1
|
Wada N, Tsunomori A, Kubo T, Hino T, Hata A, Yamada Y, Ueyama M, Nishino M, Kurosaki A, Ishigami K, Kudoh S, Hatabu H. Assessment of pulmonary function in COPD patients using dynamic digital radiography: A novel approach utilizing lung signal intensity changes during forced breathing. Eur J Radiol Open 2024; 13:100579. [PMID: 39041056 PMCID: PMC11260941 DOI: 10.1016/j.ejro.2024.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Objectives To investigate the association of lung signal intensity changes during forced breathing using dynamic digital radiography (DDR) with pulmonary function and disease severity in patients with chronic obstructive pulmonary disease (COPD). Methods This retrospective study included 46 healthy subjects and 33 COPD patients who underwent posteroanterior chest DDR examination. We collected raw signal intensity and gray-scale image data. The lung contour was extracted on the gray-scale images using our previously developed automated lung field tracking system and calculated the average of signal intensity values within the extracted lung contour on gray-scale images. Lung signal intensity changes were quantified as SImax/SImin, representing the maximum ratio of the average signal intensity in the inspiratory phase to that in the expiratory phase. We investigated the correlation between SImax/SImin and pulmonary function parameters, and differences in SImax/SImin by disease severity. Results SImax/SImin showed the highest correlation with VC (rs = 0.54, P < 0.0001), followed by FEV1 (rs = 0.44, P < 0.0001), both of which are key indicators of COPD pathophysiology. In a multivariate linear regression analysis adjusted for confounding factors, SImax/SImin was significantly lower in the severe COPD group compared to the normal group (P = 0.0004) and mild COPD group (P=0.0022), suggesting its potential usefulness in assessing COPD severity. Conclusion This study suggests that the signal intensity changes of lung fields during forced breathing using DDR reflect the pathophysiology of COPD and can be a useful index in assessing pulmonary function in COPD patients, potentially improving COPD diagnosis and management.
Collapse
Affiliation(s)
- Noriaki Wada
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Akinori Tsunomori
- R&D Promotion Division, Healthcare Business Headquarters, KONICA MINOLTA, INC., 2970 Ishikawa-machi, Hachioji-shi, Tokyo 192-8505, Japan
| | - Takeshi Kubo
- Department of Radiology, Tenri Hospital, 200 Mishimacho, Tenri, Nara 632-8552, Japan
| | - Takuya Hino
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Akinori Hata
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masako Ueyama
- Department of Health Care, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522, Japan
| | - Mizuki Nishino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Atsuko Kurosaki
- Department of Diagnostic Radiology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Shoji Kudoh
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522, Japan
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
2
|
Tanabe N, Nakagawa H, Sakao S, Ohno Y, Shimizu K, Nakamura H, Hanaoka M, Nakano Y, Hirai T. Lung imaging in COPD and asthma. Respir Investig 2024; 62:995-1005. [PMID: 39213987 DOI: 10.1016/j.resinv.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are common lung diseases with heterogeneous clinical presentations. Lung imaging allows evaluations of underlying pathophysiological changes and provides additional personalized approaches for disease management. This narrative review provides an overview of recent advances in chest imaging analysis using various modalities, such as computed tomography (CT), dynamic chest radiography, and magnetic resonance imaging (MRI). Visual CT assessment localizes emphysema subtypes and mucus plugging in the airways. Dedicated software quantifies the severity and spatial distribution of emphysema and the airway tree structure, including the central airway wall thickness, branch count and fractal dimension of the tree, and airway-to-lung size ratio. Nonrigid registration of inspiratory and expiratory CT scans quantifies small airway dysfunction, local volume changes and shape deformations in specific regions. Lung ventilation and diaphragm movement are also evaluated on dynamic chest radiography. Functional MRI detects regional oxygen transfer across the alveolus using inhaled oxygen and ventilation defects and gas diffusion into the alveolar-capillary barrier tissue and red blood cells using inhaled hyperpolarized 129Xe gas. These methods have the potential to determine local functional properties in the lungs that cannot be detected by lung function tests in patients with COPD and asthma. Further studies are needed to apply these technologies in clinical practice, particularly for early disease detection and tailor-made interventions, such as the efficient selection of patients likely to respond to biologics. Moreover, research should focus on the extension of healthy life expectancy in patients at higher risk and with established diseases.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan.
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Seiichiro Sakao
- Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686 Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Kaoruko Shimizu
- Division of Emergent Respiratory and Cardiovascular medicine, Hokkaido University Hospital, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| |
Collapse
|
3
|
Ikari J, Katsumata M, Urano A, Imamoto T, Suzuki Y, Nishiyama A, Yokota H, Ono K, Okamoto K, Abe E, Kamata T, Fujii S, Okumura K, Ota J, Suzuki E, Kawata N, Ozawa Y, Masuda Y, Matsushita K, Sakao S, Uno T, Tatsumi K, Suzuki T. Dynamic chest radiographic evaluation of the effects of tiotropium/olodaterol combination therapy in chronic obstructive pulmonary disease: the EMBODY study protocol for an open-label, prospective, single-centre, non-controlled, comparative study. BMJ Open Respir Res 2024; 11:e002374. [PMID: 39107000 PMCID: PMC11337696 DOI: 10.1136/bmjresp-2024-002374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION To date, there is limited evidence on the effects of bronchodilators on respiratory dynamics in chronic obstructive pulmonary disease (COPD). Dynamic chest radiography (DCR) is a novel radiographic modality that provides real-time, objective and quantifiable kinetic data, including changes in the lung area (Rs), tracheal diameter, diaphragmatic kinetics and pulmonary ventilation during respiration, at a lower radiation dose than that used by fluoroscopic or CT imaging. However, the therapeutic effect of dual bronchodilators on respiratory kinetics, such as chest wall dynamics and respiratory muscle function, has not yet been prospectively evaluated using DCR. AIM This study aims to evaluate the effects of bronchodilator therapy on respiratory kinetics in patients with COPD using DCR. METHODS AND ANALYSIS This is an open-label, prospective, single-centre, non-controlled, comparative study. A total of 35 patients with COPD, aged 40-85 years, with a forced expiratory volume in the first second of 30-80%, will be enrolled. After a 2-4 weeks washout period, patients will receive tiotropium/olodaterol therapy for 6 weeks. Treatment effects will be evaluated based on DCR findings, pulmonary function test results and patient-related outcomes obtained before and after treatment. The primary endpoint is the change in Rs after therapy. The secondary endpoints include differences in other DCR parameters (diaphragmatic kinetics, tracheal diameter change and maximum pixel value change rate), pulmonary function test results and patient-related outcomes between pre-therapy and post-therapy values. All adverse events will be reported. ETHICS AND DISSEMINATION Ethical approval for this study was obtained from the Ethics Committee of Chiba University Hospital. The results of this trial will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER jRCTs032210543.
Collapse
Affiliation(s)
- Jun Ikari
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Megumi Katsumata
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Akira Urano
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Takuro Imamoto
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Yuri Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Akira Nishiyama
- Department of Radiology, Tsudanuma Central General Hospital, Narashino, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Kojiro Ono
- Medical Imaging R&D Center, Healthcare Business Headquarters, Konica Minolta Inc, Chiyoda-ku, Tokyo, Japan
| | - Kentaro Okamoto
- Medical Imaging R&D Center, Healthcare Business Headquarters, Konica Minolta Inc, Chiyoda-ku, Tokyo, Japan
| | - Eriko Abe
- Division of laboratory medicine, Chiba University Hospital, Chiba, Chiba, Japan
| | - Tomoko Kamata
- Division of laboratory medicine, Chiba University Hospital, Chiba, Chiba, Japan
| | - Shota Fujii
- Department of Radiology, Chiba University Hospital, Chiba, Chiba, Japan
| | - Kenichiro Okumura
- Department of Radiology, Chiba University Hospital, Chiba, Chiba, Japan
| | - Joji Ota
- Department of Radiology, Chiba University Hospital, Chiba, Chiba, Japan
| | - Eiko Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Naoko Kawata
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Yoshihito Ozawa
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Chiba, Japan
| | - Yoshitada Masuda
- Department of Radiology, Chiba University Hospital, Chiba, Chiba, Japan
| | - Kazuyuki Matsushita
- Division of laboratory medicine, Chiba University Hospital, Chiba, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
- Department of Respiratory Medicine, international university of health and welfare, Narita, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
4
|
Oki T, Nagatani Y, Ishida S, Hashimoto M, Oshio Y, Hanaoka J, Uemura R, Watanabe Y. Right main pulmonary artery distensibility on dynamic ventilation CT and its association with respiratory function. Eur Radiol Exp 2024; 8:50. [PMID: 38570418 PMCID: PMC10991550 DOI: 10.1186/s41747-024-00441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Heartbeat-based cross-sectional area (CSA) changes in the right main pulmonary artery (MPA), which reflects its distensibility associated with pulmonary hypertension, can be measured using dynamic ventilation computed tomography (DVCT) in patients with and without chronic obstructive pulmonary disease (COPD) during respiratory dynamics. We investigated the relationship between MPA distensibility (MPAD) and respiratory function and how heartbeat-based CSA is related to spirometry, mean lung density (MLD), and patient characteristics. METHODS We retrospectively analyzed DVCT performed preoperatively in 37 patients (20 female and 17 males) with lung cancer aged 70.6 ± 7.9 years (mean ± standard deviation), 18 with COPD and 19 without. MPA-CSA was separated into respiratory and heartbeat waves by discrete Fourier transformation. For the cardiac pulse-derived waves, CSA change (CSAC) and CSA change ratio (CSACR) were calculated separately during inhalation and exhalation. Spearman rank correlation was computed. RESULT In the group without COPD as well as all cases, CSACR exhalation was inversely correlated with percent residual lung volume (%RV) and RV/total lung capacity (r = -0.68, p = 0.003 and r = -0.58, p = 0.014). In contrast, in the group with COPD, CSAC inhalation was correlated with MLDmax and MLD change rate (MLDmax/MLDmin) (r = 0.54, p = 0.020 and r = 0.64, p = 0.004) as well as CSAC exhalation and CSACR exhalation. CONCLUSION In patients with insufficient exhalation, right MPAD during exhalation was decreased. Also, in COPD patients with insufficient exhalation, right MPAD was reduced during inhalation as well as exhalation, which implied that exhalation impairment is a contributing factor to pulmonary hypertension complicated with COPD. RELEVANCE STATEMENT Assessment of MPAD in different respiratory phases on DVCT has the potential to be utilized as a non-invasive assessment for pulmonary hypertension due to lung disease and/or hypoxia and elucidation of its pathogenesis. KEY POINTS • There are no previous studies analyzing all respiratory phases of right main pulmonary artery distensibility (MPAD). • Patients with exhalation impairment decreased their right MPAD. • Analysis of MPAD on dynamic ventilation computed tomography contributes to understanding the pathogenesis of pulmonary hypertension due to lung disease and/or hypoxia in patients with expiratory impairment.
Collapse
Affiliation(s)
- Tatsuya Oki
- Department of Radiology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Yukihiro Nagatani
- Department of Radiology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
| | - Shota Ishida
- Department of Radiological Technology, Kyoto College of Medical Science, 1-3 Sonobecho Oyamahigashimachi Imakita, Nantan, Kyoto, 622-0041, Japan
| | - Masayuki Hashimoto
- Department of Thoracic Surgery, Takeda General Hospital, 28-1 Ishida Moriminamicho, Fushimi-Ku, Kyoto, 601-1434, Japan
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Yasuhiko Oshio
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Jun Hanaoka
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Ryo Uemura
- Department of Radiology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
5
|
Nakamura H, Hirai T, Kurosawa H, Hamada K, Matsunaga K, Shimizu K, Konno S, Muro S, Fukunaga K, Nakano Y, Kuwahira I, Hanaoka M. Current advances in pulmonary functional imaging. Respir Investig 2024; 62:49-65. [PMID: 37948969 DOI: 10.1016/j.resinv.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 11/12/2023]
Abstract
Recent advances in imaging analysis have enabled evaluation of ventilation and perfusion in specific regions by chest computed tomography (CT) and magnetic resonance imaging (MRI), in addition to modalities including dynamic chest radiography, scintigraphy, positron emission tomography (PET), ultrasound, and electrical impedance tomography (EIT). In this review, an overview of current functional imaging techniques is provided for each modality. Advances in chest CT have allowed for the analysis of local volume changes and small airway disease in addition to emphysema, using the Jacobian determinant and parametric response mapping with inspiratory and expiratory images. Airway analysis can reveal characteristics of airway lesions in chronic obstructive pulmonary disease (COPD) and bronchial asthma, and the contribution of dysanapsis to obstructive diseases. Chest CT is also employed to measure pulmonary blood vessels, interstitial lung abnormalities, and mediastinal and chest wall components including skeletal muscle and bone. Dynamic CT can visualize lung deformation in respective portions. Pulmonary MRI has been developed for the estimation of lung ventilation and perfusion, mainly using hyperpolarized 129Xe. Oxygen-enhanced and proton-based MRI, without a polarizer, has potential clinical applications. Dynamic chest radiography is gaining traction in Japan for ventilation and perfusion analysis. Single photon emission CT can be used to assess ventilation-perfusion (V˙/Q˙) mismatch in pulmonary vascular diseases and COPD. PET/CT V˙/Q˙ imaging has also been demonstrated using "Galligas". Both ultrasound and EIT can detect pulmonary edema caused by acute respiratory distress syndrome. Familiarity with these functional imaging techniques will enable clinicians to utilize these systems in clinical practice.
Collapse
Affiliation(s)
- Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Kurosawa
- Center for Environmental Conservation and Research Safety and Department of Occupational Health, Tohoku University School of Medicine, Sendai, Japan
| | - Kazuki Hamada
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Ichiro Kuwahira
- Division of Pulmonary Medicine, Department of Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
6
|
Fyles F, FitzMaurice TS, Robinson RE, Bedi R, Burhan H, Walshaw MJ. Dynamic chest radiography: a state-of-the-art review. Insights Imaging 2023; 14:107. [PMID: 37332064 DOI: 10.1186/s13244-023-01451-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/14/2023] [Indexed: 06/20/2023] Open
Abstract
Dynamic chest radiography (DCR) is a real-time sequential high-resolution digital X-ray imaging system of the thorax in motion over the respiratory cycle, utilising pulsed image exposure and a larger field of view than fluoroscopy coupled with a low radiation dose, where post-acquisition image processing by computer algorithm automatically characterises the motion of thoracic structures. We conducted a systematic review of the literature and found 29 relevant publications describing its use in humans including the assessment of diaphragm and chest wall motion, measurement of pulmonary ventilation and perfusion, and the assessment of airway narrowing. Work is ongoing in several other areas including assessment of diaphragmatic paralysis. We assess the findings, methodology and limitations of DCR, and we discuss the current and future roles of this promising medical imaging technology.Critical relevance statement Dynamic chest radiography provides a wealth of clinical information, but further research is required to identify its clinical niche.
Collapse
Affiliation(s)
- Fred Fyles
- Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas S FitzMaurice
- Department of Respiratory Medicine, Liverpool Heart and Chest Hospital NHS Trust, Liverpool, UK.
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| | - Ryan E Robinson
- Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ram Bedi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hassan Burhan
- Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Martin J Walshaw
- Department of Respiratory Medicine, Liverpool Heart and Chest Hospital NHS Trust, Liverpool, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Chubachi S, Okamori S, Yamada Y, Yamada M, Yokoyama Y, Niijima Y, Kamata H, Ishii M, Fukunaga K, Jinzaki M. Differences in lung and lobe volumes between supine and upright computed tomography in patients with idiopathic lung fibrosis. Sci Rep 2022; 12:19408. [PMID: 36371537 PMCID: PMC9653373 DOI: 10.1038/s41598-022-24157-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
No clinical study has compared lung or lobe volumes on computed tomography (CT) between the supine and standing positions in patients with idiopathic lung fibrosis (IPF). This study aimed to compare lung and lobe volumes between the supine and standing positions and evaluate the correlations between the supine/standing lung volumes on CT and pulmonary function in patients with IPF. Twenty-three patients with IPF underwent a pulmonary function test and both low-dose conventional (supine position) and upright CT (standing position) during inspiration breath-holds. The volumes of the total lungs and lobes were larger in the standing than in the supine position in patients with IPF (all p < 0.05). Spearman's correlation coefficients between total lung volumes on chest CT in supine/standing positions and vital capacity (VC) or forced VC (FVC) were 0.61/0.79 or 0.64/0.80, respectively. CT-based volumes on upright CT were better correlated with VC and FVC than those on supine CT. Lung and lobe volumes in the standing position may be useful biomarkers to assess disease severity or therapeutic effect in patients with IPF.
Collapse
Affiliation(s)
- Shotaro Chubachi
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Satoshi Okamori
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yoshitake Yamada
- grid.26091.3c0000 0004 1936 9959Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Minoru Yamada
- grid.26091.3c0000 0004 1936 9959Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yoichi Yokoyama
- grid.26091.3c0000 0004 1936 9959Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yuki Niijima
- grid.412096.80000 0001 0633 2119Office of Radiation Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Hirofumi Kamata
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Makoto Ishii
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Koichi Fukunaga
- grid.26091.3c0000 0004 1936 9959Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masahiro Jinzaki
- grid.26091.3c0000 0004 1936 9959Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
8
|
Chen J, Zhong Z, Wang W, Yu G, Zhang T, Wang Z. Quantitative evaluation of diaphragmatic motion during forced breathing in chronic obstructive pulmonary disease patients using dynamic chest radiography. Front Integr Neurosci 2022; 16:842404. [PMID: 36274658 PMCID: PMC9579687 DOI: 10.3389/fnint.2022.842404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
Objective To quantitatively evaluate the bilateral diaphragmatic motion difference during forced breathing between chronic obstructive pulmonary disease (COPD) patients and healthy individuals using dynamic chest radiography technique. Methods This prospective study included the COPD patients (n: 96, f/m: 17/79, age: 66 ± 8 years old) and healthy individuals (n: 50, f/m: 42/8, age: 53 ± 5 years old) that underwent dynamic chest radiography with a flat panel X-ray detector system during forced breathing in a standing position. After analyzing the excursions, duration and velocity of diaphragmatic motion were automatically calculated using the postprocessing software. The parameters of diaphragmatic motion including excursion, duration, velocity, inhalation/exhalation times were assessed in all subjects for both diaphragms. The correlation between lung function parameters and diaphragmatic motion excursions were further evaluated. Results The excursions of diaphragmatic motion in COPD patients were significantly decreased in COPD patients compared with healthy individuals during forced breathing (P < 0.05). The excursion in COPD patients was 35.93 ± 13.07 mm vs. 41.49 ± 12.07 mm in healthy individuals in the left diaphragm, and 32.05 ± 12.29 mm in COPD patients vs. 36.88 ± 10.96 mm in healthy individuals in the right diaphragm. The duration of diaphragmatic motion significantly decreased in COPD patients, compared with the healthy individuals (P < 0.05). The inhalation time in COPD patients was 2.03 ± 1.19 s vs. 2.53 ± 0.83 s in healthy individuals in the left diaphragm and 1.94 ± 1.32 s in COPD patients vs. 2.23 ± 1.21 s in healthy individuals in the right diaphragm. The exhalation time was 4.77 ± 1.32 s in COPD patients vs. 6.40 ± 2.73 s in healthy individuals in the left diaphragm and 4.94 ± 3.30 s in COPD patients vs. 6.72 ± 2.58 s in healthy individuals in the right diaphragm. The peak velocity of diaphragmatic motion showed no significant difference between COPD and healthy groups. The excursions of bilateral diaphragmatic motion showed moderate correlation with FEV1/FVC (r = 0.44, P < 0.001). Multi-linear regression analysis showed that the excursions of bilateral diaphragm are significantly associated with COPD occurrence (P < 0.05). Conclusion The excursions and duration of diaphragmatic motion during forced breathing are significantly decreased in COPD patients, compared with healthy individuals. Our study showed that precise bilateral diaphragmatic motion activity can be evaluated by dynamic chest radiography.
Collapse
Affiliation(s)
- Jianghong Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Zhong
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhaohui Zhong,
| | - Wei Wang
- Department of Respiration, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ganggang Yu
- Department of Respiration, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Sugiura T, Tanaka R, Samei E, Segars WP, Abadi E, Kasahara K, Ohkura N, Tamura M, Matsumoto I. Quantitative analysis of changes in lung density by dynamic chest radiography in association with CT values: a virtual imaging study and initial clinical corroboration. Radiol Phys Technol 2022; 15:45-53. [PMID: 35091991 PMCID: PMC9536504 DOI: 10.1007/s12194-021-00648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
Dynamic chest radiography (DCR) identifies pulmonary impairments as decreased changes in radiographic lung density during respiration (Δpixel values), but not as scaled/standardized computed tomography (CT) values. Quantitative analysis correlated with CT values is beneficial for a better understanding of Δpixel values in DCR-based assessment of pulmonary function. The present study aimed to correlate Δpixel values from DCR with changes in CT values during respiration (ΔCT values) through a computer-based phantom study. A total of 20 four-dimensional computational phantoms during forced breathing were created to simulate both CT and projection images of the same virtual patients. The Δpixel and ΔCT values of the lung fields were correlated on a regression line, and the inclination was statistically evaluated to determine whether there were significant differences among physical types, sex, and breathing methods. The resulting conversion expression was also assessed in the DCR images of 37 patients. The resulting Δpixel values for 30/37 (81%) real patients, 6/7 (86%) normal controls, and 24/30 (80%) chronic obstructive pulmonary disorder patients were within the range of ΔCT values ± standard deviation (SD) reported in a previous study. In addition, no significant differences were detected for each condition of thoracic breathing, suggesting that the same regression line inclination values measured across the entire lung can be used for the conversion of Δpixel values, providing a quantitative analysis that can be correlated with ΔCT values. The developed conversion expression may be helpful for improving the understanding of respiratory changes using radiographic lung densities from DCR-based assessments of pulmonary function.
Collapse
Affiliation(s)
- Teruyo Sugiura
- Clinical Radiology Service Unit, Kyoto University Hospital, 54 Kawaharacho, Syogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan.
| | - Rie Tanaka
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan.
| | - Ehsan Samei
- Carl E Ravin Advanced Imaging Labs, Department of Radiology, Duke University, Durham, NC, 27705, USA
| | - William Paul Segars
- Carl E Ravin Advanced Imaging Labs, Department of Radiology, Duke University, Durham, NC, 27705, USA
| | - Ehsan Abadi
- Carl E Ravin Advanced Imaging Labs, Department of Radiology, Duke University, Durham, NC, 27705, USA
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Noriyuki Ohkura
- Department of Respiratory Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masaya Tamura
- Department of Thoracic Surgery, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Isao Matsumoto
- Department of Thoracic Surgery, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
10
|
Tanaka R, Kasahara K, Ohkura N, Matsumoto I, Tamura M, Takata M, Inoue D, Izumozaki A, Horii J, Matsuura Y, Sanada S. [Paradigm Shift in Respiratory Diagnosis: Current Status and Future Prospects of Dynamic Chest Radiography]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:1279-1287. [PMID: 34803108 DOI: 10.6009/jjrt.2021_jsrt_77.11.1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dynamic chest radiography (DCR) is a flat-panel detector (FPD) -based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view of FPDs permits real-time observation of motion/kinetic findings on the entire lungs, right and left diaphragm, ribs, and chest wall; heart wall motions; respiratory changes in lung density; and diameter of the intrathoracic trachea. Since the dynamic FPDs had been developed in the early 2000s, we focused on the potential of dynamic FPDs for functional X-ray imaging and have launched a research project for the development of an imaging protocol and digital image-processing techniques for the DCR. The quantitative analysis of motion/kinetic findings is helpful for a better understanding of pulmonary function, because the interpretation of dynamic chest radiographs is challenging and time-consuming for radiologists, pulmonologists, and surgeons. Recent clinical studies have demonstrated the usefulness of DCR combined with the digital image processing techniques for the evaluation of pulmonary function and circulation. Especially, there is a major concern in color-mapping images based on dynamic changes in radiographic lung density, where pulmonary impairments can be detected as color defects, even without the use of contrast media or radioactive medicine. Dynamic chest radiography is now commercially available for the use in general X-ray room and therefore can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. This review article describes the current status and future prospects of DCR, which might bring a paradigm shift in respiratory diagnosis.
Collapse
Affiliation(s)
- Rie Tanaka
- College of Medical, Pharmaceutical & Health Sciences, Kanazawa University
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Kanazawa University Hospital
| | - Noriyuki Ohkura
- Department of Respiratory Medicine, Kanazawa University Hospital
| | | | | | | | - Dai Inoue
- Department of Radiology, Kanazawa University Hospital
| | | | - Junsei Horii
- Division of Radiology, Kanazawa University Hospital
| | | | | |
Collapse
|
11
|
Ueyama M, Hashimoto S, Takeda A, Maruguchi N, Yamamoto R, Matsumura K, Nakamura S, Terada S, Inao T, Kaji Y, Yasuda T, Hajiro T, Tanaka E, Taguchi Y, Noma S. Prediction of forced vital capacity with dynamic chest radiography in interstitial lung disease. Eur J Radiol 2021; 142:109866. [PMID: 34365304 DOI: 10.1016/j.ejrad.2021.109866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The pulmonary function test (PFT) has played an essential role in diagnosing and managing interstitial lung disease (ILD) but has its contraindications and difficult conditions to perform. Therefore, the present study aimed to evaluate dynamic chest radiography (DCR) ability to predict forced vital capacity (FVC) and other PFT parameters of ILD patients. METHOD The prospective observational study included 97 patients who underwent DCR at Tenri Hospital (Tenri, Japan) between June 2019 and April 2020. Twenty-five patients with stable disease status underwent DCR twice to evaluate test-retest reliability using the intraclass correlation coefficient. From the lung field areas measured by DCR, lung volumes at maximum inspiration (V.ins) and expiration (V.exp) were estimated. Correlation coefficients between the measured values of DCR and PFT parameters were calculated. Multilinear models for predicting FVC and other PFT parameters were developed. RESULTS Intraclass correlation coefficients between first and second measurements of V.ins and V.exp were 0.94 (95% CI: 0.89-0.97, p < 0.001) and 0.88 (95% CI: 0.78-0.94, p < 0.001), respectively. The correlation coefficient between V.ins and FVC was 0.86 (95% CI: 0.79-0.90, p < 0.001). A multilinear model for predicting FVC was developed using V.ins, V.exp, age, sex, and body mass index as predictor variables, wherein the adjusted coefficient of determination was 0.814. CONCLUSIONS Lung volumes measured by DCR correlated with the lung function of ILD patients. Prediction models with high predictive power and internal validity were developed, suggesting that DCR can predict FVC and other PFT parameters of ILD patients.
Collapse
Affiliation(s)
- Masakuni Ueyama
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan.
| | - Seishu Hashimoto
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Atsushi Takeda
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Naoto Maruguchi
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Ryo Yamamoto
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Kazuki Matsumura
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Satoshi Nakamura
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Satoru Terada
- Department of Respiratory Medicine, Kyoto University, Yoshida-honmachi Sakyo-ku Kyoto-shi, Kyoto 606-8501, Japan
| | - Takashi Inao
- Department of Respiratory Medicine, Shinko Hospital, 1-4-47 Wakinohama-cho Chuo-ku Kobe-shi, Hyogo 651-0072, Japan
| | - Yusuke Kaji
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Takehiro Yasuda
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Takashi Hajiro
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Eisaku Tanaka
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Yoshio Taguchi
- Department of Respiratory Medicine, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| | - Satoshi Noma
- Department of Radiology, Tenri Hospital, 200 Mishima-cho Tenri-shi, Nara 632-8552, Japan
| |
Collapse
|
12
|
Hata A, Yamada Y, Tanaka R, Nishino M, Hida T, Hino T, Ueyama M, Yanagawa M, Kamitani T, Kurosaki A, Sanada S, Jinzaki M, Ishigami K, Tomiyama N, Honda H, Kudoh S, Hatabu H. Dynamic Chest X-Ray Using a Flat-Panel Detector System: Technique and Applications. Korean J Radiol 2020; 22:634-651. [PMID: 33289365 PMCID: PMC8005348 DOI: 10.3348/kjr.2020.1136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Dynamic X-ray (DXR) is a functional imaging technique that uses sequential images obtained by a flat-panel detector (FPD). This article aims to describe the mechanism of DXR and the analysis methods used as well as review the clinical evidence for its use. DXR analyzes dynamic changes on the basis of X-ray translucency and can be used for analysis of diaphragmatic kinetics, ventilation, and lung perfusion. It offers many advantages such as a high temporal resolution and flexibility in body positioning. Many clinical studies have reported the feasibility of DXR and its characteristic findings in pulmonary diseases. DXR may serve as an alternative to pulmonary function tests in patients requiring contact inhibition, including patients with suspected or confirmed coronavirus disease 2019 or other infectious diseases. Thus, DXR has a great potential to play an important role in the clinical setting. Further investigations are needed to utilize DXR more effectively and to establish it as a valuable diagnostic tool.
Collapse
Affiliation(s)
- Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yoshitake Yamada
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Rie Tanaka
- Department of Radiological Technology, School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Mizuki Nishino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomoyuki Hida
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Masako Ueyama
- Department of Health Care, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Masahiro Yanagawa
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Kamitani
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsuko Kurosaki
- Department of Diagnostic Radiology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Shigeru Sanada
- Clinical Engineering, Komatsu University, Ishikawa, Japan
| | - Masahiro Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoji Kudoh
- Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Yamamoto S, Hasebe T, Tomita K, Kamei S, Matsumoto T, Imai Y, Takahashi G, Kondo Y, Ito Y, Sakamaki F. Pulmonary perfusion by chest digital dynamic radiography: Comparison between breath-holding and deep-breathing acquisition. J Appl Clin Med Phys 2020; 21:247-255. [PMID: 33104288 PMCID: PMC7700935 DOI: 10.1002/acm2.13071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Pulmonary perfusion is an important factor for gas exchange. Chest digital dynamic radiography (DDR) by the deep‐breathing protocol can evaluate pulmonary perfusion in healthy subjects. However, respiratory artifacts may affect DDR in patients with respiratory diseases. We examined the feasibility of a breath‐holding protocol and compared it with the deep‐breathing protocol to reduce respiratory artifacts. Materials and methods A total of 42 consecutive patients with respiratory diseases (32 males; age, 68.6 ± 12.3 yr), including 21 patients with chronic obstructive pulmonary disease, underwent chest DDR through the breath‐holding protocol and the deep‐breathing protocol. Imaging success rate and exposure to radiation were compared. The correlation rate of temporal changes in each pixel value between the lung fields and left cardiac ventricles was analyzed. Results Imaging success rate was higher with the breath‐holding protocol vs the deep‐breathing protocol (97% vs 69%, respectively; P < 0.0001). The entrance surface dose was lower with the breath‐holding protocol (1.09 ± 0.20 vs 1.81 ± 0.08 mGy, respectively; P < 0.0001). The correlation rate was higher with the breath‐holding protocol (right lung field, 41.7 ± 9.3%; left lung field, 44.2 ± 8.9% vs right lung field, 33.4 ± 6.6%; left lung field, 36.0 ± 7.1%, respectively; both lung fields, P < 0.0001). In the lower lung fields, the correlation rate was markedly different (right, 15.3% difference; left, 14.1% difference; both lung fields, P < 0.0001). Conclusion The breath‐holding protocol resulted in high imaging success rate among patients with respiratory diseases, yielding vivid images of pulmonary perfusion.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| | - Terumitsu Hasebe
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| | - Kosuke Tomita
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| | - Shunsuke Kamei
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| | - Tomohiro Matsumoto
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| | - Yutaka Imai
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| | - Genki Takahashi
- Department of Respiratory Medicine, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| | - Yusuke Kondo
- Department of Respiratory Medicine, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| | - Yoko Ito
- Department of Respiratory Medicine, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| | - Fumio Sakamaki
- Department of Respiratory Medicine, Tokai University Hachioji Hospital, Tokai University School of Medicine, Hachioji, Tokyo, Japan
| |
Collapse
|
14
|
Comparison of inspiratory and expiratory lung and lobe volumes among supine, standing, and sitting positions using conventional and upright CT. Sci Rep 2020; 10:16203. [PMID: 33004894 PMCID: PMC7530723 DOI: 10.1038/s41598-020-73240-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Currently, no clinical studies have compared the inspiratory and expiratory volumes of unilateral lung or of each lobe among supine, standing, and sitting positions. In this prospective study, 100 asymptomatic volunteers underwent both low-radiation-dose conventional (supine position, with arms raised) and upright computed tomography (CT) (standing and sitting positions, with arms down) during inspiration and expiration breath-holds and pulmonary function test (PFT) on the same day. We compared the inspiratory/expiratory lung/lobe volumes on CT in the three positions. The inspiratory and expiratory bilateral upper and lower lobe and lung volumes were significantly higher in the standing/sitting positions than in the supine position (5.3–14.7% increases, all P < 0.001). However, the inspiratory right middle lobe volume remained similar in the three positions (all P > 0.15); the expiratory right middle lobe volume was significantly lower in the standing/sitting positions (16.3/14.1% decrease) than in the supine position (both P < 0.0001). The Pearson’s correlation coefficients (r) used to compare the total lung volumes on inspiratory CT in the supine/standing/sitting positions and the total lung capacity on PFT were 0.83/0.93/0.95, respectively. The r values comparing the total lung volumes on expiratory CT in the supine/standing/sitting positions and the functional residual capacity on PFT were 0.83/0.85/0.82, respectively. The r values comparing the total lung volume changes from expiration to inspiration on CT in the supine/standing/sitting positions and the inspiratory capacity on PFT were 0.53/0.62/0.65, respectively. The study results could impact preoperative CT volumetry of the lung in lung cancer patients (before lobectomy) for the prediction of postoperative residual pulmonary function, and could be used as the basis for elucidating undetermined pathological mechanisms. Furthermore, in addition to morphological evaluation of the chest, inspiratory and expiratory upright CT may be used as an alternative tool to predict lung volumes such as total lung capacity, functional residual capacity, and inspiratory capacity in situation in which PFT cannot be performed such as during an infectious disease pandemic, with relatively more accurate predictability compared with conventional supine CT.
Collapse
|
15
|
Hino T, Hata A, Hida T, Yamada Y, Ueyama M, Araki T, Kamitani T, Nishino M, Kurosaki A, Jinzaki M, Ishigami K, Honda H, Hatabu H, Kudoh S. Projected lung areas using dynamic X-ray (DXR). Eur J Radiol Open 2020; 7:100263. [PMID: 32953949 PMCID: PMC7486627 DOI: 10.1016/j.ejro.2020.100263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022] Open
Abstract
The right projected lung area (PLA) was significantly larger than left one. PLA had correlation with height, weight, BMI, vital capacity (VC), and forced expiratory volume in one second (FEV1). Multivariate analysis showed that body mass index (BMI), sex and VC were considered independent correlation factors, respectively.
Background Dynamic X-ray (DXR) provides images of multiple phases of breath with less radiation exposure than CT. The exact images at end-inspiratory or end-expiratory phases can be chosen accurately. Purpose To investigate the correlation of the projected lung area (PLA) by dynamic chest X-ray with pulmonary functions. Material and Methods One hundred sixty-two healthy volunteers who received medical check-ups for health screening were included in this study. All subjects underwent DXR in both posteroanterior (PA) and lateral views and pulmonary function tests on the same day. All the volunteers took several tidal breaths before one forced breath as instructed. The outlines of lungs were contoured manually on the workstation with reference to the motion of diaphragm and the graph of pixel values. The PLAs were calculated automatically, and correlations with pulmonary functions and demographic data were analyzed statistically. Results The PLAs have correlation with physical characteristics, including height, weight and BMI, and pulmonary functions such as vital capacity (VC) and forced expiratory volume in one second (FEV1). VC and FEV1 revealed moderate correlation with the PLAs of PA view in forced inspiratory phase (VC: right, r = 0.65; left, r = 0.69. FEV1: right, r = 0.54; left, r = 0.59). Multivariate analysis showed that body mass index (BMI), sex and VC were considered independent correlation factors, respectively. Conclusion PLA showed statistically significant correlation with pulmonary functions. Our results indicate DXR has a possibility to serve as an alternate method for pulmonary function tests in subjects requiring contact inhibition including patients with suspected or confirmed covid-19.
Collapse
Key Words
- %FEV1, percent predicted FEV1
- %VC, percent vital capacity
- BMI, body mass index
- COPD, chronic obstructive pulmonary disease
- Chest radiograph
- DXR, dynamic X-ray
- FEV1%, forced expiratory volume percent in one second divided by FVC
- FEV1, forced expiratory volume in one second
- FPD, flat-panel detector
- FVC, forced vital capacity
- Health screening cohort
- IPF, idiopathic pulmonary fibrosis
- PA, posteroanterior
- PFTs, pulmonary function tests
- PLA, projected lung area
- Projected lung area
- Pulmonary function
- TLC, total lung capacity
- TV, tidal volume
- VC, vital capacity
- dynamic X-ray
Collapse
Affiliation(s)
- Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA, USA
- Corresponding author at: Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA, USA
| | - Tomoyuki Hida
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Yoshitake Yamada
- Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masako Ueyama
- Department of Health Care, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan
| | - Tetsuro Araki
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA, USA
| | - Takeshi Kamitani
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Mizuki Nishino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA, USA
| | - Atsuko Kurosaki
- Department of Diagnostic Radiology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA, USA
| | - Shoji Kudoh
- Japan Anti-Tuberculosis Association, 1-3-12 Kanda-Misakicho, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
16
|
Yamada Y, Yamada M, Yokoyama Y, Tanabe A, Matsuoka S, Niijima Y, Narita K, Nakahara T, Murata M, Fukunaga K, Chubachi S, Jinzaki M. Differences in Lung and Lobe Volumes between Supine and Standing Positions Scanned with Conventional and Newly Developed 320-Detector-Row Upright CT: Intra-Individual Comparison. Respiration 2020; 99:598-605. [PMID: 32640453 DOI: 10.1159/000507265] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND No clinical studies to date have compared unilateral lung or lobe volumes between the supine and standing positions. OBJECTIVES To compare lung/lobe volumes on computed tomography (CT) between these two positions and evaluate the correlation between the total lung volume and total lung capacity (TLC) on pulmonary function tests (PFTs). METHODS Thirty-two asymptomatic volunteers underwent both conventional CT (supine position) and upright CT (standing position), during deep inspiration breath-hold, and PFTs on the same day. We measured lung/lobe volumes on CT in each position. Paired t tests were used for statistical analysis. RESULTS The volumes of the total lung (10.9% increase), right lung (10.3% increase), right upper lobe (8.6% increase), right lower lobe (14.6% increase), left lung (11.6% increase), left upper lobe (7.1% increase), and left lower lobe (16.0% increase) were significantly greater in the standing position than in the supine position (all p < 0.0001). The right middle lobe volume was similar between the two positions (p = 0.16). Intraclass correlation coefficients for agreement between total lung volumes on CT in the supine/standing positions and the TLC on PFT were 0.891/0.938, respectively. CONCLUSIONS While the volumes of the bilateral upper and lower lobes and bilateral lungs were significantly greater in the standing than in the supine position, with lower lobes showing larger changes, the right middle lobe volume did not change significantly between positions. The total lung volume on upright CT in the standing position was more similar to TLC on PFT than that in the supine position.
Collapse
Affiliation(s)
- Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan,
| | - Minoru Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoichi Yokoyama
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Akiko Tanabe
- Department of Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Shiho Matsuoka
- Department of Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Yuki Niijima
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Keiichi Narita
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuru Murata
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|