1
|
Kubota K, Fujioka T, Tateishi U, Mori M, Yashima Y, Yamaga E, Katsuta L, Yamaguchi K, Tozaki M, Sasaki M, Uematsu T, Monzawa S, Isomoto I, Suzuki M, Satake H, Nakahara H, Goto M, Kikuchi M. Investigation of imaging features in contrast-enhanced magnetic resonance imaging of benign and malignant breast lesions. Jpn J Radiol 2024; 42:720-730. [PMID: 38503998 PMCID: PMC11217097 DOI: 10.1007/s11604-024-01551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE This study aimed to enhance the diagnostic accuracy of contrast-enhanced breast magnetic resonance imaging (MRI) using gadobutrol for differentiating benign breast lesions from malignant ones. Moreover, this study sought to address the limitations of current imaging techniques and criteria based on the Breast Imaging Reporting and Data System (BI-RADS). MATERIALS AND METHODS In a multicenter retrospective study conducted in Japan, 200 women were included, comprising 100 with benign lesions and 100 with malignant lesions, all classified under BI-RADS categories 3 and 4. The MRI protocol included 3D fast gradient echo T1- weighted images with fat suppression, with gadobutrol as the contrast agent. The analysis involved evaluating patient and lesion characteristics, including age, size, location, fibroglandular tissue, background parenchymal enhancement (BPE), signal intensity, and the findings of mass and non-mass enhancement. In this study, univariate and multivariate logistic regression analyses were performed, along with decision tree analysis, to identify significant predictors for the classification of lesions. RESULTS Differences in lesion characteristics were identified, which may influence malignancy risk. The multivariate logistic regression model revealed age, lesion location, shape, and signal intensity as significant predictors of malignancy. Decision tree analysis identified additional diagnostic factors, including lesion margin and BPE level. The decision tree models demonstrated high diagnostic accuracy, with the logistic regression model showing an area under the curve of 0.925 for masses and 0.829 for non-mass enhancements. CONCLUSION This study underscores the importance of integrating patient age, lesion location, and BPE level into the BI-RADS criteria to improve the differentiation between benign and malignant breast lesions. This approach could minimize unnecessary biopsies and enhance clinical decision-making in breast cancer diagnostics, highlighting the effectiveness of gadobutrol in breast MRI evaluations.
Collapse
Affiliation(s)
- Kazunori Kubota
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamiko-Shigaya, Koshigaya, Saitama, 343-8555, Japan
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Mio Mori
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yuka Yashima
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamiko-Shigaya, Koshigaya, Saitama, 343-8555, Japan
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Emi Yamaga
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Leona Katsuta
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Ken Yamaguchi
- Department of Radiology, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga City, Saga, 849-8501, Japan
| | - Mitsuhiro Tozaki
- Department of Radiology, Sagara Hospital, 3-31 Matsubara-Cho, Kagoshima City, Kagoshima, 892-0833, Japan
| | - Michiro Sasaki
- Department of Radiology, Sagara Hospital, 3-31 Matsubara-Cho, Kagoshima City, Kagoshima, 892-0833, Japan
| | - Takayoshi Uematsu
- Division of Breast Imaging and Breast Interventional Radiology, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, 411-8777, Japan
| | - Shuichi Monzawa
- Department of Diagnostic Radiology, Shinko Hospital, 1-4-47, Wakinohama-Cho, Chuo-Ku, Kobe City, Hyogo, 651-0072, Japan
| | - Ichiro Isomoto
- Department of Radiology, St. Francis Hospital, 9-20, Kominemachi, Nagasaki City, Nagasaki, 852-8125, Japan
| | - Mizuka Suzuki
- Department of Diagnostic Radiology, Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Hiroko Satake
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Nakahara
- Department of Radiology, Sagara Hospital Miyazaki, 2-112-1 Maruyama, Miyazaki City, Miyazaki, 880-0052, Japan
| | - Mariko Goto
- Department of Radiology, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto City, 602-8566, Japan
| | - Mari Kikuchi
- Department of Imaging Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
3
|
Istomin A, Masarwah A, Vanninen R, Okuma H, Sudah M. Diagnostic performance of the Kaiser score for characterizing lesions on breast MRI with comparison to a multiparametric classification system. Eur J Radiol 2021; 138:109659. [PMID: 33752000 DOI: 10.1016/j.ejrad.2021.109659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE To determine the diagnostic performance of the Kaiser score and to compare it with the BI-RADS-based multiparametric classification system (MCS). METHOD Two breast radiologists, blinded to the clinical and pathological information, separately evaluated a database of 499 consecutive patients with structural 3.0 T breast MRI and 697 histopathologically verified lesions. The Kaiser scores and corresponding MCS categories were recorded. The sensitivity and specificity of the Kaiser score and the MCS categories to differentiate benign from malignant lesions were calculated. The interobserver reproducibility and receiver operating characteristic (ROC) parameters were analysed. RESULTS The sensitivity and specificity of the MCS were 100 % and 12 %, respectively, and those of the Kaiser score were 98.5 % and 34.8 % for reader 1 and 98.7 % and 47.5 % for reader 2. The area under the ROC-curve was 85.9 and 87.6 for readers 1 and 2. The interobserver intraclass correlation coefficient was excellent at 0.882. Reader 1 upgraded six lesions from BI-RADS 3 to a Kaiser score of >4, and reader 2 upgraded seven lesions. When applying the Kaiser score to 158 benign lesions readers 1 and 2 would have reduced the biopsy rate by 22.8 % and 35.4 %, respectively. CONCLUSIONS The Kaiser score showed high diagnostic accuracy with excellent interobserver reproducibility. The MCS had perfect sensitivity but low specificity. Although the Kaiser score had slightly lower sensitivity, its specificity was 3-4 times greater than that of the MCS. Thus, the Kaiser score has the potential to considerably reduce the biopsy rate for true negative lesions.
Collapse
Affiliation(s)
- Aleksandr Istomin
- Kuopio University Hospital, Diagnostic Imaging Center, Department of Clinical Radiology, Kuopio, Finland
| | - Amro Masarwah
- Kuopio University Hospital, Diagnostic Imaging Center, Department of Clinical Radiology, Kuopio, Finland
| | - Ritva Vanninen
- Kuopio University Hospital, Diagnostic Imaging Center, Department of Clinical Radiology, Kuopio, Finland; University of Eastern Finland, Cancer Center of Eastern Finland, Kuopio, Finland; University of Eastern Finland, Institute of Clinical Medicine, School of Medicine, Kuopio, Finland
| | - Hidemi Okuma
- Kuopio University Hospital, Diagnostic Imaging Center, Department of Clinical Radiology, Kuopio, Finland
| | - Mazen Sudah
- Kuopio University Hospital, Diagnostic Imaging Center, Department of Clinical Radiology, Kuopio, Finland; University of Eastern Finland, Cancer Center of Eastern Finland, Kuopio, Finland.
| |
Collapse
|