1
|
Liang L, Pang JS, Gao RZ, Que Q, Wu YQ, Peng JB, Bai XM, Qin Q, Tang QQ, Li LP, He Y, Yang H. Development and validation of a combined radiomic and clinical model based on contrast-enhanced ultrasound for preoperative prediction of CK19-positive hepatocellular carcinoma. Abdom Radiol (NY) 2025:10.1007/s00261-025-04799-x. [PMID: 39907719 DOI: 10.1007/s00261-025-04799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE We aimed to develop and validate a combined model integrating radiomic features derived from Contrast-Enhanced Ultrasound (CEUS) images and clinical parameters for preoperative prediction of CK19-positive status in hepatocellular carcinoma (HCC). METHODS A total of 434 patients who underwent CEUS and surgical resection from January 2020 to December 2023 were included. Patients were randomly divided into a training cohort (n = 304) and a validation cohort (n = 130). Radiomic features were extracted from multiphase CEUS images, including two-dimensional ultrasound (US), arterial, portal venous, and delayed phases, and combined to derive a Radscore model. Subsequently, a Combined Model was constructed using the Radscore and clinical parameters. Model performance was assessed using calibration, discrimination, and clinical utility. RESULTS Multivariate logistic regression analysis identified Radscore (OR = 10.054, 95% CI: 5.931-19.120, p < 0.001) and AFP levels > 200 ng/mL (OR = 5.027, 95% CI: 2.089-12.784, p < 0.001) as significant predictors in the combined model. The AUC (Area Under the Curve) for the Combined Model was 0.954 in the training cohort and 0.927 in the validation cohort, compared to 0.939 and 0.917 for the Radscore Model alone. Calibration curves demonstrated strong concordance between predicted and actual outcomes. Decision curve analysis (DCA) showed that both the Radscore Model and the Combined Model exhibited good net benefits across a wide range of threshold values in both the training and validation cohorts. CONCLUSION The Radscore based on CEUS, combined with the serum markers AFP > 200 ng/L to construct a Combined Model, shows good predictive performance for CK19 + hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Li Liang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jin-Shu Pang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Rui-Zhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiao Que
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yu-Quan Wu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jin-Bo Peng
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiu-Mei Bai
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiong Qin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quan-Quan Tang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li-Peng Li
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor/Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Gu Y, Jin K, Gao S, Sun W, Yin M, Han J, Zhang Y, Wang X, Zeng M, Sheng R. A preoperative nomogram with MR elastography in identifying cytokeratin 19 status of hepatocellular carcinoma. Br J Radiol 2025; 98:210-219. [PMID: 39657213 DOI: 10.1093/bjr/tqae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVES Developing a nomogram integrating MR elastography (MRE)-based tumour stiffness and contrast-enhanced MRI in identifying cytokeratin 19 (CK19) status of hepatocellular carcinoma (HCC) preoperatively. METHODS One hundred twenty CK19-negative HCC and 39 CK19-positive HCC patients undergoing curative resection were prospectively evaluated. All received MRE and contrast-enhanced MRI. Clinical and MRI tumour features were compared. Univariate and multivariate logistic regression analyses identified independent predictors for CK19 status. Receiver operating characteristic curve analysis evaluated diagnostic performance. A nomogram was established with calibration and decision curve analysis. RESULTS Multivariate analysis revealed serum alpha fetoprotein (AFP) level (P < 0.001), targetoid appearance (P = 0.007), and tumour stiffness (P = 0.011) as independent significant variables for CK19-positive HCC. The area under the curve for tumour stiffness was 0.729 (95% confidence interval [CI] 0.653, 0.796). Combining these features, a nomogram-based model achieved an area under the curve value of 0.844 (95% CI 0.778, 0.897), with sensitivity, specificity, and accuracy of 76.92%, 85.00%, and 83.02%, respectively. Calibration and decision curve analyses demonstrated good agreement and optimal net benefit. CONCLUSIONS MRE-measured tumour stiffness aids in predicting CK19 status in HCC. The combined nomogram incorporating tumour stiffness, targetoid appearance, and AFP provides a reliable biomarker for CK19-positive HCC. ADVANCES IN KNOWLEDGE MRE-measured tumour stiffness can be used to predict CK19 status in HCC. The nomogram, which integrates tumour stiffness, targetoid appearance, and AFP levels, has shown improved diagnostic performance. It offers a comprehensive preoperative tool for clinical decision-making, further advancing personalized treatment strategies in HCC management.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kaipu Jin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai 201104, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Minyan Yin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Jing Han
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Xiaolin Wang
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ruofan Sheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
3
|
Taher MY, Hassouna E, El Hadidi A, El-aassar O, Fathy Bakosh M, Said Shater M. Serum CYFRA 21-1 and CK19-2G2 as Predictive Biomarkers of Response to Transarterial Chemoembolization in Hepatitis C-related Hepatocellular Carcinoma Among Egyptians: A Prospective Study. J Clin Exp Hepatol 2025; 15:102405. [PMID: 39309220 PMCID: PMC11414665 DOI: 10.1016/j.jceh.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Background and aim Cytokeratin 19 (CK19)-positive HCC is a subtype of hepatocellular carcinoma (HCC) with poor biological behavior and resistance to different treatments including transarterial chemoembolization (TACE). The current study aimed to investigate the predictive value of serum CK 19 fragment 21-1 (CYFRA 21-1) and serum CK 19 fragment 2G2 (CK 19-2G2) for TACE response in patients with hepatitis C virus (HCV)-related HCC. Methods This prospective study assessed the pretreatment serum CYFRA 21-1 and CK 19-2G2 levels in 64 patients with HCV-related naïve HCC who underwent TACE to predict 1-year overall survival (OS), progression-free survival (PFS), and objective response rate (ORR). Additionally, 40 healthy individuals were included as controls. Pretreatment alpha-fetoprotein (AFP) was also measured for comparison. Results After exclusions, 60 patients completed TACE sessions, and the 1-year OS was 52%, and ORR post TACE was 71.8%. HCC patients with elevated levels of CYFRA 21-1, CK 19-2G2, or baseline AFP measuring ≥400 ng/ml have decreased 1-year OS and PFS after TACE. Serum CK19-2G2 was an independent predictor of 1-year OS using multivariate hazard regression analysis. Pretreatment normal serum CYFRA 21-1 levels (P = 0.047), serum AFP measuring <400 ng/ml (P = 0.016), and lower AST (P = 0.002) were independent predictors of ORR to TACE using multivariate logistic regression analysis. The predictive ability of pretreatment elevated serum CYFRA 21-1, AFP measuring ≥400 ng/ml, AFP + CYFRA 21-1, AFP + CK 19-2G2, or AFP + CYFRA 21-1+ CK19-2G2 to predict nonresponse (progressive disease) to TACE (area under the curve = 0.795, 0.690, 0.830, 0.725, and 0.850, respectively). Conclusions This study demonstrated that incorporating the measurement of serum CYFRA 21-1 or CK19-2G2 levels, along with AFP, during the initial diagnosis can aid in predicting poor 1-year OS, PFS, and ORR to TACE in patients with HCV-related HCC.
Collapse
Affiliation(s)
- Mohamed Y. Taher
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| | - Ehab Hassouna
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| | - Abeer El Hadidi
- Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Egypt
| | - Omar El-aassar
- Diagnostic and Interventional Radiology, Faculty of Medicine, Alexandria University, Egypt
| | - Mohamed Fathy Bakosh
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| | - Mohamed Said Shater
- Hepatobiliary Unit, Internal Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
4
|
Yin Y, Zhang W, Chen Y, Zhang Y, Shen X. Radiomics predicting immunohistochemical markers in primary hepatic carcinoma: Current status and challenges. Heliyon 2024; 10:e40588. [PMID: 39660185 PMCID: PMC11629216 DOI: 10.1016/j.heliyon.2024.e40588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/28/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Primary hepatic carcinoma, comprising hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined hepatocellular cholangiocarcinoma (cHCC-CCA), ranks among the most common malignancies worldwide. The heterogeneity of tumors is a primary factor impeding the efficacy of treatments for primary hepatic carcinoma. Immunohistochemical markers may play a potential role in characterizing this heterogeneity, providing significant guidance for prognostic analysis and the development of personalized treatment plans for the patients with primary hepatic carcinoma. Currently, primary hepatic carcinoma immunohistochemical analysis primarily relies on invasive techniques such as surgical pathology and tissue biopsy. Consequently, the non-invasive preoperative acquisition of primary hepatic carcinoma immunohistochemistry has emerged as a focal point of research. As an emerging non-invasive diagnostic technique, radiomics possesses the potential to extensively characterize tumor heterogeneity. It can predict immunohistochemical markers associated with hepatocellular carcinoma preoperatively, demonstrating significant auxiliary utility in clinical guidance. This article summarizes the progress in using radiomics to predict immunohistochemical markers in primary hepatic carcinoma, addresses the challenges faced in this field of study, and anticipates its future application prospects.
Collapse
Affiliation(s)
- Yunqing Yin
- The Second Clinical Medical College, Jinan University, China
| | - Wei Zhang
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yanhui Chen
- Department of Intervention, Shenzhen Bao'an People's Hospital, Shenzhen, 518100, Guangdong, China
| | - Yanfang Zhang
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xinying Shen
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
5
|
Stocker D, Hectors S, Marinelli B, Carbonell G, Bane O, Hulkower M, Kennedy P, Ma W, Lewis S, Kim E, Wang P, Taouli B. Prediction of hepatocellular carcinoma response to radiation segmentectomy using an MRI-based machine learning approach. Abdom Radiol (NY) 2024:10.1007/s00261-024-04606-z. [PMID: 39460801 DOI: 10.1007/s00261-024-04606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE To evaluate the value of pre-treatment MRI-based radiomics in patients with hepatocellular carcinoma (HCC) for the prediction of response to Yttrium 90 radiation segmentectomy. METHODS This retrospective study included 154 patients (38 female; mean age 66.8 years) who underwent contrast-enhanced MRI prior to radiation segmentectomy. Radiomics features were manually extracted on volumes of interest on post-contrast T1-weighted images at the portal venous phase (PVP). Tumor-based response assessment was evaluated 6 months post-treatment using mRECIST. A logistic regression model was used to predict binary response outcome [complete response at 6 months with no-re-treatment (response group) against the rest (non-response group, including partial response, progressive disease, stable disease and complete response after re-treatment within 6 months after radiation segmentectomy) using baseline clinical parameters and radiomics features. We accessed the value of different sets of predictors using cross-validation technique. AUCs were compared using DeLong tests. RESULTS A total 168 HCCs (mean size 2.9 ± 1.7 cm) were analyzed in 154 patients. The response group consisted of 113 HCCs and the non-response group of 55 HCCs. Baseline clinical parameters (AUC 0.531; sensitivity, 0.781; specificity, 0.279; positive predictive value (PPV), 0.345; negative predictive value (NPV), 0.724) and AFP (AUC 0.632; sensitivity, 0.833; specificity, 0.466; PPV, 0.432; NPV, 0.851) showed poor performance for response prediction. The model using a combination of radiomics features and clinical parameters/AFP showed the best performance (AUC 0.736; sensitivity, 0.706; specificity, 0.662; PPV 0.504; NPV, 0.822), significantly better than the clinical model (p < 0.001) or AFP alone (p < 0.001). CONCLUSION The combination of radiomics features from pre-treatment MRI with clinical parameters and AFP showed fair performance for predicting HCC response to radiation segmentectomy, better than that of AFP. These results need further validation.
Collapse
Affiliation(s)
- Daniel Stocker
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Stefanie Hectors
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brett Marinelli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guillermo Carbonell
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Hulkower
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Kennedy
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiping Ma
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward Kim
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pei Wang
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Brancato V, Cerrone M, Garbino N, Salvatore M, Cavaliere C. Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score. World J Gastroenterol 2024; 30:381-417. [PMID: 38313230 PMCID: PMC10835534 DOI: 10.3748/wjg.v30.i4.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) for different tasks related to the management of patients with hepatocellular carcinoma (HCC). However, its implementation in clinical practice is still far, with many issues related to the methodological quality of radiomic studies. AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score (RQS). METHODS A systematic literature search of PubMed, Google Scholar, and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023. The methodological quality of radiomic studies was assessed using the RQS tool. Spearman's correlation (ρ) analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies. The level of statistical signi-ficance was set at P < 0.05. RESULTS One hundred and twenty-seven articles were included, of which 43 focused on HCC prognosis, 39 on prediction of pathological findings, 16 on prediction of the expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 had multiple purposes. The mean RQS was 8 ± 6.22, and the corresponding percentage was 24.15% ± 15.25% (ranging from 0.0% to 58.33%). RQS was positively correlated with journal impact factor (IF; ρ = 0.36, P = 2.98 × 10-5), 5-years IF (ρ = 0.33, P = 1.56 × 10-4), number of patients included in the study (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features extracted in the study (ρ = 0.59, P < 4.59 × 10-13), and time of publication (ρ = -0.23, P < 0.0072). CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
Collapse
Affiliation(s)
- Valentina Brancato
- Department of Information Technology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Cerrone
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Nunzia Garbino
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Salvatore
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| |
Collapse
|
7
|
Zhang L, Chen J, Lai X, Zhang X, Xu J. Dual-phenotype hepatocellular carcinoma: correlation of MRI features with other primary hepatocellular carcinoma and differential diagnosis. Front Oncol 2024; 13:1253873. [PMID: 38273849 PMCID: PMC10808764 DOI: 10.3389/fonc.2023.1253873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Objectives Dual-phenotype hepatocellular carcinoma (DPHCC) is a rare subtype of hepatocellular carcinoma characterized by high invasiveness and a poor prognosis. The study aimed to compare clinical and magnetic resonance imaging (MRI) features of DPHCC with that of non-DPHCC and intrahepatic cholangiocarcinoma (ICC), exploring the most valuable features for diagnosing DPHCC. Methods A total of 208 cases of primary liver cancer, comprising 27 DPHCC, 113 non-DPHCC, and 68 ICC, who undergone gadoxetic acid-enhanced MRI, were enrolled in this study. The clinicopathologic and MRI features of all cases were summarized and analyzed. Univariate and multivariate logistic regression analyses were conducted to identify the predictors. Kaplan-Meier survival analysis was used to evaluate the 1-year and 2-year disease-free survival (DFS) and overall survival (OS) rates in the cohorts. Results In the multivariate analysis, the absence of tumor capsule (P = 0.046; OR = 9.777), persistent enhancement (P = 0.006; OR = 46.941), arterial rim enhancement (P = 0.011; OR = 38.211), and target sign on DWI image (P = 0.021; OR = 30.566) were identified as independently significant factors for distinguishing DPHCC from non-DPHCC. Serum alpha-fetoprotein (AFP) >20 μg/L (P = 0.036; OR = 67.097) and hepatitis B virus (HBV) positive (P = 0.020; OR = 153.633) were independent significant factors for predicting DPHCC compared to ICC. The 1-year and 2-year DFS rates for patients in the DPHCC group were 65% and 50%, respectively, whereas those for the non-DPHCC group were 80% and 60% and for the ICC group were 50% and 29%, respectively. The 1-year and 2-year OS rates for patients in the DPHCC group were 74% and 60%, respectively, whereas those for the non-DPHCC group were 87% and 70% and for the ICC group were 55% and 37%, respectively. Kaplan-Meier survival analysis revealed significant differences in the 1-year and 2-year OS rates between the DPHCC and non-DPHCC groups (P = 0.030 and 0.027) as well as between the DPHCC and ICC groups (P = 0.029 and 0.016). Conclusion In multi-parameter MRI, combining the assessment of the absence of tumor capsule, persistent enhancement, arterial rim enhancement, and target sign on DWI image with clinical data such as AFP >20 μg/L and HBV status may support in the diagnosis of DPHCC and differentiation from non-DPHCC and ICC. Accurate preoperative diagnosis facilitates the selection of personalized treatment options.
Collapse
Affiliation(s)
- Liqing Zhang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jing Chen
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Xufeng Lai
- Department of Radiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xiaoqian Zhang
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Jianfeng Xu
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| |
Collapse
|
8
|
Zhou L, Chen Y, Li Y, Wu C, Xue C, Wang X. Diagnostic value of radiomics in predicting Ki-67 and cytokeratin 19 expression in hepatocellular carcinoma: a systematic review and meta-analysis. Front Oncol 2024; 13:1323534. [PMID: 38234405 PMCID: PMC10792117 DOI: 10.3389/fonc.2023.1323534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Background Radiomics have been increasingly used in the clinical management of hepatocellular carcinoma (HCC), such as markers prediction. Ki-67 and cytokeratin 19 (CK-19) are important prognostic markers of HCC. Radiomics has been introduced by many researchers in the prediction of these markers expression, but its diagnostic value remains controversial. Therefore, this review aims to assess the diagnostic value of radiomics in predicting Ki-67 and CK-19 expression in HCC. Methods Original studies were systematically searched in PubMed, EMBASE, Cochrane Library, and Web of Science from inception to May 2023. All included studies were evaluated by the radiomics quality score. The C-index was used as the effect size of the performance of radiomics in predicting Ki-67and CK-19 expression, and the positive cutoff values of Ki-67 label index (LI) were determined by subgroup analysis and meta-regression. Results We identified 34 eligible studies for Ki-67 (18 studies) and CK-19 (16 studies). The most common radiomics source was magnetic resonance imaging (MRI; 25/34). The pooled C-index of MRI-based models in predicting Ki-67 was 0.89 (95% CI:0.86-0.92) in the training set, and 0.87 (95% CI: 0.82-0.92) in the validation set. The pooled C-index of MRI-based models in predicting CK-19 was 0.86 (95% CI:0.81-0.90) in the training set, and 0.79 (95% CI: 0.73-0.84) in the validation set. Subgroup analysis suggested Ki-67 LI cutoff was a significant source of heterogeneity (I 2 = 0.0% P>0.05), and meta-regression showed that the C-index increased as Ki-67 LI increased. Conclusion Radiomics shows promising diagnostic value in predicting positive Ki-67 or CK-19 expression. But lacks standardized guidelines, which makes the model and variables selection dependent on researcher experience, leading to study heterogeneity. Therefore, standardized guidelines are warranted for future research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023427953.
Collapse
Affiliation(s)
- Lu Zhou
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yiheng Chen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoyong Wu
- Shenzhen Hospital of Beijing University of Chinese Medicine, Shenzhen, China
| | - Chongxiang Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xihong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Qin Q, Deng LP, Chen J, Ye Z, Wu YY, Yuan Y, Song B. The value of MRI in predicting hepatocellular carcinoma with cytokeratin 19 expression: a systematic review and meta-analysis. Clin Radiol 2023; 78:e975-e984. [PMID: 37783612 DOI: 10.1016/j.crad.2023.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023]
Abstract
AIM To evaluate the overall diagnostic performance of magnetic resonance imaging (MRI), different image features, and different image analysis methods in predicting hepatocellular carcinoma (HCC) with cytokeratin 19 (CK19) expression. MATERIALS AND METHODS A systematic literature search was performed to identify studies using MRI to predict HCC with CK19 expression between 2012 and 2023. Data were extracted to calculate the pooled sensitivity and specificity. Overall diagnostic performance was assessed using areas under the summary receiver operating characteristic curve (AUC). Subgroup analyses were conducted for specific image features and according to image analysis methods (traditional image feature, radiomics, and combined methods). Z-test statistics was used to analyse the differences in diagnostic performance between combined and individual methods. RESULTS Eleven studies with 14 datasets (1,278 lesions from 1,264 patients) were included. The overall pooled sensitivity, specificity, and AUC with corresponding 95% confidence intervals were estimated to be 0.72 (0.55, 0.85), 0.88 (0.80, 0.93), and 0.89 (0.86, 0.91) for MRI in predicting HCC with CK19 expression. Combined methods had higher sensitivity than image feature methods (0.86 versus 0.54, p=0.001), with no difference in specificity (0.85 versus 0.87, p=0.641). There were no significant differences between radiomics and combined methods regarding sensitivity (p=0.796) and specificity (p=0.535), respectively. CONCLUSION MRI shows moderate sensitivity and high specificity in identifying HCC with CK19 expression. The application of radiomics can improve the sensitivity of MRI in identifying HCC with CK19 expression.
Collapse
Affiliation(s)
- Q Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L P Deng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - J Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Z Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Y Wu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - B Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
10
|
Chen Y, Chen J, Yang C, Wu Y, Wei H, Duan T, Zhang Z, Long L, Jiang H, Song B. Preoperative prediction of cholangiocyte phenotype hepatocellular carcinoma on contrast-enhanced MRI and the prognostic implication after hepatectomy. Insights Imaging 2023; 14:190. [PMID: 37962669 PMCID: PMC10645671 DOI: 10.1186/s13244-023-01539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) expressing cytokeratin (CK) 7 or CK19 has a cholangiocyte phenotype that stimulates HCC proliferation, metastasis, and sorafenib therapy resistance This study aims to noninvasively predict cholangiocyte phenotype-positive HCC and assess its prognosis after hepatectomy. METHODS Between January 2010 and May 2022, preoperative contrast-enhanced MRI was performed on consecutive patients who underwent hepatectomy and had pathologically confirmed solitary HCC. Two abdominal radiologists separately assessed the MRI features. A predictive model for cholangiocyte phenotype HCC was created using logistic regression analysis and five-fold cross-validation. A receiver operating characteristic curve was used to calculate the model performance. Kaplan-Meier and log-rank methods were used to evaluate survival outcomes. RESULTS In total, 334 patients were included in this retrospective study. Four contrast-enhanced MRI features, including "rim arterial phase hyperenhancement" (OR = 5.9, 95% confidence interval [CI]: 2.9-12.0, 10 points), "nodule in nodule architecture" (OR = 3.5, 95% CI: 2.1-5.9, 7 points), "non-smooth tumor margin" (OR = 1.6, 95% CI: 0.8-2.9, 3 points), and "non-peripheral washout" (OR = 0.6, 95% CI: 0.3-1.0, - 3 points), were assigned to the cholangiocyte phenotype HCC prediction model. The area under the curves for the training and independent validation set were 0.76 and 0.73, respectively. Patients with model-predicted cholangiocyte phenotype HCC demonstrated lower rates of recurrence-free survival (RFS) and overall survival (OS) after hepatectomy, with an estimated median RFS and OS of 926 vs. 1565 days (p < 0.001) and 1504 vs. 2960 days (p < 0.001), respectively. CONCLUSIONS Contrast-enhanced MRI features can be used to predict cholangiocyte phenotype-positive HCC. Patients with pathologically confirmed or MRI model-predicted cholangiocyte phenotype HCC have a worse prognosis after hepatectomy. CRITICAL RELEVANCE STATEMENT Four contrast-enhanced MRI features were significantly associated with cholangiocyte phenotype HCC and a worse prognosis following hepatectomy; these features may assist in predicting prognosis after surgery and improve personalized treatment decision-making. KEY POINTS • Four contrast-enhanced MRI features were significantly associated with cholangiocyte phenotype HCC. • A noninvasive cholangiocyte phenotype HCC predictive model was established based on MRI features. • Patients with cholangiocyte phenotype HCC demonstrated a worse prognosis following hepatic resection.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Chongtu Yang
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Yuanan Wu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hong Wei
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Ting Duan
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Zhen Zhang
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Liling Long
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
11
|
Gadoxetic Acid-Enhanced MRI-Based Radiomics Signature: A Potential Imaging Biomarker for Identifying Cytokeratin 19-Positive Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:5424204. [PMID: 36814805 PMCID: PMC9940957 DOI: 10.1155/2023/5424204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Purpose One subtype of hepatocellular carcinoma (HCC), with cytokeratin 19 expression (CK19+), has shown to be more aggressive and has a poor prognosis. However, CK19+ is determined by immunohistochemical examination using a surgically resected specimen. This study is aimed at establishing a radiomics signature based on preoperative gadoxetic acid-enhanced MRI for predicting CK19 status in HCC. Patients and Methods. Clinicopathological and imaging data were retrospectively collected from patients who underwent hepatectomy between February 2015 and December 2020. Patients who underwent gadoxetic acid-enhanced MRI and had CK19 results of histopathological examination were included. Radiomics features of the manually segmented lesion during the arterial, portal venous, and hepatobiliary phases were extracted. The 10 most reproducible and robust features at each phase were selected for construction of radiomics signatures, and their performance was evaluated by analyzing the area under the curve (AUC). The goodness of fit of the model was assessed by the Hosmer-Lemeshow test. Results A total of 110 patients were included. The incidence of CK19(+) HCC was 17% (19/110). Alpha fetoprotein was the only significant clinicopathological variable different between CK19(-) and CK19(+) groups. A majority of the selected radiomics features were wavelet filter-derived features. The AUCs of the three radiomics signatures based on arterial, portal venous, and hepatobiliary phases were 0.70 (95% CI: 0.56-0.83), 0.83 (95% CI: 0.73-0.92), and 0.89 (95% CI: 0.82-0.96), respectively. The three radiomics signatures were integrated, and the fusion signature yielded an AUC of 0.92 (95% CI: 0.86-0.98) and was used as the final model for CK19(+) prediction. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the fusion signature was 0.84, 0.89, 0.88, 0.62, and 0.96, respectively. The Hosmer-Lemeshow test showed a good fit of the fusion signature (p > 0.05). Conclusion The established radiomics signature based on preoperative gadoxetic acid-enhanced MRI could be an accurate and potential imaging biomarker for HCC CK19(+) prediction.
Collapse
|
12
|
Zhao Y, Tan X, Chen J, Tan H, Huang H, Luo P, Liang Y, Jiang X. Preoperative prediction of cytokeratin-19 expression for hepatocellular carcinoma using T1 mapping on gadoxetic acid-enhanced MRI combined with diffusion-weighted imaging and clinical indicators. Front Oncol 2023; 12:1068231. [PMID: 36741705 PMCID: PMC9893005 DOI: 10.3389/fonc.2022.1068231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Objectives To explore the value of T1 mapping on gadoxetic acid-enhanced magnetic resonance imaging (MRI) in preoperative predicting cytokeratin 19 (CK19) expression for hepatocellular carcinoma (HCC). Methods This retrospective study included 158 patients from two institutions with surgically resected treatment-native solitary HCC who underwent preoperative T1 mapping on gadoxetic acid-enhanced MRI. Patients from institution I (n = 102) and institution II (n = 56) were assigned to training and test sets, respectively. univariable and multivariable logistic regression analyses were performed to investigate the association of clinicoradiological variables with CK19. The receiver operating characteristic (ROC) curve and precision-recall (PR) curve were used to evaluate the performance for CK19 prediction. Then, a prediction nomogram was developed for CK19 expression. The performance of the prediction nomogram was evaluated by its discrimination, calibration, and clinical utility. Results Multivariable logistic regression analysis showed that AFP>400ng/ml (OR=4.607, 95%CI: 1.098-19.326; p=0.037), relative apparent diffusion coefficient (rADC)≤0.71 (OR=3.450, 95%CI: 1.126-10.567; p=0.030), T1 relaxation time in the 20-minute hepatobiliary phase (T1rt-HBP)>797msec (OR=4.509, 95%CI: 1.301-15.626; p=0.018) were significant independent predictors of CK19 expression. The clinical-quantitative model (CQ-Model) constructed based on these significant variables had the best predictive performance with an area under the ROC curve of 0.844, an area under the PR curve of 0.785 and an F1 score of 0.778. The nomogram constructed based on CQ-Model demonstrated satisfactory performance with C index of 0.844 (95%CI: 0.759-0.908) and 0.818 (95%CI: 0.693-0.902) in the training and test sets, respectively. Conclusions T1 mapping on gadoxetic acid-enhanced MRI has good predictive efficacy for preoperative prediction of CK19 expression in HCC, which can promote the individualized risk stratification and further treatment decision of HCC patients.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China,Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Xiaoliang Tan
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingmu Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongweng Tan
- Department of Radiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Huasheng Huang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peng Luo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongsheng Liang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinqing Jiang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China,Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, China,*Correspondence: Xinqing Jiang,
| |
Collapse
|
13
|
Miranda J, Horvat N, Fonseca GM, Araujo-Filho JDAB, Fernandes MC, Charbel C, Chakraborty J, Coelho FF, Nomura CH, Herman P. Current status and future perspectives of radiomics in hepatocellular carcinoma. World J Gastroenterol 2023; 29:43-60. [PMID: 36683711 PMCID: PMC9850949 DOI: 10.3748/wjg.v29.i1.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Given the frequent co-existence of an aggressive tumor and underlying chronic liver disease, the management of hepatocellular carcinoma (HCC) patients requires experienced multidisciplinary team discussion. Moreover, imaging plays a key role in the diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging assessment of HCC entails the assessment of qualitative characteristics which are prone to inter-reader variability. Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that cannot be assessed visually with the naked eye from medical imaging. The main potential applications of radiomic models in HCC are to predict histology, response to treatment, genetic signature, recurrence, and survival. Despite the encouraging results to date, there are challenges and limitations that need to be overcome before radiomics implementation in clinical practice. The purpose of this article is to review the main concepts and challenges pertaining to radiomics, and to review recent studies and potential applications of radiomics in HCC.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-010, Brazil
| | - Natally Horvat
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | | | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Paulo Herman
- Department of Gastroenterology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|
14
|
Zhang L, Zhou H, Zhang X, Ding Z, Xu J. A radiomics nomogram for predicting cytokeratin 19-positive hepatocellular carcinoma: a two-center study. Front Oncol 2023; 13:1174069. [PMID: 37182122 PMCID: PMC10174303 DOI: 10.3389/fonc.2023.1174069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives We aimed to construct and validate a radiomics-based nomogram model derived from gadoxetic acid-enhanced magnetic resonance (MR) images to predict cytokeratin (CK) 19-positive (+) hepatocellular carcinoma (HCC) and patients' prognosis. Methods A two-center and time-independent cohort of 311 patients were retrospectively enrolled (training cohort, n = 168; internal validation cohort, n = 72; external validation cohort, n = 71). A total of 2286 radiomic features were extracted from multisequence MR images with the uAI Research Portal (uRP), and a radiomic feature model was established. A combined model was established by incorporating the clinic-radiological features and the fusion radiomics signature using logistic regression analysis. Receiver operating characteristic curve (ROC) was used to evaluate the predictive efficacy of these models. Kaplan-Meier survival analysis was used to assess 1-year and 2-year progression-free survival (PFS) and overall survival (OS) in the cohort. Results By combining radiomic features extracted in DWI phase, arterial phase, venous and delay phase, the fusion radiomics signature achieved AUCs of 0.865, 0.824, and 0.781 in the training, internal, and external validation cohorts. The final combined clinic-radiological model showed higher AUC values in the three datasets compared with the fusion radiomics model. The nomogram based on the combined model showed satisfactory prediction performance in the training (C-index, 0.914), internal (C-index, 0.855), and external validation (C-index, 0.795) cohort. The 1-year and 2-year PFS and OS of the patients in the CK19+ group were 76% and 73%, and 78% and 68%, respectively. The 1-year and 2-year PFS and OS of the patients in the CK19-negative (-) group were 81% and 77%, and 80% and 74%, respectively. Kaplan-Meier survival analysis showed no significant differences in 1-year PFS and OS between the groups (P = 0.273 and 0.290), but it did show differences in 2-year PFS and OS between the groups (P = 0.032 and 0.040). Both PFS and OS were lower in CK19+ patients. Conclusion The combined model based on clinic-radiological radiomics features can be used for predicting CK19+ HCC noninvasively to assist in the development of personalized treatment.
Collapse
Affiliation(s)
- Liqing Zhang
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heshan Zhou
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqian Zhang
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhongxiang Ding, ; Jianfeng Xu,
| | - Jianfeng Xu
- Department of Radiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
- *Correspondence: Zhongxiang Ding, ; Jianfeng Xu,
| |
Collapse
|
15
|
Zhang L, Qi Q, Li Q, Ren S, Liu S, Mao B, Li X, Wu Y, Yang L, Liu L, Li Y, Duan S, Zhang L. Ultrasomics prediction for cytokeratin 19 expression in hepatocellular carcinoma: A multicenter study. Front Oncol 2022; 12:994456. [PMID: 36119507 PMCID: PMC9478580 DOI: 10.3389/fonc.2022.994456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Objective The purpose of this study was to investigate the preoperative prediction of Cytokeratin (CK) 19 expression in patients with hepatocellular carcinoma (HCC) by machine learning-based ultrasomics. Methods We retrospectively analyzed 214 patients with pathologically confirmed HCC who received CK19 immunohistochemical staining. Through random stratified sampling (ratio, 8:2), patients from institutions I and II were divided into training dataset (n = 143) and test dataset (n = 36), and patients from institution III served as external validation dataset (n = 35). All gray-scale ultrasound images were preprocessed, and then the regions of interest were then manually segmented by two sonographers. A total of 1409 ultrasomics features were extracted from the original and derived images. Next, the intraclass correlation coefficient, variance threshold, mutual information, and embedded method were applied to feature dimension reduction. Finally, the clinical model, ultrasonics model, and combined model were constructed by eXtreme Gradient Boosting algorithm. Model performance was assessed by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. Results A total of 12 ultrasomics signatures were used to construct the ultrasomics models. In addition, 21 clinical features were used to construct the clinical model, including gender, age, Child-Pugh classification, hepatitis B surface antigen/hepatitis C virus antibody (positive/negative), cirrhosis (yes/no), splenomegaly (yes/no), tumor location, tumor maximum diameter, tumor number, alpha-fetoprotein, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, glutamyl-transpeptidase, albumin, total bilirubin, conjugated bilirubin, creatinine, prothrombin time, fibrinogen, and international normalized ratio. The AUC of the ultrasomics model was 0.789 (0.621 – 0.907) and 0.787 (0.616 – 0.907) in the test and validation datasets, respectively. However, the performance of the combined model covering clinical features and ultrasomics signatures improved significantly. Additionally, the AUC (95% CI), sensitivity, specificity, and accuracy were 0.867 (0.712 – 0.957), 0.750, 0.875, 0.861, and 0.862 (0.703 – 0.955), 0.833, 0.862, and 0.857 in the test dataset and external validation dataset, respectively. Conclusion Ultrasomics signatures could be used to predict the expression of CK19 in HCC patients. The combination of clinical features and ultrasomics signatures showed excellent effects, which significantly improved prediction accuracy and robustness.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qinghua Qi
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Li
- Department of Ultrasound, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Shanshan Ren
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shunhua Liu
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bing Mao
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xin Li
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuejin Wu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lanling Yang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Luwen Liu
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yaqiong Li
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shaobo Duan
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Health Management, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- *Correspondence: Lianzhong Zhang, ; Shaobo Duan,
| | - Lianzhong Zhang
- Department of Ultrasound, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, China
- *Correspondence: Lianzhong Zhang, ; Shaobo Duan,
| |
Collapse
|
16
|
Gong XQ, Tao YY, Wu YK, Liu N, Yu X, Wang R, Zheng J, Liu N, Huang XH, Li JD, Yang G, Wei XQ, Yang L, Zhang XM. Progress of MRI Radiomics in Hepatocellular Carcinoma. Front Oncol 2021; 11:698373. [PMID: 34616673 PMCID: PMC8488263 DOI: 10.3389/fonc.2021.698373] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. Although the diagnostic scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not satisfactory. In addition to certain factors, such as tumor size and number and vascular invasion displayed on traditional imaging, some histopathological features and gene expression parameters are also important for the prognosis of HCC patients. However, most parameters are based on postoperative pathological examinations, which cannot help with preoperative decision-making. As a new field, radiomics extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes noninvasively before surgery, rendering it a powerful aid for making personalized treatment decisions preoperatively. Objective This study reviewed the workflow of radiomics and the research progress on magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC. Methods A literature review was conducted by searching PubMed for search of relevant peer-reviewed articles published from May 2017 to June 2021.The search keywords included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning, neural network, texture analysis, diagnosis, histopathology, microvascular invasion, surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization, targeted therapy, immunotherapy, therapeutic response, and prognosis. Results Radiomics features on MRI can be used as biomarkers to determine the differential diagnosis, histological grade, microvascular invasion status, gene expression status, local and systemic therapeutic responses, and prognosis of HCC patients. Conclusion Radiomics is a promising new imaging method. MRI radiomics has high application value in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yao-Kun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Yu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ran Wang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nian Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Hua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-Dong Li
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Gang Yang
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
17
|
Harding-Theobald E, Louissaint J, Maraj B, Cuaresma E, Townsend W, Mendiratta-Lala M, Singal AG, Su GL, Lok AS, Parikh ND. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma. Aliment Pharmacol Ther 2021; 54:890-901. [PMID: 34390014 PMCID: PMC8435007 DOI: 10.1111/apt.16563] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Advances in imaging technology have the potential to transform the early diagnosis and treatment of hepatocellular carcinoma (HCC) through quantitative image analysis. Computational "radiomic" techniques extract biomarker information from images which can be used to improve diagnosis and predict tumour biology. AIMS To perform a systematic review on radiomic features in HCC diagnosis and prognosis, with a focus on reporting metrics and methodologic standardisation. METHODS We performed a systematic review of all full-text articles published from inception through December 1, 2019. Standardised data extraction and quality assessment metrics were applied to all studies. RESULTS A total of 54 studies were included for analysis. Radiomic features demonstrated good discriminatory performance to differentiate HCC from other solid lesions (c-statistics 0.66-0.95), and to predict microvascular invasion (c-statistic 0.76-0.92), early recurrence after hepatectomy (c-statistics 0.71-0.86), and prognosis after locoregional or systemic therapies (c-statistics 0.74-0.81). Common stratifying features for diagnostic and prognostic radiomic tools included analyses of imaging skewness, analysis of the peritumoural region, and feature extraction from the arterial imaging phase. The overall quality of the included studies was low, with common deficiencies in both internal and external validation, standardised imaging segmentation, and lack of comparison to a gold standard. CONCLUSIONS Quantitative image analysis demonstrates promise as a non-invasive biomarker to improve HCC diagnosis and management. However, standardisation of protocols and outcome measurement, sharing of algorithms and analytic methods, and external validation are necessary prior to widespread application of radiomics to HCC diagnosis and prognosis in clinical practice.
Collapse
Affiliation(s)
- Emily Harding-Theobald
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Jeremy Louissaint
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Bharat Maraj
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Edward Cuaresma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Whitney Townsend
- Division of Library Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | - Amit G Singal
- Division of Digestive and Liver Diseases, University of Texas Southwestern, Dallas, TX, USA
| | - Grace L Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Yang F, Wan Y, Xu L, Wu Y, Shen X, Wang J, Lu D, Shao C, Zheng S, Niu T, Xu X. MRI-Radiomics Prediction for Cytokeratin 19-Positive Hepatocellular Carcinoma: A Multicenter Study. Front Oncol 2021; 11:672126. [PMID: 34476208 PMCID: PMC8406635 DOI: 10.3389/fonc.2021.672126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and has poor prognosis. Cytokeratin (CK)19-positive (CK19+) HCC is especially aggressive; early identification of this subtype and timely intervention can potentially improve clinical outcomes. In the present study, we developed a preoperative gadoxetic acid-enhanced magnetic resonance imaging (MRI)-based radiomics model for noninvasive and accurate classification of CK19+ HCC. A multicenter and time-independent cohort of 257 patients were retrospectively enrolled (training cohort, n = 143; validation cohort A, n = 75; validation cohort B, n = 39). A total of 968 radiomics features were extracted from preoperative multisequence MR images. The maximum relevance minimum redundancy algorithm was applied for feature selection. Multiple logistic regression, support vector machine, random forest, and artificial neural network (ANN) algorithms were used to construct the radiomics model, and the area under the receiver operating characteristic (AUROC) curve was used to evaluate the diagnostic performance of corresponding classifiers. The incidence of CK19+ HCC was significantly higher in male patients. The ANN-derived combined classifier comprising 12 optimal radiomics features showed the best diagnostic performance, with AUROCs of 0.857, 0.726, and 0.790 in the training cohort and validation cohorts A and B, respectively. The combined model based on multisequence MRI radiomics features can be used for preoperative noninvasive and accurate classification of CK19+ HCC, so that personalized management strategies can be developed.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Center of Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yidong Wan
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.,Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.,Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yichao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Center of Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Shen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Center of Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, The Center of Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuxiao Shao
- Department of General Surgery, Lishui Central Hospital, Lishui, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan Health Hangzhou Hospital, Hangzhou, China
| | - Tianye Niu
- Nucelar & Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center of Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Abstract
ABSTRACT Artificial intelligence is poised to revolutionize medical image. It takes advantage of the high-dimensional quantitative features present in medical images that may not be fully appreciated by humans. Artificial intelligence has the potential to facilitate automatic organ segmentation, disease detection and characterization, and prediction of disease recurrence. This article reviews the current status of artificial intelligence in liver imaging and reviews the opportunities and challenges in clinical implementation.
Collapse
|
20
|
Cannella R, Sartoris R, Grégory J, Garzelli L, Vilgrain V, Ronot M, Dioguardi Burgio M. Quantitative magnetic resonance imaging for focal liver lesions: bridging the gap between research and clinical practice. Br J Radiol 2021; 94:20210220. [PMID: 33989042 PMCID: PMC8173689 DOI: 10.1259/bjr.20210220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) is highly important for the detection, characterization, and follow-up of focal liver lesions. Several quantitative MRI-based methods have been proposed in addition to qualitative imaging interpretation to improve the diagnostic work-up and prognostics in patients with focal liver lesions. This includes DWI with apparent diffusion coefficient measurements, intravoxel incoherent motion, perfusion imaging, MR elastography, and radiomics. Multiple research studies have reported promising results with quantitative MRI methods in various clinical settings. Nevertheless, applications in everyday clinical practice are limited. This review describes the basic principles of quantitative MRI-based techniques and discusses the main current applications and limitations for the assessment of focal liver lesions.
Collapse
Affiliation(s)
- Roberto Cannella
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,Section of Radiology - BiND, University Hospital "Paolo Giaccone", Via del Vespro 129, 90127 Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | | | - Jules Grégory
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,Université de Paris, Paris, France
| | - Lorenzo Garzelli
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,Université de Paris, Paris, France
| | - Valérie Vilgrain
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,Université de Paris, Paris, France.,INSERM U1149, CRI, Paris, France
| | - Maxime Ronot
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,Université de Paris, Paris, France.,INSERM U1149, CRI, Paris, France
| | - Marco Dioguardi Burgio
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,INSERM U1149, CRI, Paris, France
| |
Collapse
|
21
|
Fan Y, Yu Y, Wang X, Hu M, Du M, Guo L, Sun S, Hu C. Texture Analysis Based on Gd-EOB-DTPA-Enhanced MRI for Identifying Vessels Encapsulating Tumor Clusters (VETC)-Positive Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:349-359. [PMID: 33981636 PMCID: PMC8108126 DOI: 10.2147/jhc.s293755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To determine the potential findings associated with vessels encapsulating tumor clusters (VETC)-positive hepatocellular carcinoma (HCC), with particular emphasis on texture analysis based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI. METHODS Eighty-one patients with VETC-negative HCC and 52 patients with VETC-positive HCC who underwent Gd-EOB-DTPA-enhanced MRI before curative partial hepatectomy were retrospectively evaluated in our institution. MRI texture analysis was performed on arterial phase (AP) and hepatobiliary phase (HBP) images. The least absolute shrinkage and selection operator (LASSO) logistic regression was used to select texture features most useful for identifying VETC-positive HCC. Univariate and multivariate analyses were used to determine significant variables for identifying the VETC-positive HCC in clinical factors and the texture features of MRI. Receiver operating characteristic (ROC) analysis and DeLong test were performed to compare the identified performances of significant variables for identifying VETC-positive HCC. RESULTS LASSO logistic regression selected 3 features in AP and HBP images, respectively. In multivariate analysis, the Log-sigma-4.0-mm-3D first-order Kurtosis derived from AP images (odds ratio [OR] = 4.128, P = 0.001) and the Wavelet-LHL-GLDM Dependence Non Uniformity Normalized derived from HBP images (OR = 2.280, P = 0.004) were independent significant variables associated with VETC-positive HCC. The combination of the two texture features for identifying VETC-positive HCC achieved an AUC value of 0.844 (95% confidence interval CI, 0.777, 0.910) with a sensitivity of 80.8% (95% CI, 70.1%, 91.5%) and specificity of 74.1% (95% CI, 64.5%, 83.6%). CONCLUSION Texture analysis based on Gd-EOB-DTPA-enhanced MRI can help identify VETC-positive HCC.
Collapse
Affiliation(s)
- Yanfen Fan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
- Institute of Medical Imaging of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
| | - Yixing Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
- Institute of Medical Imaging of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
- Institute of Medical Imaging of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
| | - Mengjie Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
- Institute of Medical Imaging of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
| | - Mingzhan Du
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
| | - Shifang Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
- Institute of Medical Imaging of Soochow University, Suzhou, Jiangsu, 215006, People’s Republic of China
| |
Collapse
|
22
|
Qiao X, Li Z, Li L, Ji C, Li H, Shi T, Gu Q, Liu S, Zhou Z, Zhou K. Preoperative T 2-weighted MR imaging texture analysis of gastric cancer: prediction of TNM stages. Abdom Radiol (NY) 2021; 46:1487-1497. [PMID: 33047226 DOI: 10.1007/s00261-020-02802-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To explore the capability of algorithms to build multivariate models integrating morphological and texture features derived from preoperative T2-weighted magnetic resonance (MR) images of gastric cancer (GC) to evaluate tumor- (T), node- (N), and metastasis- (M) stages. METHODS A total of 80 patients at our hospital who underwent abdominal MR imaging and were diagnosed with GC from December 2011 to November 2016 were retrospectively included. Texture features were calculated using T2-weighted images with a manual region of interest. Morphological characteristics were also evaluated. Classifiers and regression analyses were used to build multivariate models. Receiver operating characteristic (ROC) curve analysis was performed to assess diagnostic efficacy. RESULTS There were 8, 10, and 3 texture parameters that showed significant differences in GCs at different overall (I-II vs. III-IV), T (1-2 vs. 3-4), and N (- vs. +) stages (all p < 0.05), respectively. Mild thickening was more common in stages I-II, T1-2, and N- GCs (all p < 0.05). An irregular outer contour was more commonly observed in stages III-IV (p = 0.001) and T3-4 (p = 0.001) GCs. T3-4 and N+ GCs tended to be thickening type lesions (p = 0.005 and 0.032, respectively). The multivariate models using the naive bayes algorithm showed the highest diagnostic efficacy in predicting T and N stages (area under the ROC curves [AUC] = 0.900 and 0.863, respectively), and the model based on regression analysis had the best predictive performance in overall staging (AUC = 0.839). CONCLUSION Multivariate models combining morphological characteristics with texture parameters based on machine learning algorithms were able to improve diagnostic efficacy in predicting the overall, T, and N stages of GCs.
Collapse
Affiliation(s)
- Xiangmei Qiao
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhengliang Li
- State Key Lab of Novel Software Technology, Nanjing University, Nanjing, 210046, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Changfeng Ji
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hui Li
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Tingting Shi
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Gu
- State Key Lab of Novel Software Technology, Nanjing University, Nanjing, 210046, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Kefeng Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
23
|
Abstract
The diagnosis of hepatocellular carcinoma relies largely on non-invasive imaging, and is well suited for radiomics analysis. Radiomics is an emerging method for quantification of tumor heterogeneity by mathematically analyzing the spatial distribution and relationships of gray levels in medical images. The published studies on radiomics analysis of HCC provide encouraging data demonstrating potential utility for prediction of tumor biology, molecular profiles, post-therapy response, and outcome. The combination of radiomics data and clinical/laboratory information provides added value in many studies. Radiomics is a multi-step process that requires optimization and standardization, the development of semi-automated or automated segmentation methods, robust data quality control, and refinement of algorithms and modeling approaches for high-throughput data analysis. While radiomics remains largely in the research setting, the strong associations of predictive models and nomograms with certain pathologic, molecular, and immune markers with tumor aggressiveness and patient outcomes, provide great potential for clinical applications to inform optimized treatment strategies and patient prognosis.
Collapse
|
24
|
Wilson GC, Cannella R, Fiorentini G, Shen C, Borhani A, Furlan A, Tsung A. Texture analysis on preoperative contrast-enhanced magnetic resonance imaging identifies microvascular invasion in hepatocellular carcinoma. HPB (Oxford) 2020; 22:1622-1630. [PMID: 32229091 DOI: 10.1016/j.hpb.2020.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/08/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Radiomic texture analysis quantifies tumor heterogeneity. The aim of this study is to determine if radiomics can predict biologic aggressiveness in HCC and identify tumors with MVI. METHODS Single-center, retrospective review of HCC patients undergoing resection/ablation with curative intent from 2009 to 2017. DICOM images from preoperative MRIs were analyzed with texture analysis software. Texture analysis parameters extracted on T1, T2, hepatic arterial phase (HAP) and portal venous phase (PVP) images. Multivariate logistic regression analysis evaluated factors associated with MVI. RESULTS MVI was present in 52.2% (n = 133) of HCCs. On multivariate analysis only T1 mean (OR = 0.97, 95%CI 0.95-0.99, p = 0.043) and PVP entropy (OR = 4.7, 95%CI 1.37-16.3, p = 0.014) were associated with tumor MVI. Area under ROC curve was 0.83 for this final model. Empirical optimal cutpoint for PVP tumor entropy and T1 tumor mean were 5.73 and 23.41, respectively. At these cutpoint values, sensitivity was 0.68 and 0.5, respectively and specificity was 0.64 and 0.86. When both criteria were met, the probability of MVI in the tumor was 87%. CONCLUSION Tumor entropy and mean are both associated with MVI. Texture analysis on preoperative imaging correlates with microscopic features of HCC and can be used to predict patients with high-risk tumors.
Collapse
Affiliation(s)
- Gregory C Wilson
- Departments of Surgery and Radiology, Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| | - Roberto Cannella
- Departments of Surgery and Radiology, Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Radiology, University of Palermo, Palermo, Italy
| | - Guido Fiorentini
- Departments of Surgery and Radiology, Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Division of Hepatobiliary Surgery, San Raffaele Hospital, Milan, Italy
| | - Chengli Shen
- Departments of Surgery and Radiology, Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Amir Borhani
- Departments of Surgery and Radiology, Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alessandro Furlan
- Departments of Surgery and Radiology, Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Allan Tsung
- Departments of Surgery and Radiology, Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|