1
|
Demir B, Soydal C, Kucuk NO, Celebioglu EC, Bilgic MS, Kuru Oz D, Elhan AH, Kir KM. Voxel-based dosimetry with integrated Y-90 PET/MRI and prediction of response of primary and metastatic liver tumors to radioembolization with Y-90 glass microspheres. Ann Nucl Med 2025; 39:31-46. [PMID: 39207630 DOI: 10.1007/s12149-024-01974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE In this study, we aimed to evaluate the response of the primary and metastatic liver tumors to radioembolization with 90Y glass microspheres and investigate its correlations with dosimetric variables calculated with 90Y PET/MRI. METHODS In this ambispective study, 44 patients treated with 90Y glass microspheres and imaged with 90Y PET/MRI were included for analysis. Dosimetric analysis was performed for every perfused lesion using dose-volume histograms. Response was assessed by comparing pre-treatment and follow-up total lesion glycolysis (TLG) values derived from 18F-FDG PET imaging. The relationship between ΔTLG and log-transformed dosimetric variables was analyzed with linear mixed effects regression models. ROC analyses were performed to compare discriminatory power of the variables in predicting response and complete response. RESULTS Regression and ROC analyses demonstrated that mean tumor dose and almost all D values were statistically significant predictors of treatment response and complete treatment response. Specifically, D60, D70 and D80 values exhibited significantly higher discriminatory power for predicting treatment response compared to the mean dose (Dmean) delivered to tumor. High specificity cut-off values to predict response were determined as 160.75 Gy for Dmean, 95.50 Gy for D60, 89 Gy for D70, and 59.50 Gy for D80. Similarly, high-specificity cut-off values to predict complete response were 262.75 Gy for Dmean, 173 Gy for D70, 140.5 Gy for D80, and 100 Gy for D90. CONCLUSION In this study, we demonstrated that voxel-based dosimetry with post-treatment 90Y PET/MRI can predict response to treatment. D60, D70 and D80 variables also did have greater discriminatory power compared to Dmean in prediction of response. In addition, we present high-specificity cut-offs to predict response (CR + PR) and complete response (CR) for both Dmean and several D variables derived from dose-volume histograms.
Collapse
Affiliation(s)
- Burak Demir
- Department of Nuclear Medicine, Ankara University Medical School, Ankara, Turkey.
| | - Cigdem Soydal
- Department of Nuclear Medicine, Ankara University Medical School, Ankara, Turkey
| | - Nuriye Ozlem Kucuk
- Department of Nuclear Medicine, Ankara University Medical School, Ankara, Turkey
| | | | | | - Digdem Kuru Oz
- Department of Radiology, Ankara University Medical School, Ankara, Turkey
| | - Atilla Halil Elhan
- Department of Biostatistics, Ankara University Medical School, Ankara, Turkey
| | - Kemal Metin Kir
- Department of Nuclear Medicine, Ankara University Medical School, Ankara, Turkey
| |
Collapse
|
2
|
Chen G, Lu Z, Jiang H, Lin KH, Mok GSP. Voxel-S-Value based 3D treatment planning methods for Y-90 microspheres radioembolization based on Tc-99m-macroaggregated albumin SPECT/CT. Sci Rep 2023; 13:4020. [PMID: 36899031 PMCID: PMC10006243 DOI: 10.1038/s41598-023-30824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Partition model (PM) for Y-90 microsphere radioembolization is limited in providing 3D dosimetrics. Voxel-S-Values (VSV) method has good agreement with Monte Carlo (MC) simulations for 3D absorbed dose conversion. We propose a new VSV method and compare its performance along with PM, MC and other VSV methods for Y-90 RE treatment planning based on Tc-99m MAA SPECT/CT. Twenty Tc-99m-MAA SPECT/CT patient data are retrospectively analyzed. Seven VSV methods are implemented: (1) local energy deposition; (2) liver kernel; (3) liver kernel and lung kernel; (4) liver kernel with density correction (LiKD); (5) liver kernel with center voxel scaling (LiCK); (6) liver kernel and lung kernel with density correction (LiLuKD); (7) proposed liver kernel with center voxel scaling and lung kernel with density correction (LiCKLuKD). Mean absorbed dose and maximum injected activity (MIA) obtained by PM and VSV are evaluated against MC results, and 3D dosimetrics generated by VSV are compared with MC. LiKD, LiCK, LiLuKD and LiCKLuKD have the smallest deviation in normal liver and tumors. LiLuKD and LiCKLuKD have the best performance in lungs. MIAs are similar by all methods. LiCKLuKD could provide MIA consistent with PM, and precise 3D dosimetrics for Y-90 RE treatment planning.
Collapse
Affiliation(s)
- Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Han Jiang
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Ko-Han Lin
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China. .,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, SAR, China.
| |
Collapse
|
3
|
Vergnaud L, Robert A, Baudier T, Parisse-Di Martino S, Boissard P, Rit S, Badel JN, Sarrut D. Dosimetric impact of 3D motion-compensated SPECT reconstruction for SIRT planning. EJNMMI Phys 2023; 10:8. [PMID: 36749446 PMCID: PMC9905464 DOI: 10.1186/s40658-023-00525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In selective internal radiation therapy, 99mTc SPECT images are used to optimize patient treatment planning, but they are affected by respiratory motion. In this study, we evaluated on patient data the dosimetric impact of motion-compensated SPECT reconstruction on several volumes of interest (VOI), on the tumor-to-normal liver (TN) ratio and on the activity to be injected. METHODS Twenty-nine patients with liver cancer or hepatic metastases treated by radioembolization were included in this study. The biodistribution of 90Y is assumed to be the same as that of 99mTc when predictive dosimetry is implemented. A total of 31 99mTc SPECT images were acquired and reconstructed with two methods: conventional OSEM (3D) and motion-compensated OSEM (3Dcomp). Seven VOI (liver, lungs, tumors, perfused liver, hepatic reserve, healthy perfused liver and healthy liver) were delineated on the CT or obtained by thresholding SPECT images followed by Boolean operations. Absorbed doses were calculated for each reconstruction using Monte Carlo simulations. Percentages of dose difference (PDD) between 3Dcomp and 3D reconstructions were estimated as well as the relative differences for TN ratio and activities to be injected. The amplitude of movement was determined with local rigid registration of the liver between the 3Dcomp reconstructions of the extreme phases of breathing. RESULTS The mean amplitude of the liver was 9.5 ± 2.7 mm. Medians of PDD were closed to zero for all VOI except for lungs (6.4%) which means that the motion compensation overestimates the absorbed dose to the lungs compared to the 3D reconstruction. The smallest lesions had higher PDD than the largest ones. Between 3D and 3Dcomp reconstructions, means of differences in lung dose and TN ratio were not statistically significant, but in some cases these differences exceed 1 Gy (4/31) and 8% (2/31). The absolute differences in activity were on average 3.1% ± 5.1% and can reach 22.8%. CONCLUSION The correction of respiratory motion mainly impacts the lung and tumor doses but only for some patients. The largest dose differences are observed for the smallest lesions.
Collapse
Affiliation(s)
- Laure Vergnaud
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France. .,Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France.
| | - Antoine Robert
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France
| | - Thomas Baudier
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France ,grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| | | | - Philippe Boissard
- grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| | - Simon Rit
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France
| | - Jean-Noël Badel
- grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| | - David Sarrut
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France ,grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| |
Collapse
|
4
|
Jokar N, Moradhaseli F, Ahmadzadehfar H, Jafari E, Nikeghbalian S, Rasekhi AR, Assadi M. Theranostic approach in liver cancer: an emerging paradigm to optimize personalized medicine. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Ahmadzadehfar H, Ilhan H, Lam MGEH, Sraieb M, Stegger L. Radioembolization, Principles and indications. Nuklearmedizin 2022; 61:262-272. [PMID: 35354218 DOI: 10.1055/a-1759-4238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Radioembolization is the selective application of radionuclide-loaded microspheres into liver arteries for the therapy of liver tumours and metastases. In this review, we focused on therapy planning and dosimetry, as well as the main indications of 90Y-glass and resin microspheres and 166Ho-microspheres.
Collapse
Affiliation(s)
| | - Harun Ilhan
- Department of Nuclear Medicine, Klinikum der Universität München, Munich, Germany.,Die Radiologie, Practice for Radiology, Nuclear Medicine, and Radiation Oncology, Munich, Germany
| | - Marnix G E H Lam
- Radiology and Nuclear Medicine, University of Utrecht Faculty of Medicine, Utrecht, Netherlands
| | - Miriam Sraieb
- Nuclear Medicine, University Hospital Essen, Germany
| | - Lars Stegger
- Nuclear Medicine, University Hospital Münster, Germany
| |
Collapse
|
6
|
Magnetic Resonance Imaging and Serum AFP-L3 and GP-73 in the Diagnosis of Primary Liver Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1192368. [PMID: 35401747 PMCID: PMC8986367 DOI: 10.1155/2022/1192368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/12/2022] [Accepted: 03/05/2022] [Indexed: 12/24/2022]
Abstract
Objective To investigate the combined application value of magnetic resonance imaging (MRI) combined with serum alpha-fetoprotein (AFP)-L3 and Golgi protein (GP)-73 in the diagnosis of primary liver cancer. Methods The data of 200 patients with suspected liver cancer admitted to our hospital from February 2020 to February 2021 were retrospectively analyzed, and they were randomly divided into an experimental group and a control group, with 100 cases in each group. The experimental group received a combined detection of MRI with serum AFP-L3 and GP-73, and the control group adopted traditional diagnostic methods (spiral computed tomography and serum AFP). The diagnostic yields of the two groups were compared. Surgical resection was performed after the diagnosis of primary liver cancer, and the correlation between the efficacy and combined detection of MRI with serum AFP-L3 and GP-73 levels was analyzed. Results The two groups presented comparable general information (P >0.05). The surgical results showed 160 cases of primary liver cancer, including 75 cases in the experimental group and 85 cases in the control group, and 40 cases of benign liver lesions. The diagnostic accuracy of the experimental group (73/75, 95%) was significantly higher than that of the control group (76/85, 86%) (P < 0.05). The serum levels of AFP-L3, GP-73, and AFP in patients with primary liver cancer were remarkably decreased after surgery (P < 0.001). The preoperative and postoperative AFP-L3, GP-73, and AFP levels of patients with primary liver cancer were significantly higher than those of patients with benign liver lesions. The AUC (95% CI) for the combined detection of MRI and serum AFP-L3 and GP-73 levels in patients with surgically confirmed primary liver cancer was 0.747 (0.619-0.874). Conclusion MRI combined with serum AFP-L3 and GP-73 presents favorable diagnostic efficiency in the diagnosis of primary liver cancer, which is worthy of clinical application.
Collapse
|
7
|
d'Abadie P, Walrand S, Goffette P, Amini N, Maanen AV, Lhommel R, Jamar F. Antireflux catheter improves tumor targeting in liver radioembolization with resin microspheres. DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY (ANKARA, TURKEY) 2021; 27:768-773. [PMID: 34792032 DOI: 10.5152/dir.2021.20785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We aimed to determine whether antireflux (ARC) catheter may result in better tumor targeting in liver radioembolization using 90Y-resin microspheres. METHODS Patients treated with resin microspheres for hepatocellular carcinoma (HCC) and secondary liver malignancies were retrospectively analyzed. All patients underwent a 99mTc-macroaggregated albumin (99mTc-MAA) single photon emission computed tomography (SPECT) following the planning arteriography with a conventional end-hole catheter. For 90Y-microspheres injection, two groups were defined depending on the type of catheter used: an ARC group (n=38) and a control group treated with a conventional end-hole catheter (n=23). 90Y positron emission tomography computed tomography (PET/CT) was performed after the therapeutic arteriography. The choice of the catheter was not randomized, but left to the choice of the interventional radiologist. 99mTc-MAA SPECT and 90Y PET/CT were co-registered with the baseline imaging to determine a tumor to normal liver ratio (T/NL[MAA or 90Y]) and tumor dose (TD[MAA or 90Y]) for the planning and therapy. RESULTS Overall, 38 patients (115 lesions) and 23 patients (75 lesions) were analyzed in the ARC and control groups, respectively. In the ARC group, T/NL90Y and TD90Y were significantly higher than T/NLMAA and TDMAA. Median (IQR) T/NL90Y was 2.16 (2.15) versus 1.74 (1.43) for T/NLMAA (p < 0.001). Median (IQR) TD90Y was 90.96 Gy (98.31 Gy) versus 73.72 Gy (63.82 Gy) for TDMAA (p < 0.001). In this group, the differences were highly significant for neuroendocrine metastases (NEM) and HCC and less significant for colorectal metastases (CRM). In the control group, no significant differences were demonstrated. CONCLUSION The use of an ARC significantly improves tumor deposition in liver radioembolization with resin microspheres.
Collapse
Affiliation(s)
- Philippe d'Abadie
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Stephan Walrand
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Pierre Goffette
- Department of Interventional Radiology, Saint Luc University Hospital and King Albert II cancer Institute, Brussels, Belgium
| | - Nadia Amini
- Department of Interventional Radiology, Saint Luc University Hospital and King Albert II cancer Institute, Brussels, Belgium
| | - Aline van Maanen
- From the Department of Nuclear Medicine Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Renaud Lhommel
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - François Jamar
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| |
Collapse
|
8
|
Kafrouni M, Allimant C, Fourcade M, Vauclin S, Guiu B, Mariano-Goulart D, Ben Bouallègue F. Analysis of differences between 99mTc-MAA SPECT- and 90Y-microsphere PET-based dosimetry for hepatocellular carcinoma selective internal radiation therapy. EJNMMI Res 2019; 9:62. [PMID: 31332585 PMCID: PMC6646451 DOI: 10.1186/s13550-019-0533-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background The aim of this study was to compare predictive and post-treatment dosimetry and analyze the differences, investigating factors related to activity preparation and delivery, imaging modality used, and interventional radiology. Methods Twenty-three HCC patients treated by selective internal radiation therapy with 90Y glass microspheres were included in this study. Predictive and post-treatment dosimetry were calculated at the voxel level based on 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT respectively. Dose distribution was analyzed through mean dose, metrics extracted from dose-volume histograms, and Dice similarity coefficients applied on isodoses. Reproducibility of the radiological gesture and its influence on dose deviation was evaluated. Results 90Y delivered activity was lower than expected in 67% (16/24) of the cases mainly due to the residual activity. A mean deviation of − 6 ± 11% was observed between the delivered activity and the 90Y PET’s FOV activity. In addition, a substantial difference of − 20 ± 8% was measured on 90Y PET images between the activity in the liver and in the whole FOV. After normalization, 99mTc-MAA SPECT dosimetry was highly correlated and concordant with 90Y-microsphere PET dosimetry for all dose metrics evaluated (ρ = 0.87, ρc = 0.86, P = 3.10−8 and ρ = 0.91, ρc = 0.90, P = 7.10−10 for tumor and normal liver mean dose respectively for example). Besides, mean tumor dose deviation was lower when the catheter position was identical than when it differed (16 Gy vs. 37 Gy, P = 0.007). Concordance between predictive and post-treatment dosimetry, evaluated with Dice similarity coefficients applied on isodoses, significantly correlated with the distance of the catheter position from artery bifurcation (P = 0.04, 0.0004, and 0.05, for 50 Gy, 100 Gy, and 150 Gy isodoses respectively). Conclusions Discrepancies between planned activity and activity measured on 90Y PET images were observed and seemed to be mainly related to clinical hazards and equipment issues. Predictive vs. post-treatment comparison of relative dose distributions between tumor and normal liver showed a good correlation and no significant difference highlighting the predictive value of 99mTc MAA SPECT/CT-based dosimetry. Besides, the reproducibility of catheter tip position appears critical in the agreement between predictive and actual dose distribution.
Collapse
Affiliation(s)
- Marilyne Kafrouni
- Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France. .,PhyMedExp, Montpellier University, INSERM, CNRS, Montpellier, France. .,DOSIsoft SA, Cachan, France.
| | - Carole Allimant
- Department of Radiology, Montpellier University Hospital, Montpellier, France
| | - Marjolaine Fourcade
- Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France
| | | | - Boris Guiu
- PhyMedExp, Montpellier University, INSERM, CNRS, Montpellier, France.,Department of Radiology, Montpellier University Hospital, Montpellier, France
| | - Denis Mariano-Goulart
- Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France.,PhyMedExp, Montpellier University, INSERM, CNRS, Montpellier, France
| | - Fayçal Ben Bouallègue
- Department of Nuclear Medicine, Montpellier University Hospital, Montpellier, France.,PhyMedExp, Montpellier University, INSERM, CNRS, Montpellier, France
| |
Collapse
|