1
|
She Y, Liu X, Jiang J, Wang X, Niu Q, Zhou J. The role of apparent diffusion coefficient in the grading of adult isocitrate dehydrogenase-mutant astrocytomas: relationship with the Ki-67 proliferation index. Acta Radiol 2024; 65:489-498. [PMID: 38644751 DOI: 10.1177/02841851241242653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
BACKGROUND The grading of adult isocitrate dehydrogenase (IDH)-mutant astrocytomas is a crucial prognostic factor. PURPOSE To investigate the value of conventional magnetic resonance imaging (MRI) features and apparent diffusion coefficient (ADC) in the grading of adult IDH-mutant astrocytomas, and to analyze the correlation between ADC and the Ki-67 proliferation index. MATERIAL AND METHODS The clinical and MRI data of 82 patients with adult IDH-mutant astrocytoma who underwent surgical resection and molecular genetic testing with IDH and 1p/19q were retrospectively analyzed. The conventional MRI features, ADCmin, ADCmean, and nADC of the tumors were compared using the Kruskal-Wallis single factor ANOVA and chi-square tests. Receiver operating characteristic (ROC) curves were drawn to evaluate conventional MRI and ADC accuracy in differentiating tumor grades. Pearson correlation analysis was performed to determine the correlation between ADC and the Ki-67 proliferation index. RESULTS The difference in enhancement, ADCmin, ADCmean, and nADC among WHO grade 2, 3, and 4 tumors was statistically significant (all P <0.05). ADCmin showed the preferable diagnostic accuracy for grading WHO grade 2 and 3 tumors (AUC=0.724, sensitivity=63.4%, specificity=80%, positive predictive value (PPV)=62.0%; negative predictive value (NPV)=82.5%), and distinguishing grade 3 from grade 4 tumors (AUC=0.764, sensitivity=70%, specificity=76.2%, PPV=75.0%, NPV=71.4%). Enhancement + ADC model showed an optimal predictive accuracy (grade 2 vs. 3: AUC = 0.759; grade 3 vs. 4: AUC = 0.799). The Ki-67 proliferation index was negatively correlated with ADCmin, ADCmean, and nADC (all P <0.05), and positively correlated with tumor grade. CONCLUSION Conventional MRI features and ADC are valuable to predict pathological grading of adult IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Yingxia She
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, PR China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Xianwang Liu
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, PR China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Jian Jiang
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, PR China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Xuwen Wang
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, PR China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Qian Niu
- Pathology of Department, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Junlin Zhou
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, PR China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou University Second Hospital, Lanzhou, PR China
| |
Collapse
|
2
|
Shima T, Fujima N, Yamano S, Kameda H, Suzuka M, Takeuchi A, Kinoshita Y, Iwai N, Kudo K, Minowa K. Non-Gaussian model-based diffusion-weighted imaging of oral squamous cell carcinoma: associations with Ki-67 proliferation status. Oral Radiol 2023; 39:661-667. [PMID: 36971988 DOI: 10.1007/s11282-023-00682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES To investigate possible associations between diffusion-weighted imaging (DWI) parameters derived from a non-Gaussian model fitting and Ki-67 status in patients with oral squamous cell carcinoma (OSCC). METHODS Twenty-four patients with newly diagnosed OSCC were prospectively recruited. DWI was performed using six b-values (0-2500). The diffusion-related parameters of kurtosis value (K), kurtosis-corrected diffusion coefficient (DK), diffusion heterogeneity (α), distributed diffusion coefficient (DDC), slow diffusion coefficient (Dslow), and apparent diffusion coefficient (ADC) were calculated from four diffusion fitting models. Ki-67 status was categorized as low (Ki-67 percentage score < 20%), middle (20-50%), or high (> 50%). Kruskal-Wallis tests were performed between each non-Gaussian diffusion model parameters and Ki-67 grade. RESULTS The Kruskal-Wallis tests revealed that multiple parameters (K, ADC, Dk, DDC and Dslow) showed statistically significant differences between the three levels of Ki-67 status (K: p = 0.020, ADC: p = 0.012, Dk: p = 0.027, DDC: p = 0.007 and Dslow: p = 0.026). CONCLUSIONS Several non-Gaussian diffusion model parameters and ADC values were significantly associated with Ki-67 status and have potential as promising prognostic biomarkers in patients with OSCC.
Collapse
Affiliation(s)
- Tomoka Shima
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Shigeru Yamano
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Hiroyuki Kameda
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Japan
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Masaaki Suzuka
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Japan
- Department of Radiation Oncology, Nikko Memorial Hospital, Muroran, Japan
| | - Akiko Takeuchi
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Japan
- Center for Cause of Death Investigation, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yurika Kinoshita
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Japan
- Department of Radiation Oncology, Asahikawa City Hospital, Asahikawa, Japan
| | - Nanami Iwai
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuyuki Minowa
- Radiology, Department of Oral Pathobiological Science, Division of Oral Medical Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Japan.
| |
Collapse
|
3
|
Liao D, Liu YC, Liu JY, Wang D, Liu XF. Differentiating tumour progression from pseudoprogression in glioblastoma patients: a monoexponential, biexponential, and stretched-exponential model-based DWI study. BMC Med Imaging 2023; 23:119. [PMID: 37697237 PMCID: PMC10494379 DOI: 10.1186/s12880-023-01082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND To investigate the diagnostic performance of parameters derived from monoexponential, biexponential, and stretched-exponential diffusion-weighted imaging models in differentiating tumour progression from pseudoprogression in glioblastoma patients. METHODS Forty patients with pathologically confirmed glioblastoma exhibiting enhancing lesions after completion of chemoradiation therapy were enrolled in the study, which were then classified as tumour progression and pseudoprogression. All patients underwent conventional and multi-b diffusion-weighted MRI. The apparent diffusion coefficient (ADC) from a monoexponential model, the true diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched-exponential model were compared between tumour progression and pseudoprogression groups. Receiver operating characteristic curves (ROC) analysis was used to investigate the diagnostic performance of different DWI parameters. Interclass correlation coefficient (ICC) was used to evaluate the consistency of measurements. RESULTS The values of ADC, D, DDC, and α values were lower in tumour progression patients than that in pseudoprogression patients (p < 0.05). The values of D* and f were higher in tumour progression patients than that in pseudoprogression patients (p < 0.05). Diagnostic accuracy for differentiating tumour progression from pseudoprogression was highest for α(AUC = 0.94) than that for ADC (AUC = 0.91), D (AUC = 0.92), D* (AUC = 0.81), f (AUC = 0.75), and DDC (AUC = 0.88). CONCLUSIONS Multi-b DWI is a promising method for differentiating tumour progression from pseudoprogression with high diagnostic accuracy. In addition, the α derived from stretched-exponential model is the most promising DWI parameter for the prediction of tumour progression in glioblastoma patients.
Collapse
Affiliation(s)
- Dan Liao
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China
| | - Yuan-Cheng Liu
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| | - Jiang-Yong Liu
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| | - Di Wang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| | - Xin-Feng Liu
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| |
Collapse
|
4
|
Yuan L, Lin X, Zhao P, Ma H, Duan S, Sun S. Correlations between DKI and DWI with Ki-67 in gastric adenocarcinoma. Acta Radiol 2023; 64:1792-1798. [PMID: 36740857 DOI: 10.1177/02841851231153035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diffusion kurtosis imaging (DKI) has been applied for gastric adenocarcinoma. Correlations between its parameters and Ki-67 are unclear. PURPOSE To investigate the correlation between DKI and diffusion-weighted imaging (DWI) parameters with the Ki-67 index in gastric adenocarcinoma. MATERIAL AND METHODS A total of 54 patients with gastric adenocarcinoma were enrolled in the study and underwent DWI and DKI at 3.0-T MRI before surgery. Based on the settings of the regions of interest, the DWI and DKI parameters (including apparent diffusion coefficient [ADC], diffusion kurtosis [K], and diffusion coefficient [DK]) of each patient's gastric adenocarcinoma were measured and calculated. The participants were divided into two groups (low Ki-67 group and high Ki-67 groups). The intraclass correlation coefficient (ICC) and independent-sample t-test were used to compare differences in each parameter between two groups. Spearman's correlation coefficient was calculated to determine the correlation between Ki-67 and the parameters. Each parameter was compared using the area under the receiver operating characteristic curve. All parameters were included in the multivariate logistic regression analysis to explore the relationship between each parameter and high Ki-67 index. RESULTS ADC and DK were negatively relevant with Ki-67 and K was positively relevant with Ki-67 in gastric adenocarcinoma. ADC, DK, and K had diagnostic efficiency in differentiating the low Ki-67 group from the high Ki-67 group. A higher K value independently predicted a high Ki-67 status. CONCLUSION DWI and DKI reflected the proliferative characteristics of gastric adenocarcinoma. K was the strongest independent factor for predicting high Ki-67 status.
Collapse
Affiliation(s)
- Letian Yuan
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Xiangtao Lin
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Peng Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Hui Ma
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Shuai Duan
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Shanshan Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| |
Collapse
|
5
|
Deng X, Duan Z, Fang S, Wang S. Advances in The Application and Research of Magnetic Resonance Diffusion Kurtosis Imaging in The Musculoskeletal System. J Magn Reson Imaging 2023; 57:670-689. [PMID: 36200754 DOI: 10.1002/jmri.28463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022] Open
Abstract
Magnetic resonance diffusion kurtosis imaging (DKI) is an emerging magnetic resonance imaging (MRI) technique that can reflect microstructural changes in tissue through non-Gaussian diffusion of water molecules. Compared to traditional diffusion weighted imaging (DWI), the DKI model has shown greater sensitivity for diagnosis of musculoskeletal diseases and can help formulate more reasonable treatment plans. Moreover, DKI is an important auxiliary examination for evaluation of the motor function of the musculoskeletal system. This article briefly introduces the basic principles of DKI and reviews the application and research of DKI in the evaluation of disorders of the musculoskeletal system (including bone tumors, soft tissue tumors, spinal lesions, chronic musculoskeletal diseases, musculoskeletal trauma, and developmental disorders) as well as the normal musculoskeletal tissues. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Xiyang Deng
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Zhiqing Duan
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Shaobo Fang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shaowu Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Du N, Shu W, Li K, Deng Y, Xu X, Ye Y, Tang F, Mao R, Lin G, Li S, Fang X. An initial study on the predictive value using multiple MRI characteristics for Ki-67 labeling index in glioma. J Transl Med 2023; 21:119. [PMID: 36774480 PMCID: PMC9922464 DOI: 10.1186/s12967-023-03950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics. METHODS Preoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis. RESULTS ADCmin, ADCmean, rADCmin, rADCmean and Ki-67 LI showed a negative correlation (r = - 0.478, r = - 0.369, r = - 0.488, r = - 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933-0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721-0.879). CONCLUSIONS There was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI.
Collapse
Affiliation(s)
- Ningfang Du
- grid.8547.e0000 0001 0125 2443Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Weiquan Shu
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Kefeng Li
- grid.266100.30000 0001 2107 4242School of Medicine, University of California, San Diego, CA USA ,Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao SAR, China
| | - Yao Deng
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Xinxin Xu
- grid.8547.e0000 0001 0125 2443Clinical Research Center for Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yao Ye
- grid.8547.e0000 0001 0125 2443Department of Pathology, Huadong Hospital, Fudan University, Shanghai, China
| | - Feng Tang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Renling Mao
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Shihong Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Evaluation of diffuse glioma grade and proliferation activity by different diffusion-weighted-imaging models including diffusion kurtosis imaging (DKI) and mean apparent propagator (MAP) MRI. Neuroradiology 2023; 65:55-64. [PMID: 35835879 DOI: 10.1007/s00234-022-03000-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE To evaluate two advanced diffusion models, diffusion kurtosis imaging and the newly proposed mean apparent propagation factor-magnetic resonance imaging, in the grading of gliomas and the assessing of their proliferative activity. METHODS Fifty-nine patients with clinically diagnosed and pathologically proven gliomas were enrolled in this retrospective study. All patients underwent DKI and MAP-MRI scans. Manually outline the ROI of the tumour parenchyma. After delineation, the imaging parameters were extracted using only the data from within the ROI including mean diffusion kurtosis (MK), return-to-origin probability (RTOP), Q-space inverse variance (QIV) and non-Gaussian index (NG), and the differences in each parameter in the classification of glioma were compared. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of these parameters. RESULTS MK, NG, RTOP and QIV were significantly different amongst the different grades of glioma. MK, NG and RTOP had excellent diagnostic value in differentiating high-grade from low-grade glioma, with largest areas under the curve (AUCs; 0.929, 0.933 and 0.819, respectively; P < 0.01). MK and NG had the largest AUCs (0.912 and 0.904) when differentiating grade II tumours from III tumours (P < 0.01) and large AUCs (0.791 and 0.786) when differentiating grade III from grade IV tumours. Correlation analysis of tumour proliferation activity showed that MK, NG and QIV were strongly correlated with the Ki-67 LI (P < 0.001). CONCLUSION MK, RTOP and NG can effectively represent the microstructure of these altered tumours. Multimodal diffusion-weighted imaging is valuable for the preoperative evaluation of glioma grade and tumour proliferative activity.
Collapse
|
8
|
Guo H, Liu J, Hu J, Zhang H, Zhao W, Gao M, Zhang Y, Yang G, Cui Y. Diagnostic performance of gliomas grading and IDH status decoding A comparison between 3D amide proton transfer APT and four diffusion-weighted MRI models. J Magn Reson Imaging 2022; 56:1834-1844. [PMID: 35488516 PMCID: PMC9790544 DOI: 10.1002/jmri.28211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The focus of neuro-oncology research has changed from histopathologic grading to molecular characteristics, and medical imaging routinely follows this change. PURPOSE To compare the diagnostic performance of amide proton transfer (APT) and four diffusion models in gliomas grading and isocitrate dehydrogenase (IDH) genotype. STUDY TYPE Prospective. POPULATION A total of 62 participants (37 males, 25 females; mean age, 52 ± 13 years) whose IDH genotypes were mutant in 6 of 14 grade II gliomas, 8 of 20 of grade III gliomas, and 4 of 28 grade IV gliomas. FIELD STRENGTH/SEQUENCE APT imaging using sampling perfection with application optimized contrasts by using different flip angle evolutions (SPACE) and DWI with q-space Cartesian grid sampling were acquired at 3 T. ASSESSMENT The ability of diffusion kurtosis imaging, diffusion kurtosis imaging, neurite orientation dispersion and density imaging (NODDI), mean apparent propagator (MAP), and APT imaging for glioma grade and IDH status were assessed, with histopathological grade and genetic testing used as a reference standard. Regions of interest (ROIs) were drawn by two neuroradiologists after consensus. STATISTICAL TESTS T-test and Mann-Whitney U test; one-way analysis of variance (ANOVA); receiver operating curve (ROC) and area under the curve (AUC); DeLong test. P value < 0.05 was considered statistically significant. RESULTS Compared with IDH-mutant gliomas, IDH-wildtype gliomas showed a significantly higher mean, 5th-percentile (APT5 ), and 95th-percentile from APTw, the 95th-percentile value of axial, mean, and radial diffusivity from DKI, and 95th-percentile value of isotropic volume fraction from NODDI, and no significantly different parameters from DTI and MAP (P = 0.075-0.998). The combined APT model showed a significantly wider area under the curve (AUC 0.870) for IDH status, when compared with DKI and NODDI. APT5 was significantly different between two of the three groups (glioma II vs. glioma III vs. glioma IV: 1.35 ± 0.75 vs. 2.09 ± 0.93 vs. 2.71 ± 0.81). DATA CONCLUSION APT has higher diagnostic accuracy than DTI, DKI, MAP, and NODDI in glioma IDH genotype. APT5 can effectively identify both tumor grading and IDH genotyping, making it a promising biomarker for glioma classification. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Hu Guo
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, ChangshaHunan410011China
| | - Jun Liu
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, ChangshaHunan410011China,Department of Radiology Quality Control CenterHunan ProvinceChangsha410011China
| | - JunJiao Hu
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, ChangshaHunan410011China
| | - HuiTing Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd.Wuhan430071China
| | - Wei Zhao
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, ChangshaHunan410011China
| | - Min Gao
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, ChangshaHunan410011China
| | - Yi Zhang
- Department of Biomedical EngineeringCollege of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouZhejiangChina
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic ResonanceSchool of Physics and Electronic, East China Normal UniversityShanghaiChina
| | - Yan Cui
- Department of NeurosurgeryThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Rd, ChangshaHunan Province410011P.R. China
| |
Collapse
|
9
|
Brain Diffusion Weighted Imaging Study of Mongolian Idiopathic Epilepsy. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6978116. [PMID: 36478789 PMCID: PMC9722273 DOI: 10.1155/2022/6978116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
Objective To evaluate the effectiveness of diffusion-weighted imaging in the assessment of idiopathic epilepsy in Mongolian. Methods One hundred Mongolian idiopathic epilepsy patients were enrolled as the observation group and 100 healthy Mongolian volunteers as the control group. All the subjects underwent routine MRI, diffusion kurtosis imaging (DKI), and intra-voxel incoherent motion (IVIM) examination on a 3.0 T scanner. Mean kurtosis (MK), mean diffusivity (MD), fractional anisotropy (FA), true water molecular diffusion coefficient (D), mean diffusion coefficient (MD), pseudo-diffusion coefficient (D∗), and perfusion fraction (f) of each region of interest in the brain were measured. Count data were expressed as rates, and the chi-square test was performed for comparison between groups. Measurement data were first assessed by a normality test, and the t test for independent samples was performed for comparison between groups if they met the normal distribution; for non-normal distribution, the Mann-Whitney U test was performed for comparison between groups. A ROC curve analysis was performed to test the effectiveness of each parameter. Results MK values of the hippocampus, thalamus, and white matter of the temporal lobe in the observation group were significantly higher than those in the control group, while D and F values were significantly lower (all P < 0.05). ROC curve analysis showed that MK, D, and F values of the hippocampus, thalamus, and white matter of the temporal lobe had moderate to good diagnostic efficacy for idiopathic epilepsy (AUC = 0.617-0.749, all P < 0.001). Conclusion DKI and IVIM can more accurately represent the abnormal changes of brain tissue in patients with epilepsy, and it may have important implications for the clinical diagnosis of Mongolian epileptic patients.
Collapse
|
10
|
Li X, Tao J, Zhu Y, Yin Z, Zhang Y, Wang S. Soft tissue sarcoma: intravoxel incoherent motion and diffusion kurtosis imaging parameters correlate with the histological grade and Ki-67 expression. Acta Radiol 2022; 64:1546-1555. [PMID: 36259287 DOI: 10.1177/02841851221131931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accurate prediction of the histological grade and Ki-67 expression of soft tissue sarcoma (STS) before surgery is essential for the subsequent diagnosis, treatment, and prognostic evaluation of patients. PURPOSE To evaluate intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) in predicting the histological grade and Ki-67 expression of STS. MATERIAL AND METHODS A total of 40 patients underwent 3-T MRI, including conventional sequences; IVIM and DKI parameters were obtained. All patients were divided into a low-grade (grade 1 and grade 2) group and a high-grade (grade 3) group through pathological analysis. Ki-67 expression of each lesion was calculated. Chi-square test, independent sample t-test, Mann-Whitney U test, Pearson, Spearman, and receiver operating characteristic curve analysis were performed. RESULTS There were 17 patients in the low-grade group and 23 in the high-grade group. Ki-67 expression was in the range of 10%-80%. D value was inversely correlated with Ki-67 expression. MK value showed a moderate positive correlation with Ki-67 expression. Regarding histological grading, only the peritumoral enhancement was statistically different between low- and high-grade STS on conventional MRI (P=0.024). The high-grade group had significantly higher MK value and lower D and MD value than the low-grade group. MK value showed the best diagnostic performance. The combination of MK and MD yielded the highest specificity (88.24%), and the combination of D, MK, and MD yielded the best area under the curve value (0.841) and sensitivity (95.65%). CONCLUSION IVIM and DKI parameters were correlated with Ki-67 expression and could help differentiate between low- and high-grade STS.
Collapse
Affiliation(s)
- Xiangwen Li
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, PR China
| | - Juan Tao
- Department of Pathology, The Second Hospital, Dalian Medical University, Dalian, PR China
| | - Yifeng Zhu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, PR China
| | - Zhenzhen Yin
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, PR China
| | - Yu Zhang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, PR China
| | - Shaowu Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, PR China
| |
Collapse
|
11
|
Xu C, Li C, Xing C, Li J, Jiang X. Efficacy of MR diffusion kurtosis imaging for differentiating low-grade from high-grade glioma before surgery: A systematic review and meta-analysis. Clin Neurol Neurosurg 2022; 220:107373. [PMID: 35878557 DOI: 10.1016/j.clineuro.2022.107373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 07/09/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Accurate discrimination and diagnosis of low-grade glioma (LGG) and high-grade glioma (HGG) before surgery is clinically important because it affects the patient's outcome and guides the clinicians to select appropriate management. The aim of this study was to evaluate the diagnostic performance of diffusion kurtosis imaging (DKI) for differentiating LGG from HGG. METHODS A literature search of the PubMed, Web of Science, Cochrane Library and EMBASE databases was conducted up to December 15, 2020. Studies that evaluated the diagnostic performance of DKI for differentiating LGG from HGG were selected. Retrieved hits were evaluated by the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Summary sensitivity and specificity were determined, and the data analysis was performed using Stata 14.0 and Review Manager 5.3. RESULTS Thirteen studies with 705 patients were included. The individual sensitivity and specificity of the 13 studies varied from 71% to 100% for sensitivity and 73-100% for specificity. The pooled sensitivity of DKI was 88% (95% confidence interval [CI], 83-91%), and the pooled specificity was 91% (95% CI, 86-95%). The area under the summary receiver operating characteristic curve was 0.93 (95% CI, 0.90-0.95). The pooled diagnostic odds ratio of DKI was 64.85 (95% CI 38.52-109.19). The levels of heterogeneity for sensitivity and specificity across the included studies were high (I2 =66%) and mild (I2 =47.04%), respectively. The multiple subgroup analyses were driven by DKI technique and study region. CONCLUSIONS DKI demonstrated a high diagnostic performance for differentiation of LGG from HGG.
Collapse
Affiliation(s)
- Chang Xu
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chenglong Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chengyan Xing
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jun Li
- Department of Radiology,Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Xingyue Jiang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
12
|
Xie Y, Zhang S, Liu X, Huang X, Zhou Q, Luo Y, Niu Q, Zhou J. Minimal apparent diffusion coefficient in predicting the Ki-67 proliferation index of pancreatic neuroendocrine tumors. Jpn J Radiol 2022; 40:823-830. [DOI: 10.1007/s11604-022-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
|
13
|
Zhang K, Dai Y, Liu Y, Tao J, Pan Z, Xie L, Wang S. Soft tissue sarcoma: IVIM and DKI parameters correlate with Ki-67 labeling index on direct comparison of MRI and histopathological slices. Eur Radiol 2022; 32:5659-5668. [DOI: 10.1007/s00330-022-08646-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
|
14
|
Fu F, Meng N, Huang Z, Sun J, Wang X, Shang J, Fang T, Feng P, Wang K, Han D, Wang M. Identification of histological features of endometrioid adenocarcinoma based on amide proton transfer-weighted imaging and multimodel diffusion-weighted imaging. Quant Imaging Med Surg 2022; 12:1311-1323. [PMID: 35111626 DOI: 10.21037/qims-21-189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/29/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Noninvasive identification of the histological features of endometrioid adenocarcinoma is necessary. This study aimed to investigate whether amide proton transfer-weighted imaging (APTWI) and multimodel (monoexponential, biexponential, and stretched exponential) diffusion-weighted imaging (DWI) could predict the histological grade of endometrial adenocarcinoma (EA). In addition, we analyzed the correlation between each parameter and the Ki-67 index. METHODS A total of 90 EA patients who received pelvic magnetic resonance imaging (MRI) were enrolled. The magnetization transfer ratio asymmetry [MTRasym (3.5 ppm)], apparent diffusion coefficient (ADC), diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), distributed diffusion coefficient (DDC), and water molecular diffusion heterogeneity index (α) were measured and compared. Correlation coefficients between each parameter and histological grade and the Ki-67 index were calculated. Statistical methods included the independent samples t test, Spearman's correlation, and logistic regression. RESULTS MTRasym (3.5 ppm) [(3.72%±0.31%) vs. (3.27%±0.48%)], f [(3.15%±0.36%) vs. (2.69%±0.83%)], and α [(0.89±0.05) vs. (0.81±0.09)] were higher and ADC [(0.82±0.08) vs. (0.89±0.10) ×10-3 mm2/s], D [(0.67±0.09) vs. (0.81±0.11) ×10-3 mm2/s], and DDC [(1.04±0.09) vs. (1.13±0.13) ×10-3 mm2/s] were lower in high-grade EA than in low-grade EA (P<0.05). MTRasym (3.5 ppm) and D were independent predictors for the histological grade of EA. The combination of MTRasym (3.5 ppm) and D were better able to identify high- and low-grade EA than was each parameter. MTRasym (3.5 ppm) and α were moderately and weakly positively correlated, respectively, with histological grade and the Ki-67 index (r=0.528, r=0.514, r=0.395, and r=0.367; P<0.05). D was moderately negatively correlated with histological grade and the Ki-67 index (r=-0.540 and r=-0.529; P<0.05). DDC was weakly and moderately negatively correlated with histological grade and the Ki-67 index, respectively (r=-0.473 and r=-0.515; P<0.05). ADC was weakly negatively correlated with histological grade and the Ki-67 index (r=-0.417 and r=-0.427; P<0.05). f was weakly positively correlated with histological grade and the Ki-67 index (r=0.294 and r=0.355; P<0.05). CONCLUSIONS Our study found that both multimodel DWI and APTWI could be used to estimate the histological grade and Ki-67 index of EA, and the combination of high MTRasym (3.5 ppm) and low D may be an effective imaging marker for predicting the grade of EA.
Collapse
Affiliation(s)
- Fangfang Fu
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
| | - Nan Meng
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of MR, the First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Zhun Huang
- Department of Medical Imaging, Henan University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Jing Sun
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Xuejia Wang
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Jie Shang
- Department of Pathology, the First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Ting Fang
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengyang Feng
- Department of Medical Imaging, Henan University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Dongming Han
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Tang W, Zhou H, Quan T, Chen X, Zhang H, Lin Y, Wu R. XGboost Prediction Model Based on 3.0T Diffusion Kurtosis Imaging Improves the Diagnostic Accuracy of MRI BiRADS 4 Masses. Front Oncol 2022; 12:833680. [PMID: 35372060 PMCID: PMC8968064 DOI: 10.3389/fonc.2022.833680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The malignant probability of MRI BiRADS 4 breast lesions ranges from 2% to 95%, leading to unnecessary biopsies. The purpose of this study was to construct an optimal XGboost prediction model through a combination of DKI independently or jointly with other MR imaging features and clinical characterization, which was expected to reduce false positive rate of MRI BiRADS 4 masses and improve the diagnosis efficiency of breast cancer. METHODS 120 patients with 158 breast lesions were enrolled. DKI, Diffusion-weighted Imaging (DWI), Proton Magnetic Resonance Spectroscopy (1H-MRS) and Dynamic Contrast-Enhanced MRI (DCE-MRI) were performed on a 3.0-T scanner. Wilcoxon signed-rank test and χ2 test were used to compare patient's clinical characteristics, mean kurtosis (MK), mean diffusivity (MD), apparent diffusion coefficient (ADC), total choline (tCho) peak, extravascular extracellular volume fraction (Ve), flux rate constant (Kep) and volume transfer constant (Ktrans). ROC curve analysis was used to analyze the diagnostic performances of the imaging parameters. Spearman correlation analysis was performed to evaluate the associations of imaging parameters with prognostic factors and breast cancer molecular subtypes. The Least Absolute Shrinkage and Selectionator operator (lasso) and the area under the curve (AUC) of imaging parameters were used to select discriminative features for differentiating the breast benign lesions from malignant ones. Finally, an XGboost prediction model was constructed based on the discriminative features and its diagnostic efficiency was verified in BiRADS 4 masses. RESULTS MK derived from DKI performed better for differentiating between malignant and benign lesions than ADC, MD, tCho, Kep and Ktrans (p < 0.05). Also, MK was shown to be more strongly correlated with histological grade, Ki-67 expression and lymph node status. MD, MK, age, shape and menstrual status were selected to be the optimized feature subsets to construct an XGboost model, which exhibited superior diagnostic ability for breast cancer characterization and an improved evaluation of suspicious breast tumors in MRI BiRADS 4. CONCLUSIONS DKI is promising for breast cancer diagnosis and prognostic factor assessment. An optimized XGboost model that included DKI, age, shape and menstrual status is effective in improving the diagnostic accuracy of BiRADS 4 masses.
Collapse
Affiliation(s)
- Wan Tang
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Institute of Health Monitoring, Inspection and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Han Zhou
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Tianhong Quan
- Department of Electronic and information Engineering, College of Engineering, Shantou University, Shantou, China
| | - Xiaoyan Chen
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huanian Zhang
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yan Lin
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Xie Y, Li S, Shen N, Gan T, Zhang S, Liu WV, Zhu W. Assessment of Isocitrate Dehydrogenase 1 Genotype and Cell Proliferation in Gliomas Using Multiple Diffusion Magnetic Resonance Imaging. Front Neurosci 2021; 15:783361. [PMID: 34880724 PMCID: PMC8645648 DOI: 10.3389/fnins.2021.783361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: To compare the efficacy of parameters from multiple diffusion magnetic resonance imaging (dMRI) for prediction of isocitrate dehydrogenase 1 (IDH1) genotype and assessment of cell proliferation in gliomas. Methods: Ninety-one patients with glioma underwent diffusion weighted imaging (DWI), multi-b-value DWI, and diffusion kurtosis imaging (DKI)/neurite orientation dispersion and density imaging (NODDI) on 3.0T MRI. Each parameter was compared between IDH1-mutant and IDH1 wild-type groups by Mann-Whitney U test in lower-grade gliomas (LrGGs) and glioblastomas (GBMs), respectively. Further, performance of each parameter was compared for glioma grading under the same IDH1 genotype. Spearman correlation coefficient between Ki-67 labeling index (LI) and each parameter was calculated. Results: The diagnostic performance was better achieved with apparent diffusion coefficient (ADC), slow ADC (D), fast ADC (D∗), perfusion fraction (f), distributed diffusion coefficient (DDC), heterogeneity index (α), mean diffusivity (MD), mean kurtosis (MK), and intracellular volume fraction (ICVF) for distinguishing IDH1 genotypes in LrGGs, with statistically insignificant AUC values from 0.750 to 0.817. In GBMs, no difference between the two groups was found. For IDH1-mutant group, all parameters, except for fractional anisotropy (FA) and D∗, significantly discriminated LrGGs from GBMs (P < 0.05). However, for IDH1 wild-type group, only ADC statistically discriminated the two (P = 0.048). In addition, MK has maximal correlation coefficient (r = 0.567, P < 0.001) with Ki-67 LI. Conclusion: dMRI-derived parameters are promising biomarkers for predicting IDH1 genotype in LrGGs, and MK has shown great potential in assessing glioma cell proliferation.
Collapse
Affiliation(s)
- Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongjia Gan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiyin Vivian Liu
- Magnetic Resonance Research, General Electric Healthcare, Beijing, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Huang Z, Li X, Wang Z, Meng N, Fu F, Han H, Li D, Bai Y, Wei W, Fang T, Feng P, Yuan J, Yang Y, Wang M. Application of Simultaneous 18 F-FDG PET With Monoexponential, Biexponential, and Stretched Exponential Model-Based Diffusion-Weighted MR Imaging in Assessing the Proliferation Status of Lung Adenocarcinoma. J Magn Reson Imaging 2021; 56:63-74. [PMID: 34888990 DOI: 10.1002/jmri.28010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ki-67 proliferation index (PI) is important for providing information on tumor behavior, treatment response, and prognosis. Integrated positron emission tomography/magnetic resonance (PET/MR) may have the potential to assess Ki-67 PI in patients with lung adenocarcinoma. PURPOSE To explore the value of simultaneous 18 F-fluorodeoxyglucose (18 F-FDG) PET/MR-derived parameters in assessing the proliferation status of lung adenocarcinoma and to determine the best combination of parameters. STUDY TYPE Prospective. POPULATION Seventy-eight patients with lung adenocarcinoma and with Ki-67 PI. FIELD STRENGTH/SEQUENCE 3.0 T, simultaneous PET/MRI including diffusion-weighted imaging (DWI) and 18 F-FDG PET. ASSESSMENT DWI-derived parameters, namely, apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f), diffusion heterogeneity index (α), and distributed diffusion coefficient (DDC); and PET-derived parameters, namely, maximum standardized uptake value (SUVmax ), metabolic tumor volume (MTV), and total lesion glycolytic volume (TLG), were calculated and compared between the high (>25%) and low (≤25%) Ki-67 PI groups. The correlations between PET-derived parameters and DWI-derived parameters were analyzed. STATISTICAL TESTS Student's t-test, Mann-Whitney U test, chi-square test, and receiver operating characteristic (ROC) curves. A P-value <0.05 was considered statistically significant. RESULTS The SUVmax , MTV, TLG, ADC, D, and DDC values were significantly different between the high (N = 35) and low Ki-67 PI groups (N = 43). D, SUVmax , and MTV independently predicted the Ki-67 PI status. The combination of D, SUVmax , and MTV had the largest area under the ROC curve (AUC = 0.900), which was significantly larger than the AUC alone of DDC (AUC = 0.725), SUVmax (AUC = 0.815), MTV (AUC = 0.774), or TLG (AUC = 0.783). The perfusion fraction did not correlate with SUVmax , MTV, or TLG (r = -0.03, -0.11, and -0.04, respectively; P = 0.786, 0.348, and 0.733). DATA CONCLUSION The combination of D, SUVmax , and MTV may predict Ki-67 PI status. No correlation was observed between perfusion parameters and metabolic parameters. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhun Huang
- Department of Medical Imaging, Henan University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China
| | - Xiaochen Li
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China.,Department of Medical imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhixue Wang
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Nan Meng
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China.,Department of Medical imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Fangfang Fu
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China.,Department of Medical imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Hui Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dujuan Li
- Department of Medical imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yan Bai
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China.,Department of Medical imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Wei
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China.,Department of Medical imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Ting Fang
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China.,Department of Medical imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Pengyang Feng
- Department of Medical Imaging, Henan University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China
| | - Jianmin Yuan
- Central Research Institute, UIH Group, Shanghai, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory for Medical Imaging of Neurological Diseases, Zhengzhou, China.,Department of Medical imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
18
|
Qiu J, Deng K, Wang P, Chen C, Luo Y, Yuan S, Wen J. Application of diffusion kurtosis imaging to the study of edema in solid and peritumoral areas of glioma. Magn Reson Imaging 2021; 86:10-16. [PMID: 34793876 DOI: 10.1016/j.mri.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE When gliomas grow in an infiltrative form, high-grade malignant glioma tissue extends beyond the contrast-enhancing tumor boundary, and this diffuse non-enhancing tumor infiltration is not visible on conventional MRI. The purpose of this study was to evaluate the of diffusion kurtosis imaging (DKI)-derived parameters in a group of patients with pre-operative gliomas, evaluating changes in the solid tumor and peritumoral edema area, and investigating their use for evaluating the recurrence and prognosis of gliomas. METHODS In this retrospective study, 51 patients with gliomas who underwent biopsy or surgery underwent DKI scans before surgery. DKI scans were performed to generate DKI parameter maps of the solid tumor and peritumoral edema areas. In the solid tumor area, the kurtosis parameters showed the highest area under the curve (AUC), sensitivity, and specificity for distinguishing high- and low-grade gliomas (all P < 0.01). RESULTS In the peritumoral edema area, significant differences were found between groups with grade III and IV gliomas (P < 0.05). DKI parameters were found to correlate with clinical Ki-67 scores within the solid tumor area (MK: R2 = 0.288, P < 0.001; Kr: R2 = 0.270, P < 0.001; Ka: R2 = 0.274, P < 0.001; MD: R2 = 0.223, P < 0.001; FA: R2 = 0.098, P < 0.01). No significant correlations were found between Ki-67 and kurtosis parameters of peritumoral edema. CONCLUSIONS In this study, DKI showed potential utility for studying solid tumor and peritumoral edema of high grade gliomas.
Collapse
Affiliation(s)
- Jun Qiu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chuanyu Chen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Luo
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuya Yuan
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jie Wen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
19
|
Bai Y, Liu T, Chen L, Gao H, Wei W, Zhang G, Wang L, Kong L, Liu S, Liu H, Roberts N, Wang M. Study of Diffusion Weighted Imaging Derived Diffusion Parameters as Biomarkers for the Microenvironment in Gliomas. Front Oncol 2021; 11:672265. [PMID: 34712604 PMCID: PMC8546342 DOI: 10.3389/fonc.2021.672265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives To explore the efficacy of diffusion weighted imaging (DWI)-derived metrics under different models as surrogate indicators for molecular biomarkers and tumor microenvironment in gliomas. Methods A retrospective study was performed for 41 patients with gliomas. The standard apparent diffusion coefficient (ADCst) and ADC under ultra-high b values (ADCuh) (b values: 2500 to 5000 s/mm2) were calculated based on monoexponential model. The fraction of fast diffusion (f), pseudo ADC (ADCfast) and true ADC (ADCslow) were calculated by bi-exponential model (b values: 0 to 2000 s/mm2). The apparent diffusional kurtosis (Kapp) was derived from the simplified diffusion kurtosis imaging (DKI) model (b values: 200 to 3000 s/mm2). Potential correlations between DWI parameters and immunohistological indices (i.e. Aquaporin (AQP)1, AQP4, AQP9 and Ki-67) were investigated and DWI parameters were compared between high- and low-grade gliomas, and between tumor center and peritumor. Receiver operator characteristic (ROC) curve and area under the curve (AUC) were calculated to determine the performance of independent or combined DWI parameters in grading gliomas. Results The ADCslow and ADCuh at tumor center showed a stronger correlation with Ki-67 than other DWI metrics. The ADCst, ADCslow and ADCuh at tumor center presented correlations with AQP1 and AQP4 while AQP9 did not correlate with any DWI metric. Kapp showed a correlation with Ki-67 while no significant correlation with AQPs. ADCst (p < 0.001) and ADCslow (p = 0.001) were significantly lower while the ADCuh (p = 0.006) and Kapp (p = 0.005) were significantly higher in the high-grade than in the low-grade gliomas. ADCst, f, ADCfast, ADCslow, ADCuh, Kapp at the tumor center had significant differences with those in peritumor when the gliomas grade became high (p < 0.05). Involving ADCuh and Kapp simultaneously into an independent ADCst model (AUC = 0.833) could further improve the grading performance (ADCst+ADCuh+Kapp: AUC = 0.923). Conclusion Different DWI metrics fitted within different b-value ranges (low to ultra-high b values) have different efficacies as a surrogate indicator for molecular expression or microstructural complexity in gliomas. Further studies are needed to better explain the biological meanings of these DWI parameters in gliomas.
Collapse
Affiliation(s)
- Yan Bai
- Department of Medical Imaging, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Taiyuan Liu
- Department of Medical Imaging, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijuan Chen
- Department of Medical Imaging, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyan Gao
- Department of Medical Imaging, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Ge Zhang
- Department of Medical Imaging, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifu Wang
- Department of Pathology, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyun Liu
- Pharmaceutical Diagnostics, General Electric (GE) Healthcare, Beijing, China
| | - Huan Liu
- Pharmaceutical Diagnostics, General Electric (GE) Healthcare, Beijing, China
| | - Neil Roberts
- The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Wei RL, Wei XT. Advanced Diagnosis of Glioma by Using Emerging Magnetic Resonance Sequences. Front Oncol 2021; 11:694498. [PMID: 34422648 PMCID: PMC8374052 DOI: 10.3389/fonc.2021.694498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma, the most common primary brain tumor in adults, can be difficult to discern radiologically from other brain lesions, which affects surgical planning and follow-up treatment. Recent advances in MRI demonstrate that preoperative diagnosis of glioma has stepped into molecular and algorithm-assisted levels. Specifically, the histology-based glioma classification is composed of multiple different molecular subtypes with distinct behavior, prognosis, and response to therapy, and now each aspect can be assessed by corresponding emerging MR sequences like amide proton transfer-weighted MRI, inflow-based vascular-space-occupancy MRI, and radiomics algorithm. As a result of this novel progress, the clinical practice of glioma has been updated. Accurate diagnosis of glioma at the molecular level can be achieved ahead of the operation to formulate a thorough plan including surgery radical level, shortened length of stay, flexible follow-up plan, timely therapy response feedback, and eventually benefit patients individually.
Collapse
Affiliation(s)
- Ruo-Lun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Ting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Radiomics-based MRI for predicting Erythropoietin-producing hepatocellular receptor A2 expression and tumor grade in brain diffuse gliomas. Neuroradiology 2021; 64:323-331. [PMID: 34368897 DOI: 10.1007/s00234-021-02780-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE EphA2 is a key factor underlying invasive propensity of gliomas, and is associated with poor prognosis of tumors. We aimed to develop a radiomics-based imaging index for predicting EphA2 expression in diffuse gliomas, and further estimating its value for grading of tumors. METHODS A total of 182 patients with diffuse gliomas were included. All subjects underwent pre-operative MRI and post-operative pathological diagnosis. EphA2 expression of tumors was scored on pathological sections with immunohistochemical staining using monoclonal EphA2 antibody. MRI radiomics features were extracted from three-dimensional contrast-enhanced T1-weighted imaging and diffusion kurtosis imaging. Predictive models were constructed using machine learning-based radiomics features selection and three classifiers for predicting EphA2 expression and tumor grade. Features of best EphA2 expression model were subsequently used to construct another model of tumor grading. For each model, 146 cases (80%) were randomly picked as training and the rest 36 (20%) were testing cohorts. EphA2 expression was further correlated to the radiomics features in both grade models using Spearman's correlation. RESULTS Logistic regression model presented highest performance for predicting EphA2 expression (AUC: 0.836/0.724 in training/validation set). Tumor gradings model guided by features from EphA2 expression model demonstrated comparable performance (AUC: 0.930/0.983) to that constructed directly using imaging radiomics features (AUC: 0.960/0.977). Two radiomics features which included in both LR-grade models showed strong correlation (P < 0.05) with EphA2 expression. CONCLUSION The expression of EphA2 in gliomas could be predicted by radiomics features extracted from diffusion kurtosis MRI, which could also be used to assist tumor grading.
Collapse
|
22
|
Meng N, Fang T, Feng P, Huang Z, Sun J, Wang X, Shang J, Wang K, Han D, Wang M. Amide Proton Transfer-Weighted Imaging and Multiple Models Diffusion-Weighted Imaging Facilitates Preoperative Risk Stratification of Early-Stage Endometrial Carcinoma. J Magn Reson Imaging 2021; 54:1200-1211. [PMID: 33991377 DOI: 10.1002/jmri.27684] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endometrial carcinoma (EC) risk stratification is generally based on histological assessment. It would be beneficial to perform risk stratification noninvasively by MRI. PURPOSE To investigate the application of amide proton transfer-weighted imaging (APTWI), monoexponential, biexponential, and stretched exponential intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) for the evaluation of risk stratification in early-stage EC. STUDY TYPE Prospective. POPULATION Eighty patients with early-stage EC (47 classified as low risk, 20 as medium risk, and 13 as high risk by histological grade and International Federation of Gynecology and Obstetrics stage). FIELD STRENGTH/SEQUENCE T1-weighted imaging, T2-weighted imaging, IVIM, APTWI, and DKI MRI at 3 T. ASSESSMENT The magnetization transfer ratio asymmetry (MTRasym [3.5 ppm]), apparent diffusion coefficient (ADC), diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f), distributed diffusion coefficient (DDC), water molecular diffusion heterogeneity index (α), mean kurtosis (MK), and mean diffusivity (MD) were calculated and compared between low-risk and non-low-risk groups. STATISTICAL TESTS Individual sample t test, analysis of variance, and logistic regression. A P-value <0.05 was considered statistically significant. RESULTS The α, ADC, D, DDC, and MD were significantly higher and the f, MK, and MTRasym (3.5 ppm) were significantly lower in the low-risk group than in the non-low-risk group. The difference in D* between the two groups was not significant (P = 0.289). MTRasym (3.5 ppm), D, and MK were independent predictors of risk stratification. The combination of these three parameters was better able to identify low- and non-low-risk groups than each individual parameter. DATA CONCLUSION The IVIM, DKI, and APTWI parameters have potential as imaging markers for risk stratification in early-stage EC. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nan Meng
- Department of Medical Imaging, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Fang
- Department of Medical Imaging, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengyang Feng
- Department of Medical Imaging, Henan University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhun Huang
- Department of Medical Imaging, Henan University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Jing Sun
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Xuejia Wang
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Jie Shang
- Department of Pathology, the First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Dongming Han
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Li X, Liu Y, Tao J, Yin Z, Zhu Y, Zhang Y, Wang S. Value of intravoxel incoherent motion and diffusion kurtosis imaging in predicting peritumoural infiltration of soft-tissue sarcoma: a prospective study based on MRI-histopathology comparisons. Clin Radiol 2021; 76:532-539. [PMID: 33736880 DOI: 10.1016/j.crad.2021.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/11/2021] [Indexed: 12/27/2022]
Abstract
AIM To investigate the performance of intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) in the identification of peritumoural infiltration of soft-tissue sarcoma (STS). MATERIALS AND METHODS From July 2018 to January 2020, 34 STS patients who underwent 3-T magnetic resonance imaging (MRI), including IVIM and DKI, were reviewed. The standard apparent diffusion coefficient (ADC), true diffusion (D), pseudo-diffusion coefficient (D∗), perfusion fraction (f), mean kurtosis (MK), and mean diffusion (MD) of each lesion were analysed independently by two observers. An MRI-histopathology control method was used to ensure the correspondence of MRI sections with histopathological sections. Differences in STS with and without infiltration were evaluated. The area under the curve (AUC) was used to determine the best cut-off point for different parameters. Interobserver agreement was assessed using the intraclass correlation coefficient. RESULTS Standard ADC, D, MK, and MD values reliably distinguished STS that had positive and negative infiltration. The MD value had the best diagnostic performance. Use of an MD cut-off value of 2.35 × 10-3 mm2/s to distinguish positive and negative infiltration had an AUC of 0.85, accuracy of 88.2%, sensitivity of 94.4%, and specificity of 81.3%. The two independent observers had nearly perfect agreement for all parameters. CONCLUSION The standard ADC and D value of IVIM, and the MK and MD values of DKI reliably identify the presence of peritumoural infiltration of STS.
Collapse
Affiliation(s)
- X Li
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Y Liu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - J Tao
- Department of Histopathology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Z Yin
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Y Zhu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Y Zhang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - S Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
24
|
Wang P, Weng L, Xie S, He J, Ma X, Li B, Yuan P, Wang S, Zhang H, Niu G, Wu Q, Gao Y. Primary application of mean apparent propagator-MRI diffusion model in the grading of diffuse glioma. Eur J Radiol 2021; 138:109622. [PMID: 33721768 DOI: 10.1016/j.ejrad.2021.109622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE To evaluate the diagnostic -->performance of mean apparent propagator-magnetic resonance imaging (MAP-MRI) in distinguishing the grades of diffuse gliomas. METHOD Thirty-six patients with pathologically confirmed diffuse gliomas were enrolled in this study. MAP-MRI parameters were measured in the parenchymal area of the tumour: non-Gaussianity (NG), non-Gaussianity axial (NGAx), non-Gaussianity vertical (NGRad), Q-space inverse variance (QIV), return to the origin probability (RTOP), return to the axis probability (RTAP), return to the plane probability (RTPP), and mean square displacement (MSD). Differences in the parameters between any two grades were compared, the characteristics of the parameters for different diffuse glioma grades were analysed, and receiver operating characteristic (ROC) curves were plotted to analyse the diagnostic value of each parameter. RESULTS Compared with grade III gliomas, grade II gliomas had lower NG, NGAx and NGRad values. NG, NGAx and NGRad had great area under the ROC curve (AUC) values (0.823, 0.835, and 0.838, P < 0.05). Compared with those of grade IV glioma, the NG, NGAx, NGRad, RTAP and RTOP values for grade II glioma were lower, the QIV values were higher (all P < 0.05). NG, NGAx, NGRad, RTAP, RTOP and QIV had great area under the ROC curve (AUC) values (0.923, 0.929, 0.923,0.793,0.822, and 0.769, P < 0.05). CONCLUSIONS Quantitative MAP-MRI parameters can distinguish grade II and III and grade II and IV gliomas before surgery but not grade III and IV gliomas. Thus, these parameters have clinical guiding value in the noninvasive preoperative evaluation of tumour pathological grading.
Collapse
Affiliation(s)
- Peng Wang
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Lixin Weng
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Shenghui Xie
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Jinlong He
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Xueying Ma
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Bo Li
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Pengxuan Yuan
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, 201318, China.
| | - Huapeng Zhang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, 201318, China.
| | - Guangming Niu
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Qiong Wu
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Yang Gao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| |
Collapse
|
25
|
Pogosbekian EL, Pronin IN, Zakharova NE, Batalov AI, Turkin AM, Konakova TA, Maximov II. Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading. Neuroradiology 2021; 63:1241-1251. [PMID: 33410948 PMCID: PMC8295088 DOI: 10.1007/s00234-020-02613-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 01/02/2023]
Abstract
Purpose An accurate differentiation of brain glioma grade constitutes an important clinical issue. Powerful non-invasive approach based on diffusion MRI has already demonstrated its feasibility in glioma grade stratification. However, the conventional diffusion tensor (DTI) and kurtosis imaging (DKI) demonstrated moderate sensitivity and performance in glioma grading. In the present work, we apply generalised DKI (gDKI) approach in order to assess its diagnostic accuracy and potential application in glioma grading. Methods Diffusion scalar metrics were obtained from 50 patients with different glioma grades confirmed by histological tests following biopsy or surgery. All patients were divided into two groups with low- and high-grade gliomas as grade II versus grades III and IV, respectively. For a comparison, trained radiologists segmented the brain tissue into three regions with solid tumour, oedema, and normal appearing white matter. For each region, we estimated the conventional and gDKI metrics including DTI maps. Results We found high correlations between DKI and gDKI metrics in high-grade glioma. Further, gDKI metrics enabled introduction of a complementary measure for glioma differentiation based on correlations between the conventional and generalised approaches. Both conventional and generalised DKI metrics showed quantitative maps of tumour heterogeneity and oedema behaviour. gDKI approach demonstrated largely similar sensitivity and specificity in low-high glioma differentiation as in the case of conventional DKI method. Conclusion The generalised diffusion kurtosis imaging enables differentiation of low- and high-grade gliomas at the same level as the conventional DKI. Additionally, gDKI exhibited higher sensitivity to tumour heterogeneity and tissue contrast between tumour and healthy tissue and, thus, may contribute as a complementary source of information on tumour differentiation.
Collapse
Affiliation(s)
- E L Pogosbekian
- Neuroimaging Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russian Federation.,General and Clinical Neurophysiology Lab, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russian Federation
| | - I N Pronin
- Neuroimaging Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russian Federation
| | - N E Zakharova
- Neuroimaging Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russian Federation
| | - A I Batalov
- Neuroimaging Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russian Federation
| | - A M Turkin
- Neuroimaging Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russian Federation
| | - T A Konakova
- Neuroimaging Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russian Federation
| | - I I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway. .,Department of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway. .,Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
| |
Collapse
|
26
|
Preoperatively Grading Rectal Cancer with the Combination of Intravoxel Incoherent Motions Imaging and Diffusion Kurtosis Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:2164509. [PMID: 33100931 PMCID: PMC7576354 DOI: 10.1155/2020/2164509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Purpose To combine Intravoxel Incoherent Motions (IVIM) imaging and diffusion kurtosis imaging (DKI) which can aid in the quantification of different biological inspirations including cellularity, vascularity, and microstructural heterogeneity to preoperatively grade rectal cancer. Methods A total of 58 rectal patients were included into this prospective study. MRI was performed with a 3T scanner. Different combinations of IVIM-derived and DKI-derived parameters were performed to grade rectal cancer. Pearson correlation coefficients were applied to evaluate the correlations. Binary logistic regression models were established via integrating different DWI parameters for screening the most sensitive parameter. Receiver operating characteristic analysis was performed for evaluating the diagnostic performance. Results For individual DWI-derived parameters, all parameters except the pseudodiffusion coefficient displayed the capability of grading rectal cancer (p < 0.05). The better discrimination between high- and low-grade rectal cancer was achieved with the combination of different DWI-derived parameters. Similarly, ROC analysis suggested the combination of D (true diffusion coefficient), f (perfusion fraction), and Kapp (apparent kurtosis coefficient) yielded the best diagnostic performance (AUC = 0.953, p < 0.001). According to the result of binary logistic analysis, cellularity-related D was the most sensitive predictor (odds ratio: 9.350 ± 2.239) for grading rectal cancer. Conclusion The combination of IVIM and DKI holds great potential in accurately grading rectal cancer as IVIM and DKI can provide the quantification of different biological inspirations including cellularity, vascularity, and microstructural heterogeneity.
Collapse
|