1
|
Zhou M, Chen M, Chen M, Yan X, Yang G, Huang H. Predictive value of mono-exponential and multiple mathematical models in locally advanced rectal cancer response to neoadjuvant chemoradiotherapy. Abdom Radiol (NY) 2025; 50:1105-1116. [PMID: 39276193 DOI: 10.1007/s00261-024-04588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/16/2024]
Abstract
PURPOSE This prospective study aimed to assess the predictive value of mono-exponential and multiple mathematical diffusion-weighted imaging (DWI) models in determining the response to neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). METHODS The study included 103 LARC patients scheduled for preoperative chemoradiotherapy between December 2021 and June 2023 Magnetic resonance imaging (MRI) scans were performed using a 3.0-T MR scanner, encompassing sagittal, axial, and oblique coronal T2-weighted images without fat saturation, along with DWI perpendicular to the rectum's long axis. Various DWI parameters, including apparent diffusion coefficient (ADC), stretched exponential model (SEM), continuous-time random-walk model (CTRW), and fractional-order calculus model (FROC), were measured. The pathologic complete response (pCR) rate and tumor downstaging (T-downstage) rate were determined. RESULTS After nCRT, SEM-α, SEM-DDC, CTRW-α, CTRW-β, CTRW-D, FROC-β, and ADC values were significantly higher in the pCR group compared to the non-pCR group (all P < 0.05). SEM-DDC, CTRW-α, CTRW-D, FROC-β, FROC-µ, and ADC values were significantly higher in the T-downstage group (ypT0-1) than in the non-T-downstage group (ypT2-4) (P < 0.05). The combination of CTRW (α + β + D) exhibited the best diagnostic performance for assessing pCR after nCRT (AUC = 0.840, P < 0.001). Pre-nCRT CTRW (α + β) demonstrated a predictive AUC of 0.652 (95%CI: 0.552-0.743), 90.3% sensitivity, and 43.1% specificity for pCR. Regarding T-downstage assessment after nCRT, the combination of CTRW (α + D) yielded the best diagnostic performance (AUC = 0.877, P = 0.048). CONCLUSION In LARC patients, imaging markers derived from CTRW show promise in predicting tumor response before nCRT and assessing pCR after nCRT.
Collapse
Affiliation(s)
- Mi Zhou
- sichuan provincial orthopedics hospital, Chengdu, China
| | - Mengyuan Chen
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Xu Yan
- Siemens Healthineers (China), Pudong, China
| | - Guang Yang
- East China Normal University, Shanghai, China
| | - Hongyun Huang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Zhou M, Huang H, Bao D, Chen M. Fractional order calculus model-derived histogram metrics for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer. Clin Imaging 2024; 116:110327. [PMID: 39454478 DOI: 10.1016/j.clinimag.2024.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
AIM This study evaluates the value of diffusion fractional order calculus (FROC) model for the assessment of pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) for locally advanced rectal cancer (LARC) by using histogram analysis derived from whole-tumor volumes. MATERIALS AND METHODS Ninety-eight patients were prospectively included. Every patient received MRI scans before and after nCRT using a 3.0-Tesla MRI machine. Parameters of the FROC model, including the anomalous diffusion coefficient (D), intravoxel diffusion heterogeneity (β), spatial parameter (μ), and the standard apparent diffusion coefficient (ADC), were calculated. Changes in median values (ΔX-median) and ratio (rΔX-median) were calculated. Receiver operating characteristic (ROC) curves were used for evaluating the diagnostic performance. RESULTS Pre-treatmentβ-10th percentile values were significantly lower in the pCR group compared to the non-pCR group (p < 0.001). The Δβ-median showed higher diagnostic accuracy (AUC = 0.870) and sensitivity (76.67 %) for predicting tumor response compared to MRI tumor regression grading (mrTRG) scores (AUC = 0.722; sensitivity = 90.0 %). DISCUSSION The use of FROC alongside comprehensive tumor histogram analysis was found to be practical and effective in evaluating the tumor response to nCRT in LARC patients.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Radiology, Sichuan Provincial Orthpaedics Hospital, Chengdu 610041, PR China.
| | - Hongyun Huang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Deying Bao
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Meining Chen
- Department of MR Scientific Marketing, Siemens Healthineers, Shanghai 200135, PR China
| |
Collapse
|
3
|
Chandola S, Soni A, Banerjee S, Bhattacharjee HK, Sharma R, Phulia A, Pathy S, Das CJ. Comparison of intravoxel incoherent motion and diffusion kurtosis imaging and 18- FDG PET/CT in response assessment in rectosigmoid carcinoma. Abdom Radiol (NY) 2024:10.1007/s00261-024-04689-8. [PMID: 39585380 DOI: 10.1007/s00261-024-04689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE To evaluate the performance of intravoxel incoherent motion and diffusion kurtosis imaging (IVIM- DKI) in response assessment of rectosigmoid carcinoma to chemo-radiotherapy (CRT) and compare with 18-FDG PET/CT parameters. METHODS A total of 30 patients of recto-sigmoid cancer on CRT underwent baseline staging and follow-up with IVIM - DKI. Out of this cohort, 20 patients underwent 18-FDG PET/CT. IVIM- DKI MRI and PET/CT parameters were noted from both pre and post-chemoradiotherapy (done at 6 weeks after completion) scans. Quantitative IVIM-DKI parameters, viz. apparent (ADC) and molecular (D) diffusion coefficient, perfusion coefficient (f), and kurtosis (K) were measured from non-necrotic areas and semi-quantitative PET parameters including SUV max, SUV ratio, metabolic tumor volume (MTV), total lesion glycolysis (TLG) were also measured. All these parameters correlated with the patient's response keeping RECIST 1.1 criteria as reference standard. RESULTS A statistically significant increase in D and ADC with a significant decline in K was noted after therapy in the entire cohort. These changes were observed in both responders as well as non-responders. No significant differences were observed in the percentage changes of these parameters post therapy amongst both groups. Among 20 patients with follow-up PET/CT imaging, a significant decline in all parameters of primary lesion was seen post-therapy. Responders (n = 12) showed a significant decline in MTV and TLG from baseline after therapy, whereas non-responders did not show any such decline. Change in TLG (ɗ TLG), followed by ɗ MTV had the strongest correlation with a positive response. A ɗ TLG value of ≥ 54.19 carried a 79% sensitivity and 83% specificity in differentiating responders from non responders. CONCLUSION 18-FDG PET/CT is a more accurate single modality for assessing both response and tumor burden post therapy, while ADC and D from IVIM MRI are useful adjuncts to response assessment.
Collapse
Affiliation(s)
- Stuti Chandola
- All India Institute of Medical Sciences, New Delhi, India
| | - Abhishek Soni
- All India Institute of Medical Sciences, New Delhi, India
| | - Soham Banerjee
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Raju Sharma
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Sushmita Pathy
- All India Institute of Medical Sciences, New Delhi, India
| | - Chandan J Das
- All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Yang A, Lin LB, Xu H, Chen XL, Zhou P. Combination of intravoxel incoherent motion histogram parameters and clinical characteristics for predicting response to neoadjuvant chemoradiation in patients with locally advanced rectal cancer. Abdom Radiol (NY) 2024:10.1007/s00261-024-04629-6. [PMID: 39395044 DOI: 10.1007/s00261-024-04629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE To explore the value of histogram parameters derived from intravoxel incoherent motion (IVIM) for predicting response to neoadjuvant chemoradiation (nCRT) in patients with locally advanced rectal cancer (LARC). METHODS A total of 112 patients diagnosed with LARC who underwent IVIM-DWI prior to nCRT were enrolled in this study. The true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and microvascular volume fraction (f) calculated from IVIM were recorded along with the histogram parameters. The patients were classified into the pathological complete response (pCR) group and the non-pCR group according to the tumor regression grade (TRG) system. Additionally, the patients were divided into low T stage (yp T0-2) and high T stage (ypT3-4) according to the pathologic T stage (ypT stage). Univariate logistic regression analysis was implemented to identify independent risk factors, including both clinical characteristics and IVIM histogram parameters. Subsequently, models for Clinical, Histogram, and Combined Clinical and Histogram were constructed using multivariable binary logistic regression analysis for the purpose of predicting pCR. The area under the receiver operating characteristic (ROC) curve (AUCs) was employed to evaluate the diagnostic performance of the three models. RESULTS The values of D_ kurtosis, f_mean, and f_ median were significantly higher in the pCR group compared with the non-pCR group (all P < 0.05). The value of D*_ entropy was significantly lower in the pCR group compared with the non-pCR group (P < 0.05). The values of D_ kurtosis, f_mean, and f_ median were significantly higher in the low T stage group compared with the high T stage group (all P < 0.05). The value of D*_ entropy was significantly lower in the low T stage group compared with the high T stage group (P < 0.05). The ROC curves indicated that the Combined Clinical and Histogram model exhibited the best diagnostic performance in predicting the pCR patients with AUCs, sensitivity, specificity, and accuracy of 0.916, 83.33%, 85.23%, and 84.82%. CONCLUSIONS The histogram parameters derived from IVIM have the potential to identify patients who have achieved pCR. Moreover, the combination of IVIM histogram parameters and clinical characteristics enhanced the diagnostic performance of IVIM histogram parameters.
Collapse
Affiliation(s)
- Ao Yang
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- , Chengdu, China
| | - Li-Bo Lin
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Xu
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Li Chen
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Peng Zhou
- Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
5
|
Mesny E, Leporq B, Chapet O, Beuf O. Intravoxel incoherent motion magnetic resonance imaging to assess early tumor response to radiation therapy: Review and future directions. Magn Reson Imaging 2024; 108:129-137. [PMID: 38354843 DOI: 10.1016/j.mri.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Early prediction of radiation response by imaging is a dynamic field of research and it can be obtained using a variety of noninvasive magnetic resonance imaging methods. Recently, intravoxel incoherent motion (IVIM) has gained interest in cancer imaging. IVIM carries both diffusion and perfusion information, making it a promising tool to assess tumor response. Here, we briefly introduced the basics of IVIM, reviewed existing studies of IVIM in various type of tumors during radiotherapy in order to show whether IVIM is a useful technique for an early assessment of radiation response. 31/40 studies reported an increase of IVIM parameters during radiotherapy compared to baseline. In 27 studies, this increase was higher in patients with good response to radiotherapy. Future directions including implementation of IVIM on MR-Linac and its limitation are discussed. Obtaining new radiologic biomarkers of radiotherapy response could open the way for a more personalized, biology-guided radiation therapy.
Collapse
Affiliation(s)
- Emmanuel Mesny
- Radiation Oncology Department, Center Hospitalier Lyon Sud, Pierre Benite, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France.
| | - Benjamin Leporq
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France
| | - Olivier Chapet
- Radiation Oncology Department, Center Hospitalier Lyon Sud, Pierre Benite, France
| | - Olivier Beuf
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon F-69100, France
| |
Collapse
|
6
|
Li Y, Zhang H, Yue L, Fu C, Grimm R, Li W, Guo W, Tong T. Whole tumor based texture analysis of magnetic resonance diffusion imaging for colorectal liver metastases: A prospective study for diffusion model comparison and early response biomarker. Eur J Radiol 2024; 170:111203. [PMID: 38007855 DOI: 10.1016/j.ejrad.2023.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE To evaluate and compare the diagnostic value of diffusion-related texture analysis parameters obtained from various magnetic resonance diffusion models as early predictors of the clinical response to chemotherapy in patients with colorectal liver metastases (CRLM). METHODS Patients (n = 145) with CRLM were prospectively and consecutively enrolled and scanned using diffusion-weighted imaging (DWI)-magnetic resonance imaging (MRI)/intravoxel incoherent motion (IVIM)/diffusion kurtosis imaging (DKI) before (baseline) and two-three weeks after (follow-up) commencing chemotherapy. Therapy response was evaluated based on the Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1). The histogram and texture parameters of each diffusion-related parametric map were analysed between the responding and non-responding groups, screened using LASSO, and fitted with binary logistic regression models. The diagnostic efficacy of each model in the early prediction of CRLM was analysed, and the corresponding receiver operating characteristic (ROC) curve was drawn. The area under the curve (AUC) and 95% confidence intervals (CI) were calculated. RESULTS Of the 145 analysed patients, 69 were in the responding group and 76 were in the non-responding group. Among all models, the difference value based on the histogram and texture features of the DKI-derived parameters performed best for the early prediction of CRLM treatment efficacy. The AUC of the DKI model in the validation set reached 0.795 (95% CI 0.652-0.938). Among the IVIM-derived parameters, the difference model based on D and D* performed best, and the AUC in the validation set reached 0.737 (95% CI 0.586-0.889). Finally, in the DWI sequence, the model comprising baseline features performed the best, with an AUC of 0.699 (95% CI 0.537-0.86) in the validation set. CONCLUSIONS Baseline DWI parameters and follow-up changes in IVIM and DKI parameters predicted the chemotherapeutic response in patients with CRLM. In addition, as very early predictors, DKI-derived parameters were more effective than DWI- and IVIM-related parameters, in which changes in D-parameters performed best.
Collapse
Affiliation(s)
- Yue Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Yue
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Caixia Fu
- MR Collaboration, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Wenhua Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Weijian Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Tong Tong
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Radiomics Approaches for the Prediction of Pathological Complete Response after Neoadjuvant Treatment in Locally Advanced Rectal Cancer: Ready for Prime Time? Cancers (Basel) 2023; 15:cancers15020432. [PMID: 36672381 PMCID: PMC9857080 DOI: 10.3390/cancers15020432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
In recent years, neoadjuvant therapy of locally advanced rectal cancer has seen tremendous modifications. Adding neoadjuvant chemotherapy before or after chemoradiotherapy significantly increases loco-regional disease-free survival, negative surgical margin rates, and complete response rates. The higher complete rate is particularly clinically meaningful given the possibility of organ preservation in this specific sub-population, without compromising overall survival. However, all locally advanced rectal cancer most likely does not benefit from total neoadjuvant therapy (TNT), but experiences higher toxicity rates. Diagnosis of complete response after neoadjuvant therapy is a real challenge, with a risk of false negatives and possible under-treatment. These new therapeutic approaches thus raise the need for better selection tools, enabling a personalized therapeutic approach for each patient. These tools mostly focus on the prediction of the pathological complete response given the clinical impact. In this article, we review the place of different biomarkers (clinical, biological, genomics, transcriptomics, proteomics, and radiomics) as well as their clinical implementation and discuss the most recent trends for future steps in prediction modeling in patients with locally advanced rectal cancer.
Collapse
|
8
|
Hong Y, Song G, Jia Y, Wu R, He R, Li A. Predicting tumor deposits in patients with rectal cancer: Using the models of multiple mathematical parameters derived from diffusion-weighted imaging. Eur J Radiol 2022; 157:110573. [DOI: 10.1016/j.ejrad.2022.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022]
|
9
|
Radiomic and Volumetric Measurements as Clinical Trial Endpoints—A Comprehensive Review. Cancers (Basel) 2022; 14:cancers14205076. [PMID: 36291865 PMCID: PMC9599928 DOI: 10.3390/cancers14205076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The extraction of quantitative data from standard-of-care imaging modalities offers opportunities to improve the relevance and salience of imaging biomarkers used in drug development. This review aims to identify the challenges and opportunities for discovering new imaging-based biomarkers based on radiomic and volumetric assessment in the single-site solid tumor sites: breast cancer, rectal cancer, lung cancer and glioblastoma. Developing approaches to harmonize three essential areas: segmentation, validation and data sharing may expedite regulatory approval and adoption of novel cancer imaging biomarkers. Abstract Clinical trials for oncology drug development have long relied on surrogate outcome biomarkers that assess changes in tumor burden to accelerate drug registration (i.e., Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria). Drug-induced reduction in tumor size represents an imperfect surrogate marker for drug activity and yet a radiologically determined objective response rate is a widely used endpoint for Phase 2 trials. With the addition of therapies targeting complex biological systems such as immune system and DNA damage repair pathways, incorporation of integrative response and outcome biomarkers may add more predictive value. We performed a review of the relevant literature in four representative tumor types (breast cancer, rectal cancer, lung cancer and glioblastoma) to assess the preparedness of volumetric and radiomics metrics as clinical trial endpoints. We identified three key areas—segmentation, validation and data sharing strategies—where concerted efforts are required to enable progress of volumetric- and radiomics-based clinical trial endpoints for wider clinical implementation.
Collapse
|
10
|
Almutlaq ZM, Wilson DJ, Bacon SE, Sharma N, Stephens S, Dondo T, Buckley DL. Evaluation of Monoexponential, Stretched-Exponential and Intravoxel Incoherent Motion MRI Diffusion Models in Early Response Monitoring to Neoadjuvant Chemotherapy in Patients With Breast Cancer-A Preliminary Study. J Magn Reson Imaging 2022; 56:1079-1088. [PMID: 35156741 PMCID: PMC9543625 DOI: 10.1002/jmri.28113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There has been a growing interest in exploring the applications of stretched-exponential (SEM) and intravoxel incoherent motion (IVIM) models of diffusion-weighted imaging (DWI) in breast imaging, with the focus on differentiation of breast lesions. However, the use of SEM and IVIM models to predict early response to neoadjuvant chemotherapy (NACT) has received less attention. PURPOSE To investigate the value of monoexponential, SEM, and IVIM models to predict early response to NACT in patients with primary breast cancer. STUDY TYPE Prospective. POPULATION Thirty-seven patients with primary breast cancer (aged 46 ± 11 years) due to undergo NACT. FIELD STRENGTH/SEQUENCES A 1.5-T MR scanner, T1 -weighted three-dimensional spoiled gradient-echo, two-dimensional single-shot spin-echo echo-planar imaging sequence (DWI) at six b-values (0-800 s mm-2 ). ASSESSMENT Tumor volume, apparent diffusion coefficient, tissue diffusion (Dt ), pseudo-diffusion coefficient (Dp ), perfusion fraction (f), distributed diffusion coefficient, and alpha (α) were extracted, following volumetric sampling of the tumors, at three time-points: pretreatment, post one and three cycles of NACT. STATISTICAL TESTS Mann-Whitney test, receiver operating characteristic (ROC) curve. Statistical significance level was P < 0.05. RESULTS Following NACT, 17 patients were determined to be pathological responders and 20 nonresponders. Tumor volume was significantly larger in nonresponders at each MRI time-point and demonstrated reasonable performance in predicting response (area under the ROC curve [AUC] = 0.83-0.87). No significant differences between groups were found in the diffusion coefficients at each time-point (P = 0.09-1). The parameters α (SEM), f, and f × Dp (IVIM) were able to differentiate between response groups after one cycle of NACT (AUC = 0.73, 0.72, and 0.74, respectively). CONCLUSION Diffusion coefficients derived from the monoexponential, SEM, and IVIM models did not predict pathological response. However, the IVIM-derived parameters f and f × Dp and the SEM-derived parameter α were able to predict response to NACT in breast cancer patients following one cycle of NACT. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Zyad M. Almutlaq
- Biomedical ImagingUniversity of LeedsLeedsUK
- Radiological Sciences Department, College of Applied Medical SciencesKing Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Daniel J. Wilson
- Department of Medical Physics & EngineeringLeeds Teaching Hospitals NHS TrustLeedsUK
| | - Sarah E. Bacon
- Department of Medical Physics & EngineeringLeeds Teaching Hospitals NHS TrustLeedsUK
| | - Nisha Sharma
- Department of RadiologyLeeds Teaching Hospitals NHS TrustLeedsUK
| | | | - Tatendashe Dondo
- Clinical and Population Sciences Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | |
Collapse
|
11
|
Zhang X, Wang Y, Zhang J, Xu X, Zhang L, Zhang M, Xie L, Shou J, Chen Y. Muscle-invasive bladder cancer: pretreatment prediction of response to neoadjuvant chemotherapy with diffusion-weighted MR imaging. Abdom Radiol (NY) 2022; 47:2148-2157. [PMID: 35306580 DOI: 10.1007/s00261-022-03455-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To investigate the usefulness of diffusion-weighted MR imaging with ADC value and histogram analysis of ADC in the prediction of response to neoadjuvant chemotherapy (NAC) in patients with muscle-invasive bladder cancer (MIBC). METHODS Fifty-eight consecutive patients with clinical T2-4aN0M0 MIBC who underwent MRI before and after NAC were enrolled in the prospective study. The evaluation of response to NAC was based on the pathologic T (pT) stage after surgery. Patients with non-muscle-invasive residual cancer (pTa, pTis, pT1) were defined as responders, while those with muscle-invasive residual cancer (≥ pT2) were defined as non-responders. The ADC value measured from a single-section region of interest and ADC histogram parameters derived from whole-tumor volume of interest in responder and non-responder were compared using the Mann-Whitney U test or independent samples t test. ROC curve analysis was used to evaluate the diagnostic performance of ADC value and ADC histogram parameters in predicting the response to NAC. RESULTS The pretreatment ADC value of responders ([1.33 (± 0.21)] × 10-3mm2/s) was significantly higher than that of non-responders ([1.09 (± 0.08)] × 10-3mm2/s) (P < .001). Most of the pretreatment ADC histogram parameters (Mean, 10th, 25th, 50th, 75th, and 90th percentiles) of responders were significantly higher than that of non-responders (P < .001). The AUC was highest for the pretreatment ADC value (0.88; 95% confidence interval: 0.77, 0.95; P < .001). CONCLUSION Diffusion-weighted MR imaging with ADC value and histogram analysis of ADC are useful to predict NAC response in patients with MIBC.
Collapse
|
12
|
Volumetric Analysis of Intravoxel Incoherent Motion Diffusion-Weighted Imaging for Predicting the Response to Chemotherapy in Patients With Locally Advanced Non-Small Cell Lung Cancer. J Comput Assist Tomogr 2022; 46:406-412. [PMID: 35405718 DOI: 10.1097/rct.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to prospectively investigate intravoxel incoherent motion parameters to predict the response to chemotherapy in locally advanced non-small cell lung cancer (NSCLC) patients. METHODS From July 2016 to March 2018, 30 advanced NSCLC patients were enrolled and underwent chest intravoxel incoherent motion-diffusion-weighted imaging at Siemens 3T magnetic resonance imaging before and at the end of the first cycle of chemotherapy. Regions of interest were drawn including the whole tumor volume to derive the apparent diffusion coefficient value, D, D*, and f, respectively. Time-dependent receiver operating characteristic curves were generated to evaluate the cutoff values of continuous variables. A Cox proportional hazards model was used to assess the independent predictors of progression-free survival (PFS) and overall survival (OS). Kaplan-Meier curves and log-rank test were generated. RESULTS Among the 30 patients, 28 cases (93.3%) died and 2 cases (6.7%) survived till the closeout date. Univariate Cox regression analyses revealed that the significant predictors of PFS and OS were the tumor size reduction rate, the change rates of D and apparent diffusion coefficient values, and the D value before therapy (PFS: P = 0.015, hazard ratio [HR] = 2.841; P < 0.001, HR = 5.840; P = 0.044, HR = 2.457; and P = 0.027, HR = 2.715; OS: P = 0.008, HR = 2.987; P < 0.001, HR = 4.357; P = 0.006, HR = 3.313; and P = 0.013, HR = 2.941, respectively). Multivariate Cox regression analysis suggested that △D% was identified as independent predictors of both PFS and OS (P = 0.003, HR = 9.200 and P = 0.016, HR = 4.617). In addition, the cutoff value of △D% was 21.06% calculated by receiver operating characteristic curve analysis. In the Kaplan-Meier analysis, the PFS and OS were significantly greater in the group of patients with △D% larger than 21.06% (log-rank test, χ2 = 16.453, P < 0.001; χ2 = 13.952, P < 0.001). CONCLUSIONS Intravoxel incoherent motion-diffusion-weighted imaging was preferred for predicting the prognosis of advanced NSCLC patients treated with chemotherapy. A D increase more than 21.06% at 1 month was associated with a lower rate of disease progression and death.
Collapse
|
13
|
Boca (Petresc) B, Caraiani C, Popa L, Lebovici A, Feier DS, Bodale C, Buruian MM. The Utility of ADC First-Order Histogram Features for the Prediction of Metachronous Metastases in Rectal Cancer: A Preliminary Study. BIOLOGY 2022; 11:biology11030452. [PMID: 35336825 PMCID: PMC8945327 DOI: 10.3390/biology11030452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Metachronous metastases are the main factors affecting survival in rectal cancer, and 15–25% of patients will develop them at a 5-year follow-up. Early identification of patients with higher risk of developing distant metachronous metastases would help to improve therapeutic protocols and could allow for a more accurate, personalized management. Apparent diffusion coefficient (ADC) represents an MRI quantitative biomarker, which can assess the diffusion characteristics of tissues, depending on the microscopic mobility of water, showing information related to tissue cellularity. First-order histogram-based features statistics describe the frequency distribution of intensity values within a region of interest, revealing microstructural alterations. In our study, we demonstrated that whole-tumor ADC first-order features may provide useful information for the assessment of rectal cancer prognosis, regarding the occurrence of metachronous metastases. Abstract This study aims the ability of first-order histogram-based features, derived from ADC maps, to predict the occurrence of metachronous metastases (MM) in rectal cancer. A total of 52 patients with pathologically confirmed rectal adenocarcinoma were retrospectively enrolled and divided into two groups: patients who developed metachronous metastases (n = 15) and patients without metachronous metastases (n = 37). We extracted 17 first-order (FO) histogram-based features from the pretreatment ADC maps. Student’s t-test and Mann–Whitney U test were used for the association between each FO feature and presence of MM. Statistically significant features were combined into a model, using the binary regression logistic method. The receiver operating curve analysis was used to determine the diagnostic performance of the individual parameters and combined model. There were significant differences in ADC 90th percentile, interquartile range, entropy, uniformity, variance, mean absolute deviation, and robust mean absolute deviation in patients with MM, as compared to those without MM (p values between 0.002–0.01). The best diagnostic was achieved by the 90th percentile and uniformity, yielding an AUC of 0.74 [95% CI: 0.60–0.8]). The combined model reached an AUC of 0.8 [95% CI: 0.66–0.90]. Our observations point out that ADC first-order features may be useful for predicting metachronous metastases in rectal cancer.
Collapse
Affiliation(s)
- Bianca Boca (Petresc)
- Department of Radiology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (B.B.); (M.M.B.)
- Department of Radiology, Emergency Clinical County Hospital Cluj-Napoca, 400006 Cluj-Napoca, Romania; (A.L.); (D.S.F.)
- Department of Medical Imaging, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Cosmin Caraiani
- Department of Medical Imaging, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Radiology, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400158 Cluj-Napoca, Romania
- Correspondence: (C.C.); (L.P.)
| | - Loredana Popa
- Department of Medical Imaging, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Correspondence: (C.C.); (L.P.)
| | - Andrei Lebovici
- Department of Radiology, Emergency Clinical County Hospital Cluj-Napoca, 400006 Cluj-Napoca, Romania; (A.L.); (D.S.F.)
- Department of Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Diana Sorina Feier
- Department of Radiology, Emergency Clinical County Hospital Cluj-Napoca, 400006 Cluj-Napoca, Romania; (A.L.); (D.S.F.)
- Department of Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Carmen Bodale
- Department of Oncology, Amethyst Radiotherapy Center Cluj, 407280 Florești, Romania;
- Department of Medical Oncology and Radiotherapy, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Mircea Marian Buruian
- Department of Radiology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (B.B.); (M.M.B.)
| |
Collapse
|
14
|
Zhu HT, Zhang XY, Shi YJ, Li XT, Sun YS. The Conversion of MRI Data With Multiple b-Values into Signature-Like Pictures to Predict Treatment Response for Rectal Cancer. J Magn Reson Imaging 2021; 56:562-569. [PMID: 34913210 DOI: 10.1002/jmri.28033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diffusion weighted imaging (DWI) at multiple b-values has been used to predict the pathological complete response (pCR) to neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Non-Gaussian models fit the signal decay of diffusion by several physical values from different approaches of approximation. PURPOSE To develop a deep learning method to analyze DWI data scanned at multiple b-values independent on Gaussian or non-Gaussian models and to apply to a rectal cancer neoadjuvant chemoradiotherapy model. STUDY TYPE Retrospective. POPULATION A total of 472 participants (age: 56.6 ± 10.5 years; 298 males and 174 females) with locally advanced adenocarcinoma were enrolled and chronologically divided into a training group (n = 200; 42 pCR/158 non-pCR), a validation group (n = 72; 11 pCR/61 non-pCR) and a test group (n = 200; 44 pCR/156 non-pCR). FIELD STRENGTH/SEQUENCE A 3.0 T MRI scanner. DWI with a single-shot spin echo-planar imaging pulse sequence at 12 b-values (0, 20, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, and 1600 sec/mm2 ). ASSESSMENT DWI signals from manually delineated tumor region were converted into a signature-like picture by concatenating all histograms from different b-values. Pathological results (pCR/non-pCR) were used as the ground truth for deep learning. Gaussian and non-Gaussian methods were used for comparison. STATISTICAL TESTS Analysis of variance for age; Chi-square for gender and pCR/non-pCR; area under the receiver operating characteristic (ROC) curve (AUC); DeLong test for AUC. P < 0.05 for significant difference. RESULTS The AUC in the test group is 0.924 (95% CI: 0.866-0.983) for the signature-like pictures converted from 35 bins, and it is 0.931 (95% CI: 0.884-0.979) for the signature-like pictures converted from 70 bins, which is significantly (Z = 3.258, P < 0.05) larger than Dapp , the best predictor in non-Gaussian methods with AUC = 0.773 (95% CI: 0.682-0.865). DATA CONCLUSION The proposed signature-like pictures provide more accurate pretreatment prediction of the response to neoadjuvant chemoradiotherapy than the fitted methods for locally advanced rectal cancer. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Hai-Tao Zhu
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Hai Dian District, Beijing, China
| | - Xiao-Yan Zhang
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Hai Dian District, Beijing, China
| | - Yan-Jie Shi
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Hai Dian District, Beijing, China
| | - Xiao-Ting Li
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Hai Dian District, Beijing, China
| | - Ying-Shi Sun
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Hai Dian District, Beijing, China
| |
Collapse
|
15
|
Recent Advances in Functional MRI to Predict Treatment Response for Locally Advanced Rectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Zhao L, Liang M, Yang Y, Zhao X, Zhang H. Histogram models based on intravoxel incoherent motion diffusion-weighted imaging to predict nodal staging of rectal cancer. Eur J Radiol 2021; 142:109869. [PMID: 34303149 DOI: 10.1016/j.ejrad.2021.109869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To develop a model based on histogram parameters derived from intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for predicting the nodal staging of rectal cancer (RC). MATERIAL AND METHODS A total of 95 RC patients who underwent direct surgical resection were enrolled in this prospective study. The nodal staging on conventional magnetic resonance imaging (MRI) was evaluated according to the short axis diameter and morphological characteristics. Histogram parameters were extracted from apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) maps. Multivariate binary logistic regression analysis was conducted to establish models for predicting nodal staging among all patients and those underestimated on conventional MRI. RESULTS The combined model based on multiple maps demonstrated superior diagnostic performance to single map models, with an area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy of 0.959, 94.3%, 88.3%, and 90.5%, respectively. The AUC of the combined model was significantly higher than that of the conventional nodal staging (P < 0.001). Additionally, 85.0% of the underestimated patients had suspicious lymph nodes with 5-8 mm short-axis diameter. The histogram model for these subgroups of patients showed good diagnostic efficacy with an AUC, sensitivity, specificity, and accuracy of 0.890, 100%, 75%, and 80.5%. CONCLUSION The histogram model based on IVIM-DWI could improve the diagnostic performance of nodal staging of RC. In addition, histogram parameters of IVIM-DWI may help to reduce the uncertainty of nodal staging in underestimated patients on conventional MRI.
Collapse
Affiliation(s)
- Li Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Meng Liang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yang Yang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Hongmei Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
17
|
Xu Q, Xu Y, Sun H, Jiang T, Xie S, Ooi BY, Ding Y. MRI Evaluation of Complete Response of Locally Advanced Rectal Cancer After Neoadjuvant Therapy: Current Status and Future Trends. Cancer Manag Res 2021; 13:4317-4328. [PMID: 34103987 PMCID: PMC8179813 DOI: 10.2147/cmar.s309252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Complete tumor response can be achieved in a certain proportion of patients with locally advanced rectal cancer, who achieve maximal response to neoadjuvant therapy (NAT). For these patients, a watch-and-wait (WW) or nonsurgical strategy has been proposed and is becoming widely practiced in order to avoid unnecessary surgical complications. Therefore, a non-invasive, reliable diagnostic tool for accurately evaluating complete tumor response is needed. Magnetic resonance imaging (MRI) plays a crucial role in both primary staging and restaging tumor response to NAT in rectal cancer without relying on resected specimen. In recent years, numerous efforts have been made to research the value of MRI in predicting and evaluating complete response in rectal cancer. Current MRI evaluation is mainly based on morphological and functional images. Morphologic MRI yields high soft tissue resolution, multiplanar images, and provides detailed depictions of rectal cancer and its surrounding structures. Functional MRI may help to distinguish residual tumor from fibrosis, therefore improving the diagnostic performance of morphologic MRI in identifying complete tumor response. Both morphologic and functional MRI have several promising parameters that may help accurately evaluate and/or predict complete response of rectal cancer. However, these parameters still have limitations and the results remain inconsistent. Recent development of new techniques, such as textural analysis, radiomics analysis and deep learning, demonstrate great potential based on MRI-derived parameters. This article aimed to review and help better understand the strengths, limitations, and future trends of these MRI-derived methods in evaluating complete response in rectal cancer.
Collapse
Affiliation(s)
- Qiaoyu Xu
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yanyan Xu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Hongliang Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Tao Jiang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Bee Yen Ooi
- Department of Radiology, Hospital Seberang Jaya, Penang, Malaysia
| | - Yi Ding
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Zhao L, Liang M, Yang Y, Zhang H, Zhao X. Prediction of false-negative extramural venous invasion in patients with rectal cancer using multiple mathematical models of diffusion-weighted imaging. Eur J Radiol 2021; 139:109731. [PMID: 33905979 DOI: 10.1016/j.ejrad.2021.109731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the parameters from mono-exponential, stretched-exponential, and intravoxel incoherent motion diffusion-weighted imaging (DWI) models for evaluating false-negative extramural venous invasion (EMVI) on conventional magnetic resonance imaging (MRI) in rectal cancer patients. MATERIAL AND METHODS Seventy-two rectal cancer patients with negative EMVI on conventional MRI who underwent direct surgical resection were enrolled in this prospective study. The apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), distributed diffusion coefficient (DDC), and water molecular diffusion heterogeneity index (α) values within the whole tumor were obtained to identify the patients with false-negative EMVI. Receiver operating characteristic (ROC) curves were applied to evaluate the diagnostic performance. Multivariate binary logistic regression analysis was conducted to determine the independent risk factors. RESULTS The DDC, D*, f, and α values were significantly different in the EMVI-positive and EMVI-negative groups (P = 0.018, and P < 0.001, respectively). The D*, f, and α values demonstrated good diagnostic performance with area under the ROC curve (AUC) of 0.861, 0.824, and 0.854, respectively. The combined model, including D*, α, and tumor location, proved superior diagnostic performance with the AUC, sensitivity, specificity, and accuracy of 0.971, 0.917, 0.967, and 0.931, respectively. The AUC of the combined model was significantly higher than that of the D*, f, and DDC (P = 0.004, 0.045, and 0.002, respectively). CONCLUSION Multi-b-value DWI may be a potential tool for identifying micro-EMVI in rectal cancer. The combination of DWI parameters and tumor location leads to superior diagnostic performance.
Collapse
Affiliation(s)
- Li Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Meng Liang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Yang Yang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Hongmei Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
19
|
Chen K, She HL, Wu T, Hu F, Li T, Luo LP. Comparison of percentage changes in quantitative diffusion parameters for assessing pathological complete response to neoadjuvant therapy in locally advanced rectal cancer: a meta-analysis. Abdom Radiol (NY) 2021; 46:894-908. [PMID: 32975646 DOI: 10.1007/s00261-020-02770-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 02/01/2023]
Abstract
PURPOSE To evaluate and compare the diagnostic performance of percentage changes in apparent diffusion coefficient (∆ADC%) and slow diffusion coefficient (∆D%) for assessing pathological complete response (pCR) to neoadjuvant therapy in patients with locally advanced rectal cancer (LARC). METHODS A systematic search in PubMed, EMBASE, the Web of Science, and the Cochrane Library was performed to retrieve related original studies. For each parameter (∆ADC% and ∆D%), we pooled the sensitivity, specificity and calculated the area under summary receiver operating characteristic curve (AUROC) values. Meta-regression and subgroup analyses were performed to explore heterogeneity among the studies on ∆ADC%. RESULTS 15 original studies (804 patients with 805 lesions, 15 studies on ∆ADC%, 4 of the studies both on ∆ADC% and ∆D%) were included. pCR was observed in 213 lesions (26.46%). For the assessment of pCR, the pooled sensitivity, specificity and AUROC of ∆ADC% were 0.83 (95% confidence intervals [CI] 0.76, 0.89), 0.74 (95% CI 0.66, 0.81), 0.87 (95% CI 0.83, 0.89), and ∆D% were 0.70 (95% CI 0.52, 0.84), 0.81 (95% CI 0.65, 0.90), 0.81 (95% CI 0.77, 0.84), respectively. In the four studies on the both metrics, ∆ADC% yielded an equivalent diagnostic performance (AUROC 0.80 [95% CI 0.76, 0.83]) to ∆D%, but lower than in the studies (n = 11) only on ∆ADC% (AUROC 0.88 [95% CI 0.85, 0.91]). Meta-regression and subgroup analyses showed no significant factors affecting heterogeneity. CONCLUSIONS Our meta-analysis confirms that ∆ADC% could reliably evaluate pCR in patients with LARC after neoadjuvant therapy. ∆D% may not be superior to ∆ADC%, which deserves further investigation.
Collapse
Affiliation(s)
- Kai Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Street, Guangzhou, 510630, China
- Department of Radiology, Affiliated Hospital of Xiangnan University (Clinical College), 25 Renmin West Road, Chenzhou, 423000, China
| | - Hua-Long She
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Street, Guangzhou, 510630, China
- Department of Radiology, Affiliated Hospital of Xiangnan University (Clinical College), 25 Renmin West Road, Chenzhou, 423000, China
| | - Tao Wu
- Department of Radiology, Affiliated Hospital of Xiangnan University (Clinical College), 25 Renmin West Road, Chenzhou, 423000, China
| | - Fang Hu
- College of Medical Imaging and Medical Examination, Xiangnan University, 25 Renmin West Road, Chenzhou, 423000, China
| | - Tao Li
- College of Medical Imaging and Medical Examination, Xiangnan University, 25 Renmin West Road, Chenzhou, 423000, China.
| | - Liang-Ping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Street, Guangzhou, 510630, China.
| |
Collapse
|
20
|
Di Re AM, Sun Y, Sundaresan P, Hau E, Toh JWT, Gee H, Or M, Haworth A. MRI radiomics in the prediction of therapeutic response to neoadjuvant therapy for locoregionally advanced rectal cancer: a systematic review. Expert Rev Anticancer Ther 2021; 21:425-449. [PMID: 33289435 DOI: 10.1080/14737140.2021.1860762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The standard of care for locoregionally advanced rectal cancer is neoadjuvant therapy (NA CRT) prior to surgery, of which 10-30% experience a complete pathologic response (pCR). There has been interest in using imaging features, also known as radiomics features, to predict pCR and potentially avoid surgery. This systematic review aims to describe the spectrum of MRI studies examining high-performing radiomic features that predict NA CRT response.Areas covered: This article reviews the use of pre-therapy MRI in predicting NA CRT response for patients with locoregionally advanced rectal cancer (T3/T4 and/or N1+). The primary outcome was to identify MRI radiomic studies; secondary outcomes included the power and the frequency of use of radiomic features.Expert opinion: Advanced models incorporating multiple radiomics categories appear to be the most promising. However, there is a need for standardization across studies with regards to; the definition of NA CRT response, imaging protocols, and radiomics features incorporated. Further studies are needed to validate current radiomics models and to fully ascertain the value of MRI radiomics in the response prediction for locoregionally advanced rectal cancer.
Collapse
Affiliation(s)
- Angelina Marina Di Re
- Colorectal Department, Westmead Hospital, Cnr Hawkesbury, Westmead, NSW.,School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Yu Sun
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Purnima Sundaresan
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Eric Hau
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - James Wei Tatt Toh
- Colorectal Department, Westmead Hospital, Cnr Hawkesbury, Westmead, NSW.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Harriet Gee
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Michelle Or
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia
| | - Annette Haworth
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
21
|
Hu H, Jiang H, Wang S, Jiang H, Zhao S, Pan W. 3.0 T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer. Abdom Radiol (NY) 2021; 46:134-143. [PMID: 32462386 PMCID: PMC7864832 DOI: 10.1007/s00261-020-02594-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose The purpose of this study was to determine the diagnostic performance of intravoxel incoherent motion (IVIM) on assessing response to neoadjuvant chemoradiation (nCRT) in patients with Locally Advanced Rectal Cancer (LARC). Methods 50 patients with rectal cancer who underwent magnetic resonance (MR) imaging before and after nCRT, the values of pre-nCRT and post-nCRT IVIM-DWI parameters apparent diffusion coefficient (ADC), diffusion coefficient (D), false diffusion coefficient (D*), and perfusion fraction (f), together with the percentage changes (∆% parametric value) induced by nCRT were calculated. According to the patient's response to nCRT, the patients were divided into pathological complete response (pCR) and non-pCR groups, Good Response (GR) group and Poor Response (PR) group, and the above values were compared between different groups. Univariate and multiple logistic regression analysis were done to investigate the relation between different parameters and patient nCRT. Draw ROC curve according to sensitivity and specificity, and compare its diagnostic efficacy. Results There were no significant differences in the baseline data of 50 patients. After nCRT, the ADC and D values for LARC increased significantly (all p < 0.05). The pCR group (n = 9) had higher preD*, pref, postD*, ∆%ADC and ∆%D values than the non-pCR group (n = 41) (all p < 0.05). The GR group (n = 17) exhibited higher post D, ∆%ADC and ∆%D values than the PR group (n = 33) (all p < 0.05). From the results of Logistic regression analysis found that ∆%ADC and ∆%D were significantly correlated with patients' response to nCRT. Based on ROC analysis, ∆%D had a higher area under the curve value than ∆%ADC (p = 0.009) in discriminating the pCR from non-pCR groups. Conclusions IVIM-DWI technology may be helpful in identifying the pCR and GR patients to nCRT for LARC.
Collapse
Affiliation(s)
- Hongbo Hu
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Song Wang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, China
| | - Hao Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenbin Pan
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
22
|
Yang L, Xia C, Zhao J, Zhou X, Wu B. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Eur J Radiol 2020; 136:109504. [PMID: 33421885 DOI: 10.1016/j.ejrad.2020.109504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate the role of IVIM and diffusion kurtosis imaging (DKI) in identifying pathologic complete response (pCR) and T stages after neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC). METHOD Forty-two patients with biopsy-proven rectal adenocarcinoma, who underwent both pre-and post-CRT MRI with IVIM and DKI sequences on a 3 T scanner, were enrolled prospectively. According to the pathologic ypTNM stages and tumor regression grade (TRG), patients were grouped into pCR (TRG0) and non-pCR (TRG1-3) groups and low T stage (ypT0-2) and high T stage (ypT3-4) groups. IVIM parameters (the slow diffusion coefficient [D], fast diffusion coefficient [D*], perfusion fraction [f]), DKI parameters (mean diffusivity [MD] and mean kurtosis [MK]), and mono-exponential ADC were calculated and analyzed between groups. RESULTS The pCR group had significantly higher post-CRT ADC, D*, f, and MD values than non-pCR group, and higher percent changes in the ADC, f, and MD values (all P < 0.05). The post-CRT MD values yielded the highest AUC (0.788) with higher sensitivity than post-ADC values (82.9 % vs. 77.1 %, respectively). Post-CRT ADC and MD values and the percent changes in the ADC and MD values were also negatively correlated with TRG (all P < 0.05). Besides, negative correlations were found among the pre-CRT MD, post-CRT ADC, D, f, and MD values and the ypT stages (all P < 0.05). CONCLUSIONS Both IVIM and DKI parameters could provide more information when evaluating pCR and T stages after nCRT. In particular, the diagnostic performance of the MD values was more valuable than ADC values in being able to determine pCR.
Collapse
Affiliation(s)
- Lanqing Yang
- From the Departments of Radiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan, 610041, PR China
| | - Chunchao Xia
- From the Departments of Radiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan, 610041, PR China
| | - Jin Zhao
- From the Departments of Radiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan, 610041, PR China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, PR China
| | - Bing Wu
- From the Departments of Radiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
23
|
The Effect of Rectal Distention on the Intravoxel Incoherent Motion Parameters: Using Sonography Transmission Gel. J Comput Assist Tomogr 2020; 44:759-765. [DOI: 10.1097/rct.0000000000001083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Liu B, Ma WL, Zhang GW, Sun Z, Wei MQ, Hou WH, Hou BX, Wei LC, Huan Y. Potentialities of multi-b-values diffusion-weighted imaging for predicting efficacy of concurrent chemoradiotherapy in cervical cancer patients. BMC Med Imaging 2020; 20:97. [PMID: 32799809 PMCID: PMC7429470 DOI: 10.1186/s12880-020-00496-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To testify whether multi-b-values diffusion-weighted imaging (DWI) can be used to ultra-early predict treatment response of concurrent chemoradiotherapy (CCRT) in cervical cancer patients and to assess the predictive ability of concerning parameters. METHODS Fifty-three patients with biopsy proved cervical cancer were retrospectively recruited in this study. All patients underwent pelvic multi-b-values DWI before and at the 3rd day during treatment. The apparent diffusion coefficient (ADC), true diffusion coefficient (Dslow), perfusion-related pseudo-diffusion coefficient (Dfast), perfusion fraction (f), distributed diffusion coefficient (DDC) and intravoxel diffusion heterogeneity index(α) were generated by mono-exponential, bi-exponential and stretched exponential models. Treatment response was assessed based on Response Evaluation Criteria in Solid Tumors (RECIST v1.1) at 1 month after the completion of whole CCRT. Parameters were compared using independent t test or Mann-Whitney U test as appropriate. Receiver operating characteristic (ROC) curves was used for statistical evaluations. RESULTS ADC-T0 (p = 0.02), Dslow-T0 (p < 0.01), DDC-T0 (p = 0.03), ADC-T1 (p < 0.01), Dslow-T1 (p < 0.01), ΔADC (p = 0.04) and Δα (p < 0.01) were significant lower in non-CR group patients. ROC analyses showed that ADC-T1 and Δα exhibited high prediction value, with area under the curves of 0.880 and 0.869, respectively. CONCLUSIONS Multi-b-values DWI can be used as a noninvasive technique to assess and predict treatment response in cervical cancer patients at the 3rd day of CCRT. ADC-T1 and Δα can be used to differentiate good responders from poor responders.
Collapse
Affiliation(s)
- Bing Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Wan-Ling Ma
- Department of radiology, Longgang District People's Hospital, Shenzhen, Guangdong, P. R. China, 518172
| | - Guang-Wen Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Zhen Sun
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Meng-Qi Wei
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Wei-Huan Hou
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Bing-Xin Hou
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Li-Chun Wei
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032
| | - Yi Huan
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, P. R. China, 710032.
| |
Collapse
|
25
|
López-Campos F, Martín-Martín M, Fornell-Pérez R, García-Pérez JC, Die-Trill J, Fuentes-Mateos R, López-Durán S, Domínguez-Rullán J, Ferreiro R, Riquelme-Oliveira A, Hervás-Morón A, Couñago F. Watch and wait approach in rectal cancer: Current controversies and future directions. World J Gastroenterol 2020; 26:4218-4239. [PMID: 32848330 PMCID: PMC7422545 DOI: 10.3748/wjg.v26.i29.4218] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
According to the main international clinical guidelines, the recommended treatment for locally-advanced rectal cancer is neoadjuvant chemoradiotherapy followed by surgery. However, doubts have been raised about the appropriate definition of clinical complete response (cCR) after neoadjuvant therapy and the role of surgery in patients who achieve a cCR. Surgical resection is associated with significant morbidity and decreased quality of life (QoL), which is especially relevant given the favourable prognosis in this patient subset. Accordingly, there has been a growing interest in alternative approaches with less morbidity, including the organ-preserving watch and wait strategy, in which surgery is omitted in patients who have achieved a cCR. These patients are managed with a specific follow-up protocol to ensure adequate cancer control, including the early identification of recurrent disease. However, there are several open questions about this strategy, including patient selection, the clinical and radiological criteria to accurately determine cCR, the duration of neoadjuvant treatment, the role of dose intensification (chemotherapy and/or radiotherapy), optimal follow-up protocols, and the future perspectives of this approach. In the present review, we summarize the available evidence on the watch and wait strategy in this clinical scenario, including ongoing clinical trials, QoL in these patients, and the controversies surrounding this treatment approach.
Collapse
Affiliation(s)
- Fernando López-Campos
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | | | - Roberto Fornell-Pérez
- Department of Radiology, Hospital Universitario de Basurto, Bilbao 48013, Vizcaya, Spain
| | | | - Javier Die-Trill
- Department of Surgery, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Raquel Fuentes-Mateos
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Sergio López-Durán
- Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - José Domínguez-Rullán
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Reyes Ferreiro
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | | | - Asunción Hervás-Morón
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid 28003, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Universidad Europea de Madrid (UEM), Madrid 28223, Spain
| |
Collapse
|
26
|
Li Y, Li X, Ren X, Ye Z. Assessment of the aggressiveness of rectal cancer using quantitative parameters derived from dual-energy computed tomography. Clin Imaging 2020; 68:136-142. [PMID: 32599443 DOI: 10.1016/j.clinimag.2020.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the value of quantitative parameters derived from dual-energy computed tomography (DECT) in assessing the aggressiveness of rectal cancer. MATERIALS AND METHODS Seventy-eight patients with rectal cancers confirmed by pathology underwent contrasted DECT scans. The normalized iodine concentration (NIC) and normalized water concentration (NWC) of the tumor against artery and tumor sizes were measured. The quantitative parameters were compared and statistically analyzed between subgroups based on the following prognostic factors: pretreatment carcinoembryonic antigen (CEA) levels, mesorectal fascia (MRF) status, T stage (T1,2 and T3,4), N stage (N0 and N1,2), tumor differentiation grade (poor differentiation, poor-moderate differentiation, moderate differentiation, moderate-well differentiation, well differentiation), and extramural venous invasion. RESULTS The differences of NIC values between MRF-free and MRF-invaded groups (P = 0.042), between T2 and T3-4 stage groups (P = 0.044), between N0 and N+ (N1, 2) groups (P = 0.036), between poor differentiation group and other differentiated groups (P < 0.05)were respectively significant. No significant differences of NIC values existed between CEA level or extramural venous invasion subgroups. For NWC values and tumor sizes, there were no significant differences between subgroups based on the prognostic factors above all. CONCLUSIONS Higher NIC value is associated with a more aggressive tumor character. NIC value may have the potential to become an imaging biomarker of tumor aggressiveness.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Xubin Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China.
| | - Xiaoyi Ren
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China.
| |
Collapse
|
27
|
Zhang H, Zhou Y, Li J, Zhang P, Li Z, Guo J. The value of DWI in predicting the response to synchronous radiochemotherapy for advanced cervical carcinoma: comparison among three mathematical models. Cancer Imaging 2020; 20:8. [PMID: 31937371 PMCID: PMC6961298 DOI: 10.1186/s40644-019-0285-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background Diffusion weighted imaging(DWI) mode mainly includes intravoxel incoherent motion (IVIM), stretched exponential model (SEM) and Gaussian diffusion model, but it is still unclear which mode is the most valuable in predicting the response to radiochemotherapy for cervical cancer. This study aims to compare the values of three mathematical models in predicting the response to synchronous radiochemotherapy for cervical cancer. Methods Eighty-four patients with cervical cancer were enrolled into this study. They underwent DWI examination by using 12 b-values prior to treatment. The imaging parameters were calculated on the basis of IVIM, SEM and Gaussian diffusion models respectively. The imaging parameters derived from three mathematical modes were compared between responders and non-responders groups. The repeatability of each imaging parameter was assessed. Results The ADC, D or DDC value was lower in responders than in non-responders groups (P = 0.03, 0.02, 0.01). The α value was higher in responders group than in non-responders group (P = 0.03). DDC had the largest area under curves (AUC) (=0.948) in predicting the response to treatment. The imaging parameters derived from SEM had better repeatability (CCC for DDC and α were 0.969 and 0.924 respectively) than that derived from other exponential models. Conclusion Three exponential modes of DWI are useful for predicting the response to radiochemotherapy for cervical cancer, and SEM may be used as a potential optimal model for predicting treatment effect.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Avenue, Zhengzhou, 450014, Henan Province, China
| | - Yuyang Zhou
- Department of Cardiac Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan Province, China
| | - Jie Li
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Avenue, Zhengzhou, 450014, Henan Province, China
| | - Pengjuan Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Avenue, Zhengzhou, 450014, Henan Province, China
| | - Zhenzhen Li
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Avenue, Zhengzhou, 450014, Henan Province, China
| | - Junwu Guo
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Avenue, Zhengzhou, 450014, Henan Province, China.
| |
Collapse
|
28
|
Ianuş A, Santiago I, Galzerano A, Montesinos P, Loução N, Sanchez-Gonzalez J, Alexander DC, Matos C, Shemesh N. Higher-order diffusion MRI characterization of mesorectal lymph nodes in rectal cancer. Magn Reson Med 2019; 84:348-364. [PMID: 31850546 DOI: 10.1002/mrm.28102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE Mesorectal lymph node staging plays an important role in treatment decision making. Here, we explore the benefit of higher-order diffusion MRI models accounting for non-Gaussian diffusion effects to classify mesorectal lymph nodes both 1) ex vivo at ultrahigh field correlated with histology and 2) in vivo in a clinical scanner upon patient staging. METHODS The preclinical investigation included 54 mesorectal lymph nodes, which were scanned at 16.4 T with an extensive diffusion MRI acquisition. Eight diffusion models were compared in terms of goodness of fit, lymph node classification ability, and histology correlation. In the clinical part of this study, 10 rectal cancer patients were scanned with diffusion MRI at 1.5 T, and 72 lymph nodes were analyzed with Apparent Diffusion Coefficient (ADC), Intravoxel Incoherent Motion (IVIM), Kurtosis, and IVIM-Kurtosis. RESULTS Compartment models including restricted and anisotropic diffusion improved the preclinical data fit, as well as the lymph node classification, compared to standard ADC. The comparison with histology revealed only moderate correlations, and the highest values were observed between diffusion anisotropy metrics and cell area fraction. In the clinical study, the diffusivity from IVIM-Kurtosis was the only metric showing significant differences between benign (0.80 ± 0.30 μm2 /ms) and malignant (1.02 ± 0.41 μm2 /ms, P = .03) nodes. IVIM-Kurtosis also yielded the largest area under the receiver operating characteristic curve (0.73) and significantly improved the node differentiation when added to the standard visual analysis by experts based on T2 -weighted imaging. CONCLUSION Higher-order diffusion MRI models perform better than standard ADC and may be of added value for mesorectal lymph node classification in rectal cancer patients.
Collapse
Affiliation(s)
- Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Ines Santiago
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Nova Medical School, Lisbon, Portugal
| | - Antonio Galzerano
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | | | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Celso Matos
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|