1
|
Ruby L, Jayaprakasam VS, Fernandes MC, Paroder V. Advances in the Imaging of Esophageal and Gastroesophageal Junction Malignancies. Hematol Oncol Clin North Am 2024; 38:711-730. [PMID: 38575457 DOI: 10.1016/j.hoc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Accurate imaging is key for the diagnosis and treatment of esophageal and gastroesophageal junction cancers . Current imaging modalities, such as computed tomography (CT) and 18F-FDG (2-deoxy-2-[18F]fluoro-D-glucose) positron emission tomography (PET)/CT, have limitations in accurately staging these cancers. MRI shows promise for T staging and residual disease assessment. Novel PET tracers, like FAPI, FLT, and hypoxia markers, offer potential improvements in diagnostic accuracy. 18F-FDG PET/MRI combines metabolic and anatomic information, enhancing disease evaluation. Radiomics and artificial intelligence hold promise for early detection, treatment planning, and response assessment. Theranostic nanoparticles and personalized medicine approaches offer new avenues for cancer therapy.
Collapse
Affiliation(s)
- Lisa Ruby
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Vetri Sudar Jayaprakasam
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Viktoriya Paroder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
2
|
Chao YK, Chang CB, Chang YC, Chan SC, Chiu CH, Ng SH, Hsieh JCH, Wang JH. Baseline and interim [18F]FDG-PET/MRI to assess treatment response and survival in patients with M0 esophageal squamous cell carcinoma treated by curative-intent therapy. Cancer Imaging 2023; 23:109. [PMID: 37932848 PMCID: PMC10629192 DOI: 10.1186/s40644-023-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND To investigate the value of [18F]FDG-PET/MRI in predicting treatment response and survival in patients with primary M0 esophageal squamous cell carcinoma. METHODS Patients with esophageal squamous cell carcinoma received [18F]FDG-PET/MRI at baseline and during neoadjuvant or definitive chemoradiotherapy. The treatment response was classified according to the Response Evaluation Criteria for Solid Tumors 1.1. We used Kaplan-Meier and Cox regression analyses to assess the association between PET/MRI parameters and overall survival (OS) or progression-free survival (PFS). RESULTS We included 40 M0 patients in the final analysis. The volume transfer constant (Ktrans) from baseline PET/MRI (area under the curve (AUC) = 0.688, P = 0.034) and total lesion glycolysis (TLG) from baseline PET/MRI (AUC = 0.723, P = 0.006) or interim PET/MRI (AUC = 0.853, P < 0.001) showed acceptable AUC for predicting treatment response. The TLG from interim PET/MRI (interim TLG, P < 0.001) and extracellular volume fraction (Ve) on interim PET/MRI (interim Ve, P = 0.001) were identified as independent prognostic factors for OS. Baseline Ve (P = 0.044) and interim TLG (P = 0.004) were significant predictors of PFS. The c-indices of the prognostic models combining interim TLG with Ve for predicting OS, and baseline Ve and interim TLG for predicting PFS were 0.784 and 0.699, respectively. These values were significantly higher than the corresponding c-indices of the TNM staging system (P = 0.002 and P = 0.047, respectively). CONCLUSIONS Combining the baseline and interim [18F]FDG-PET/MRI qualitative imaging parameters aids in predicting the prognosis of patients with M0 esophageal squamous cell carcinoma. TRIAL REGISTRATION The study was registered at Clinicaltrials.gov (identifier: NCT05855291 and NCT05855278).
Collapse
Affiliation(s)
- Yin-Kai Chao
- Division of Thoracic Surgery, Chang Gung Memorial Hospital-Linko, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Chun-Bi Chang
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Yu-Chuan Chang
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital-Linko, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan.
| | - Chien-Hung Chiu
- Division of Thoracic Surgery, Chang Gung Memorial Hospital-Linko, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Shu-Hang Ng
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Jason Chia-Hsun Hsieh
- Division of Hematology/Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| |
Collapse
|
3
|
Romero ÁB, Furtado FS, Sertic M, Goiffon RJ, Mahmood U, Catalano OA. Abdominal Positron Emission Tomography/Magnetic Resonance Imaging. Magn Reson Imaging Clin N Am 2023; 31:579-589. [PMID: 37741642 DOI: 10.1016/j.mric.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly suited for abdominal pathologies. A precise co-registration of anatomic and metabolic data is possible thanks to the simultaneous acquisition, leading to accurate imaging. The literature shows that PET/MRI is at least as good as PET/CT and even superior for some indications, such as primary hepatic tumors, distant metastasis evaluation, and inflammatory bowel disease. PET/MRI allows whole-body staging in a single session, improving health care efficiency and patient comfort.
Collapse
Affiliation(s)
- Álvaro Badenes Romero
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA; Department of Nuclear Medicine, Joan XXIII Hospital, Tarragona, Spain
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Madaleine Sertic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reece J Goiffon
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
4
|
Prognostic Value of 18F-Fluorodeoxyglucose–Positron Emission Tomography/Magnetic Resonance Imaging in Patients With Hypopharyngeal Squamous Cell Carcinoma. J Comput Assist Tomogr 2022; 46:968-977. [DOI: 10.1097/rct.0000000000001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Wang F, Guo R, Zhang Y, Yu B, Meng X, Kong H, Yang Y, Yang Z, Li N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front Oncol 2022; 12:844702. [PMID: 35296000 PMCID: PMC8919030 DOI: 10.3389/fonc.2022.844702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the value of 18F-FDG PET/MRI in the preoperative assessment of esophageal squamous cell carcinoma (ESCC) and compare it with 18F-FDG PET/CT, MRI, and CECT. Methods Thirty-five patients with resectable ESCC were prospectively enrolled and underwent PET/MRI, PET/CT, and CECT before surgery. The primary tumor and regional lymph nodes were assessed by PET/MRI, PET/CT, MRI, and CECT, respectively, and the diagnostic efficiencies were determined with postoperative pathology as a reference standard. The predictive role of imaging and clinical parameters on pathological staging was analyzed. Results For primary tumor staging, the accuracy of PET/MRI, MRI, and CECT was 85.7%, 77.1%, and 51.4%, respectively. For lymph node assessment, the accuracy of PET/MRI, PET/CT, MRI, and CECT was 96.2%, 92.0%, 86.8%, and 86.3%, respectively, and the AUCs were 0.883, 0.745, 0.697, and 0.580, respectively. PET/MRI diagnosed 13, 7, and 6 more stations of lymph node metastases than CECT, MRI, and PET/CT, respectively. There was a significant difference in SUVmax, TLG, and tumor wall thickness between T1-2 and T3 tumors (p = 0.004, 0.024, and < 0.001, respectively). Multivariate analysis showed that thicker tumor wall thickness was a predictor of a higher T stage (p = 0.040, OR = 1.6). Conclusions 18F-FDG PET/MRI has advantages over 18F-FDG PET/CT, MRI, and CECT in the preoperative assessment of primary tumors and regional lymph nodes of ESCC. 18F-FDG PET/MRI may be a potential supplement or alternative imaging method for preoperative staging of ESCC.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Boqi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Nan Li, ; Zhi Yang,
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Nan Li, ; Zhi Yang,
| |
Collapse
|
6
|
Li H, Li J, Li F, Zhang Y, Li Y, Guo Y, Xu L. Geometrical Comparison and Quantitative Evaluation of 18F-FDG PET/CT- and DW-MRI-Based Target Delineation Before and During Radiotherapy for Esophageal Squamous Carcinoma. Front Oncol 2021; 11:772428. [PMID: 35004291 PMCID: PMC8727588 DOI: 10.3389/fonc.2021.772428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose This study aimed to evaluate the geometrical differences in and metabolic parameters of 18F-fluorodeoxyglucose positron emission tomography–computed tomography (18F-FDG PET-CT) and diffusion-weighted magnetic resonance imaging (DW-MRI) performed before and during radiotherapy (RT) for patients with esophageal cancer based on the three-dimensional CT (3DCT) medium and explore whether the high signal area derived from DW-MRI can be used as a tool for an individualized definition of the volume in need of dose escalation for esophageal squamous cancer. Materials and Methods Thirty-two patients with esophageal squamous cancer sequentially underwent repeated 3DCT, 18F-FDG PET-CT, and enhanced MRI before the initiation of RT and after the 15th fraction. All images were fused with 3DCT images through deformable registration. The gross tumor volume (GTV) was delineated based on PET Edge on the first and second PET-CT images and defined as GTVPETpre and GTVPETdur, respectively. GTVDWIpre and GTVDWIdur were delineated on the first and second DWI and corresponding T2-weighted MRI (T2W-MRI)-fused images. The maximum, mean, and peak standardized uptake values (SUVs; SUVmax, SUVmean, and SUVpeak, respectively); metabolic tumor volume (MTV); and total lesion glycolysis(TLG) and its relative changes were calculated automatically on PET. Similarly, the minimum and mean apparent diffusion coefficient (ADC; ADCmin and ADCmean) and its relative changes were measured manually using ADC maps. Results The volume of GTVCT exhibited a significant positive correlation with that of GTVPET and GTVDWI (both p < 0.001). Significant differences were observed in both ADCs and 18F-FDG PET metabolic parameters before and during RT (both p < 0.001). No significant correlation was observed between SUVs and ADCs before and during RT (p = 0.072–0.944) and between ∆ADCs and ∆SUVs (p = 0.238–0.854). The conformity index and degree of inclusion of GTVPETpre to GTVDWIpre were significantly higher than those of GTVPETdur to GTVDWIdur (both p < 0.001). The maximum diameter shrinkage rate (∆LDDWI) (24%) and the tumor volume shrinkage rate (VRRDWI) (60%) based on DW-MRI during RT were significantly greater than the corresponding PET-based ∆LDPET (14%) and VRRPET (41%) rates (p = 0.017 and 0.000, respectively). Conclusion Based on the medium of CT images, there are significant differences in spatial position, biometabolic characteristics, and the tumor shrinkage rate for GTVs derived from 18F-FDG PET-CT and DW-MRI before and during RT for esophageal squamous cancer. Further studies are needed to determine if DW-MRI will be used as tool for an individualized definition of the volume in need of dose escalation.
Collapse
Affiliation(s)
- Huimin Li
- Weifang Medical University, Weifang, China
- Department of Respiratory and Neurology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jianbin Li, ; Fengxiang Li,
| | - Fengxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jianbin Li, ; Fengxiang Li,
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yankang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanluan Guo
- Department of Positron Emission Tomography-Computed Tomograph (PET-CT), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liang Xu
- Department of Medical Imaging, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Wang P, Wang X, Xu L, Yu J, Teng F. Prediction of the effects of radiation therapy in esophageal cancer using diffusion and perfusion MRI. Cancer Sci 2021; 112:5046-5054. [PMID: 34618997 PMCID: PMC8645758 DOI: 10.1111/cas.15156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
Chemoradiation therapy (CRT) of locally advanced esophageal cancer (LAEC), although improving outcomes of patients, still results in 50% of local failure. An early prediction could identify patients at high risk of poor response for individualized adaptive treatment. We aimed to investigate physiological changes in LAEC using diffusion and perfusion magnetic resonance imaging (MRI) for early prediction of treatment response. In the study, 115 LAEC patients treated with CRT were enrolled (67 in the discovery cohort and 48 in the validation cohort). MRI scans were performed before radiotherapy (pre‐RT) and at week 3 during RT (mid‐RT). Gross tumor volume (GTV) of primary tumor was delineated on T2‐weighted images. Within the GTV, the hypercellularity volume (VHC) and high blood volume (VHBV) were defined based on the analysis of ADC and fractional plasma volume (Vp) histogram distributions within the tumors in the discovery cohort. The median GTVs were 28 cc ± 2.2 cc at pre‐RT and 16.7 cc ± 1.5 cc at mid‐RT. Respectively, VHC and VHBV decreased from 4.7 cc ± 0.7 cc and 5.7 cc ± 0.7 cc at pre‐RT to 2.8 cc ± 0.4 cc and 3.5 cc ± 0.5 cc at mid‐RT. Smaller VHC at mid‐RT (area under the curve [AUC] = 0.67, P = .05; AUC = 0.66, P = .05) and further decrease in VHC at mid‐RT (AUC = 0.7, P = .01; AUC = 0.69, P = .03) were associated with longer progression‐free survival (PFS) in both discovery and validation cohort. No significant predictive effects were shown in GTV and VHBV at any time point. In conclusion, we demonstrated that VHC represents aggressive subvolumes in LAEC. Further analysis will be carried out to confirm the correlations between the changes in image‐phenotype subvolumes and local failure to determine the radiation‐resistant tumor subvolumes, which may be useful for dose escalation.
Collapse
Affiliation(s)
- Peiliang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo college of medicine, Shandong University, Jinan, China
| | - Xin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liang Xu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo college of medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
8
|
Abstract
Esophageal cancer is the sixth most common cause of cancer related mortality worldwide. Advances in treatment have translated into steadily improving survival rates. Accurate preoperative staging of esophageal cancer is imperative in order to provide an accurate prognosis and direct patients to the most appropriate treatment. Current preoperative staging relies on imaging, most commonly endoscopic ultrasound (EUS), computed tomography (CT) and positron emission tomography (PET). A combination of these modalities should be used in preoperative staging, as each has advantages over another. Magnetic resonance imaging (MRI) has always shown promise in its ability to accurately stage esophageal cancer, though it has not been consistently adopted as a common tool for this purpose. Recent research has demonstrated that MRI can become an integral part of esophageal cancer clinical staging. Advances in MR technology that utilize radial sampling allow for shorter, free breathing techniques without degradation of image quality, resulting in improved capability for T and N staging of esophageal cancer. MRI enhanced with superparamagnetic iron oxide (SPIO) and ultrasmall SPIO (USPIO) nanoparticles has been shown to be useful for the detection of metastatic disease in lymph nodes. This article will review the current evidence in the role that imaging plays in staging esophageal cancer.
Collapse
Affiliation(s)
- Eric J Schmidlin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ritu R Gill
- Department of Radiology, Beth Israel Deaconness Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Sonoda A, Yoshida N, Shiraishi S, Horinouchi T, Tokunaga R, Harada K, Iwatsuki M, Nagai Y, Baba Y, Iwagami S, Miyamoto Y, Baba H. Total Lesion Glycolysis Ratio in Positron Emission Tomography/Computed Tomography Images During Neoadjuvant Chemotherapy Can Predict Pathological Tumor Regression Grade and Prognosis in Patients with Locally Advanced Squamous Cell Carcinoma of the Esophagus. Ann Surg Oncol 2020; 28:167-174. [PMID: 32588261 DOI: 10.1245/s10434-020-08738-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The usefulness of quantitating tumor lesion glycolysis (TLG) from 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) findings as a tool for determining the effect of neoadjuvant chemotherapy (NAC) in esophageal squamous cell carcinoma (ESCC) has not yet been established. METHODS The cohort of this retrospective study comprised 46 patients who had undergone NAC and subsequent esophagectomy for locally advanced ESCC between January 2008 and December 2017. PET/CT was conducted before and after NAC to assess its therapeutic effect. Associations between changes in TLG values during NAC and clinicopathological findings, pathological tumor regression grade (TRG), and prognosis were assessed. RESULTS Most patients received two courses of DCF (Docetaxel, Cisplatin, and Fluorouracil) as NAC. The mean TLG value of the primary tumor decreased significantly after NAC. The median follow-up period was 41 months. The Kaplan-Meier method, analyzed by log-rank test, showed that low TLG ratio (≤ 0.4) and low SUVmax ratio (≤ 0.6) were associated with favorable survival outcomes (P = 0.0073 and P = 0.032, respectively). Univariate and multivariate analysis revealed that TLG ratio and achievement of pathological cure were independent prognostic factors for overall survival. TLG ratio was also associated with pathological TRG (TRG 0-1a vs 1b-3) (P = 0.0016). CONCLUSIONS TLG ratio before and after NAC is clinically useful in predicting both histological response and survival outcome after NAC and subsequent esophagectomy in patients with ESCC.
Collapse
Affiliation(s)
- Akari Sonoda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinya Shiraishi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomo Horinouchi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuma Tokunaga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yohei Nagai
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|