1
|
Wang TW, Hong JS, Chiu HY, Chao HS, Chen YM, Wu YT. Standalone deep learning versus experts for diagnosis lung cancer on chest computed tomography: a systematic review. Eur Radiol 2024; 34:7397-7407. [PMID: 38777902 PMCID: PMC11519296 DOI: 10.1007/s00330-024-10804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To compare the diagnostic performance of standalone deep learning (DL) algorithms and human experts in lung cancer detection on chest computed tomography (CT) scans. MATERIALS AND METHODS This study searched for studies on PubMed, Embase, and Web of Science from their inception until November 2023. We focused on adult lung cancer patients and compared the efficacy of DL algorithms and expert radiologists in disease diagnosis on CT scans. Quality assessment was performed using QUADAS-2, QUADAS-C, and CLAIM. Bivariate random-effects and subgroup analyses were performed for tasks (malignancy classification vs invasiveness classification), imaging modalities (CT vs low-dose CT [LDCT] vs high-resolution CT), study region, software used, and publication year. RESULTS We included 20 studies on various aspects of lung cancer diagnosis on CT scans. Quantitatively, DL algorithms exhibited superior sensitivity (82%) and specificity (75%) compared to human experts (sensitivity 81%, specificity 69%). However, the difference in specificity was statistically significant, whereas the difference in sensitivity was not statistically significant. The DL algorithms' performance varied across different imaging modalities and tasks, demonstrating the need for tailored optimization of DL algorithms. Notably, DL algorithms matched experts in sensitivity on standard CT, surpassing them in specificity, but showed higher sensitivity with lower specificity on LDCT scans. CONCLUSION DL algorithms demonstrated improved accuracy over human readers in malignancy and invasiveness classification on CT scans. However, their performance varies by imaging modality, underlining the importance of continued research to fully assess DL algorithms' diagnostic effectiveness in lung cancer. CLINICAL RELEVANCE STATEMENT DL algorithms have the potential to refine lung cancer diagnosis on CT, matching human sensitivity and surpassing in specificity. These findings call for further DL optimization across imaging modalities, aiming to advance clinical diagnostics and patient outcomes. KEY POINTS Lung cancer diagnosis by CT is challenging and can be improved with AI integration. DL shows higher accuracy in lung cancer detection on CT than human experts. Enhanced DL accuracy could lead to improved lung cancer diagnosis and outcomes.
Collapse
Affiliation(s)
- Ting-Wei Wang
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Sheng Hong
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Hwa-Yen Chiu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Heng-Sheng Chao
- Department of Chest Medicine, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Wang F, Wang CL, Yi YQ, Zhang T, Zhong Y, Zhu JJ, Li H, Yang G, Yu TF, Xu H, Yuan M. Comparison and fusion prediction model for lung adenocarcinoma with micropapillary and solid pattern using clinicoradiographic, radiomics and deep learning features. Sci Rep 2023; 13:9302. [PMID: 37291251 PMCID: PMC10250309 DOI: 10.1038/s41598-023-36409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
To investigate whether the combination scheme of deep learning score (DL-score) and radiomics can improve preoperative diagnosis in the presence of micropapillary/solid (MPP/SOL) patterns in lung adenocarcinoma (ADC). A retrospective cohort of 514 confirmed pathologically lung ADC in 512 patients after surgery was enrolled. The clinicoradiographic model (model 1) and radiomics model (model 2) were developed with logistic regression. The deep learning model (model 3) was constructed based on the deep learning score (DL-score). The combine model (model 4) was based on DL-score and R-score and clinicoradiographic variables. The performance of these models was evaluated with area under the receiver operating characteristic curve (AUC) and compared using DeLong's test internally and externally. The prediction nomogram was plotted, and clinical utility depicted with decision curve. The performance of model 1, model 2, model 3 and model 4 was supported by AUCs of 0.848, 0.896, 0.906, 0.921 in the Internal validation set, that of 0.700, 0.801, 0.730, 0.827 in external validation set, respectively. These models existed statistical significance in internal validation (model 4 vs model 3, P = 0.016; model 4 vs model 1, P = 0.009, respectively) and external validation (model 4 vs model 2, P = 0.036; model 4 vs model 3, P = 0.047; model 4 vs model 1, P = 0.016, respectively). The decision curve analysis (DCA) demonstrated that model 4 predicting the lung ADC with MPP/SOL structure would be more beneficial than the model 1and model 3 but comparable with the model 2. The combined model can improve preoperative diagnosis in the presence of MPP/SOL pattern in lung ADC in clinical practice.
Collapse
Affiliation(s)
- Fen Wang
- Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, China
| | - Cheng-Long Wang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Yin-Qiao Yi
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Teng Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Road, Nanjing, 210029, China
| | - Yan Zhong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Road, Nanjing, 210029, China
| | - Jia-Jia Zhu
- Department of Radiology, Jiangsu Province Official Hospital, Nanjing, 210024, China
| | - Hai Li
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Tong-Fu Yu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Road, Nanjing, 210029, China
| | - Hai Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Road, Nanjing, 210029, China.
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, 300, Guangzhou Road, Nanjing, 210029, China.
| | - Mei Yuan
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 GuangZhou Road, Nanjing, 210029, China.
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, 300, Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
3
|
Wang L, Wang H, Huang Y, Yan B, Chang Z, Liu Z, Zhao M, Cui L, Song J, Li F. Trends in the application of deep learning networks in medical image analysis: Evolution between 2012 and 2020. Eur J Radiol 2021; 146:110069. [PMID: 34847395 DOI: 10.1016/j.ejrad.2021.110069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To evaluate the general rules and future trajectories of deep learning (DL) networks in medical image analysis through bibliometric and hot spot analysis of original articles published between 2012 and 2020. METHODS Original articles related to DL and medical imaging were retrieved from the PubMed database. For the analysis, data regarding radiological subspecialties; imaging techniques; DL networks; sample size; study purposes, setting, origins and design; statistical analysis; funding sources; authors; and first authors' affiliation was manually extracted from each article. The Bibliographic Item Co-Occurrence Matrix Builder and VOSviewer were used to identify the research topics of the included articles and illustrate the future trajectories of studies. RESULTS The study included 2685 original articles. The number of publications on DL and medical imaging has increased substantially since 2017, accounting for 97.2% of all included articles. We evaluated the rules of the application of 47 DL networks to eight radiological tasks on 11 human organ sites. Neuroradiology, thorax, and abdomen were frequent research subjects, while thyroid was under-represented. Segmentation and classification tasks were the primary purposes. U-Net, ResNet, and VGG were the most frequently used Convolutional neural network-derived networks. GAN-derived networks were widely developed and applied in 2020, and transfer learning was highlighted in the COVID-19 studies. Brain, prostate, and diabetic retinopathy-related studies were mature research topics in the field. Breast- and lung-related studies were in a stage of rapid development. CONCLUSIONS This study evaluates the general rules and future trajectories of DL network application in medical image analyses and provides guidance for future studies.
Collapse
Affiliation(s)
- Lu Wang
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Hairui Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Yingna Huang
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Baihui Yan
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Lei Cui
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Jiangdian Song
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, PR China.
| | - Fan Li
- School of Health Management, China Medical University, Shenyang, Liaoning 110122, PR China
| |
Collapse
|