Berg MJ, Potchen M. Qualitative analysis of double inversion recovery MRI in drug-resistant epilepsy. Epilepsy Res 2016; 127:195-199. [PMID: 27619358 DOI: 10.1016/j.eplepsyres.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 11/17/2022]
Abstract
PURPOSE To determine whether Double Inversion Recovery (DIR) on 3T MRI can enhance detection of epileptogenic lesions Methods: 29 adult patients with DRE were enrolled in a prospective pilot study. Brain MRIs were obtained using a specialized protocol that included: (1) Fast-Spin EchoT2, (2) T2 fluid attenuated inversion recovery (FLAIR), and (3) DIR sequences. Two neuroradiologists blinded to clinical information independently reviewed each sequence in the order listed above for T2-hyperintense lesions. Cortical lesions were determined to be concordant with the epileptic focus based upon available clinical and electrodiagnostic testing. RESULTS Of 29 studies, 21 had a lesion identified with 13/21 abnormalities being non-specific. Of 8 remaining studies, 3 revealed a lesion only with DIR sequencing. DIR-lesions were concordant with clinical data in 1 subject, non-discordant in 1 subject, and discordant in 1 subject. SIGNIFICANCE DIR has the potential to be more sensitive in detecting cortically based lesions relative to standard imaging. More data are needed to assess the sensitivity and specificity of DIR, particularly as it pertains to identification of epileptogenic lesions using electrodiagnostic testing and outcome after surgery.
Collapse
Affiliation(s)
- Thomas Wychowski
- Department of Neurology, Strong Memorial Hospital, University of Rochester, 601 Elmwood Ave., Box 673, Rochester, NY 14642 USA.
| | - Ali Hussain
- Department of Imaging Sciences, Strong Memorial Hospital, University of Rochester, 601 Elmwood Ave., Box 648, Rochester, NY 14642 USA
| | - Madalina E Tivarus
- Department of Imaging Sciences, Strong Memorial Hospital, University of Rochester, 601 Elmwood Ave., Box 648, Rochester, NY 14642 USA
| | - Gretchen L Birbeck
- Department of Neurology, Strong Memorial Hospital, University of Rochester, 601 Elmwood Ave., Box 673, Rochester, NY 14642 USA
| | - Michel J Berg
- Department of Neurology, Strong Memorial Hospital, University of Rochester, 601 Elmwood Ave., Box 673, Rochester, NY 14642 USA
| | - Michael Potchen
- Department of Imaging Sciences, Strong Memorial Hospital, University of Rochester, 601 Elmwood Ave., Box 648, Rochester, NY 14642 USA
| |
Collapse
|