1
|
Bhalla D, Jana M, Kandasamy D. Diagnostic accuracy of whole-body magnetic resonance imaging versus positron emission tomography-computed tomography for the staging of pediatric lymphoma: a systematic review and meta-analysis. Pediatr Radiol 2023; 53:2683-2691. [PMID: 37814104 DOI: 10.1007/s00247-023-05775-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Whole-body magnetic resonance imaging (MRI) has been investigated by multiple authors as a radiation-free alternative to positron emission tomography computed tomography (PET-CT) in children with lymphoma. OBJECTIVE To evaluate the sensitivity, specificity, and diagnostic odds ratio of whole-body MRI compared to PET-CT for the staging of pediatric lymphoma. METHODS The databases PubMed, Embase, and Scopus were searched for studies that reported the accuracy of whole-body MRI compared to PET-CT for lymphoma staging in children. Data was collected from included studies to formulate 2 × 2 contingency tables, including the number of true positive, true negative, false positive, and false negative. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated. Summary receiver operating characteristic curves were drawn and the area under the curve (AUC) calculated. In addition, the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS 2) tool was used to assess the risk of bias and applicability concerns. RESULTS A total of seven studies were included in the final analysis. Of these, six studies used unenhanced whole-body MRI. The pooled sensitivity of whole-body MRI-based staging was 95.8%, while the pooled specificity was 21.8%. The DOR for whole-body MRI was 1.19. For extranodal staging, the pooled sensitivity was 88.9%, specificity was 97.4%, and DOR was 25.29. The partial AUC for overall staging was 0.63, whereas that for extranodal staging stood at 0.88. Based on the QUADAS 2 tool, all seven studies were at risk of bias (six at high risk, one at unclear risk). CONCLUSION Whole-body MRI has high sensitivity for staging of pediatric lymphoma and may be a useful alternative to PET-CT.
Collapse
Affiliation(s)
- Deeksha Bhalla
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Manisha Jana
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Devasenathipathy Kandasamy
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
2
|
Whole-Body Magnetic Resonance Imaging: Current Role in Patients with Lymphoma. Diagnostics (Basel) 2021; 11:diagnostics11061007. [PMID: 34073062 PMCID: PMC8227037 DOI: 10.3390/diagnostics11061007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Imaging of lymphoma is based on the use of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) and/or contrast-enhanced CT, but concerns have been raised regarding radiation exposure related to imaging scans in patients with cancer, and its association with increased risk of secondary tumors in patients with lymphoma has been established. To date, lymphoproliferative disorders are among the most common indications to perform whole-body magnetic resonance imaging (MRI). Whole-body MRI is superior to contrast-enhanced CT for staging the disease, also being less dependent on histology if compared to 18F-FDG-PET/CT. As well, it does not require exposure to ionizing radiation and could be used for the surveillance of lymphoma. The current role of whole-body MRI in the diagnostic workup in lymphoma is examined in the present review along with the diagnostic performance in staging, response assessment and surveillance of different lymphoma subtypes.
Collapse
|
3
|
Spijkers S, Littooij AS, Kwee TC, Tolboom N, Beishuizen A, Bruin MCA, Elias SG, van de Brug T, Enríquez G, Sábado C, Miller E, Granata C, de Lange C, Verzegnassi F, Greer MLC, de Keizer B, Nievelstein RAJ. Whole-body MRI versus an FDG-PET/CT-based reference standard for staging of paediatric Hodgkin lymphoma: a prospective multicentre study. Eur Radiol 2020; 31:1494-1504. [PMID: 32880696 PMCID: PMC7880958 DOI: 10.1007/s00330-020-07182-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/02/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Objectives To assess the concordance of whole-body MRI (WB-MRI) and an FDG-PET/CT-based reference standard for the initial staging in children with Hodgkin lymphoma (HL) Methods Children with newly diagnosed HL were included in this prospective, multicentre, international study and underwent WB-MRI and FDG-PET/CT at staging. Two radiologists and a nuclear medicine physician independently evaluated all images. Discrepancies between WB-MRI and FDG-PET/CT were assessed by an expert panel. All FDG-PET/CT errors were corrected to derive the FDG-PET/CT-based reference standard. The expert panel corrected all reader errors in the WB-MRI DWI dataset to form the intrinsic MRI data. Inter-observer agreement for WB-MRI DWI was calculated using overall agreement, specific agreements and kappa statistics. Concordance for correct classification of all disease sites and disease stage between WB-MRI (without DWI, with DWI and intrinsic WB-MRI DWI) and the reference standard was calculated as primary outcome. Secondary outcomes included positive predictive value, negative predictive value and kappa statistics. Clustering within patients was accounted for using a mixed-effect logistic regression model with random intercepts and a multilevel kappa analysis. Results Sixty-eight children were included. Inter-observer agreement between WB-MRI DWI readers was good for disease stage (κ = 0.74). WB-MRI DWI agreed with the FDG-PET/CT-based reference standard for determining disease stage in 96% of the patients versus 88% for WB-MRI without DWI. Agreement between WB-MRI DWI and the reference standard was excellent for both nodal (98%) and extra-nodal (100%) staging. Conclusions WB-MRI DWI showed excellent agreement with the FDG-PET/CT-based reference standard. The addition of DWI to the WB-MRI protocol improved the staging agreement. Key Points • This study showed excellent agreement between WB-MRI DWI and an FDG-PET/CT-based reference standard for staging paediatric HL. • Diffusion-weighted imaging is a useful addition to WB-MRI in staging paediatric HL. • Inter-observer agreement for WB-MRI DWI was good for both nodal and extra-nodal staging and determining disease stage. Electronic supplementary material The online version of this article (10.1007/s00330-020-07182-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suzanne Spijkers
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Annemieke S Littooij
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | - Thomas C Kwee
- Medical Imaging Center, Department of Radiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | - Auke Beishuizen
- Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands.,Department of Paediatric Oncology/Haematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marrie C A Bruin
- Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tim van de Brug
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, VUmc, Amsterdam, The Netherlands
| | | | - Constantino Sábado
- Department of Paediatric Oncology and Haematology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Elka Miller
- Department of Medical Imaging, CHEO, University of Ottawa, Ottawa, Canada
| | - Claudio Granata
- Department of Paediatric Radiology, Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Charlotte de Lange
- Department of Diagnostic Imaging and Intervention, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Federico Verzegnassi
- Oncohematology Unit, Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Mary-Louise C Greer
- Department of Diagnostic Imaging, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Bart de Keizer
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | - Rutger A J Nievelstein
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|