1
|
Liu Z, Wang L, Gao S, Xue Q, Tan F, Li Z, Gao Y. Prediction and analysis of the tumor invasiveness of pulmonary ground-glass nodules based on metabolomics. Clin Exp Med 2024; 25:22. [PMID: 39708148 DOI: 10.1007/s10238-024-01529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
In recent years, the incidence of ground-glass nodular lung adenocarcinoma has gradually increased. Preoperative evaluation of the tumor invasiveness is very important, but there is a lack of effective methods. Plasma samples of ground-glass nodular lung adenocarcinoma and healthy volunteers were collected. Pulmonary nodules with different densities were compared by metabolomics. Different invasive degrees of lung adenocarcinoma were contrasted as well. Multivariate statistical methods were applied to search for significant metabolites from comparisons between two groups. The common metabolites among the different comparisons were selected and then assessed by various indices. Five metabolites were discovered for lung adenocarcinoma with different invasive degrees. Significant metabolites were selected for pulmonary nodules with different densities as well. When these metabolites were cross-compared, only the level of lysoPC(18:3) was significantly lower in ground-glass nodular lung adenocarcinoma than healthy population, as opposed to other metabolites. After identifying the invasive degree of pulmonary ground-glass nodules, lysoPC(18:3) showed a satisfactory sensitivity and specificity, both greater than 0.85. Metabolomics analysis has favorable advantages in the study of ground-glass nodular lung adenocarcinoma. LysoPC(18:3) may have the potential to differentiate precancerous lesions from invasive lung cancer, which could help clinicians to make proper judgment before surgery.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, People's Republic of China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Langfang, People's Republic of China
| | - Ling Wang
- Department of Hematology, Beijing Chuiyangliu Hospital, Beijing, People's Republic of China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, People's Republic of China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuannanli No 17, Chaoyang District, Beijing, 100021, People's Republic of China.
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Langfang, People's Republic of China.
| |
Collapse
|
2
|
Pei L, Fang T, Xu L, Ni C. A Radiomics Model Based on CT Images Combined with Multiple Machine Learning Models to Predict the Prognosis of Spontaneous Intracerebral Hemorrhage. World Neurosurg 2024; 181:e856-e866. [PMID: 37931880 DOI: 10.1016/j.wneu.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE We aimed to construct 3 predictive models, including a clinical model, a radiomics model, and a combined model, to forecast the discharge prognosis of patients with intracerebral hemorrhage on admission. METHODS A retrospective study was conducted, involving a total of 161 patients with intracerebral hemorrhage (ICH). At a ratio of 7:3, 115 of these patients were assigned to the training cohort, and 46 of these patients were assigned to the validation cohort. To produce the radionics signature and pick the features to use in its construction, the least absolute shrinkage and selection operator (LASSO) regression was applied. Five machine models were applied, and the optimal model was chosen to construct the radionics model. A clinical model was constructed using univariate and stepwise analysis to identify independent risk variables for poor outcomes at discharge. A predictive combined model nomogram was generated by integrating the clinical model and radiomics model. The performance of the nomogram was assessed in the training cohort and validated in the validation cohort. Analyses of the receiver operating characteristic curve (ROC), the calibration curve, and the decision curve were performed to assess the performance of the combined model. RESULTS This study encompassed a cohort of 161 individuals diagnosed with intracerebral hemorrhage (ICH), consisting of 110 males and 51 females. Utilizing the modified Rankin Scale (mRS) at discharge, the analysis revealed that 89 patients (55.3%) had a good prognosis, while 72 patients (44.7%) had a poor prognosis. Only 8 out of 1130 radiomics features were selected and used in conjunction with the LR algorithm to develop the radiomics model. Sex, IVH, GCS score, and ICH volume were determined to be independent predictors of poor outcomes at the time of discharge. The AUC values of the combined model, radiomics model, and clinical model were 0.8583, 0.8364, and 0.7579 in the training cohort, and 0.9153, 0.8692, and 0.7114 in the validation cohort, respectively. The combined model nomogram exhibited good calibration and clinical benefit in both the training and validation cohorts. The decision curve analysis (DCA) displays that the combined model obtained the highest net benefit compared to the radiomics model and clinics model in the training cohort. CONCLUSIONS The combined model demonstrates reliability and efficacy in predicting the discharge prognosis of ICH, enabling physicians to perform individualized risk assessments, and make optimal choices about patients with ICH.
Collapse
Affiliation(s)
- Lei Pei
- Department of Radiology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Tao Fang
- Department of Radiology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Liang Xu
- Department of Radiology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Chenfeng Ni
- Department of Radiology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China.
| |
Collapse
|
3
|
Xue G, Jia W, Wang G, Zeng Q, Wang N, Li Z, Cao P, Hu Y, Xu J, Wei Z, Ye X. Lung microwave ablation: Post-procedure imaging features and evolution of pulmonary ground-glass nodule-like lung cancer. J Cancer Res Ther 2023; 19:1654-1662. [PMID: 38156934 DOI: 10.4103/jcrt.jcrt_837_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE To retrospectively examine the imaging characteristics of chest-computed tomography (CT) following percutaneous microwave ablation (MWA) of the ground-glass nodule (GGN)-like lung cancer and its dynamic evolution over time. MATERIALS AND METHODS From June 2020 to May 2021, 147 patients with 152 GGNs (51 pure GGNs and 101 mixed GGNs, mean size 15.0 ± 6.3 mm) were enrolled in this study. One hundred and forty-seven patients underwent MWA procedures. The imaging characteristics were evaluated at predetermined time intervals: immediately after the procedure, 24-48 h, 1, 3, 6, 12, and ≥18 months (47 GGNs). RESULTS This study population included 147 patients with 152 GGNs, as indicated by the results: 43.5% (66/152) adenocarcinoma in situ, 41.4% (63/152) minimally invasive adenocarcinoma, and 15.1% (23/152) invasive adenocarcinoma. Immediate post-procedure tumor-level analysis revealed that the most common CT features were ground-glass opacities (93.4%, 142/152), hyperdensity within the nodule (90.7%, 138/152), and fried egg sign or reversed halo sign (46.7%, 71/152). Subsequently, 24-48 h post-procedure, ground-glass attenuations, hyperdensity, and the fried egg sign remained the most frequent CT findings, with incidence rates of 75.0% (114/152), 71.0% (108/152), and 54.0% (82/152), respectively. Cavitation, pleural thickening, and consolidation were less frequent findings. At 1 month after the procedure, consolidation of the ablation region was the most common imaging feature. From 3 to 12 months after the procedure, the most common imaging characteristics were consolidation, involutional parenchymal bands and pleural thickening. At ≥18 months after the procedure, imaging features of the ablation zone revealed three changes: involuting fibrosis (80.8%, 38/47), consolidation nodules (12.8%, 6/47), and disappearance (6.4%, 3/47). CONCLUSIONS This study outlined the anticipated CT imaging characteristics of GGN-like lung cancer following MWA. Diagnostic and interventional radiologists should be familiar with the expected imaging characteristics and dynamic evolution post-MWA in order to interpret imaging changes with a reference image.
Collapse
Affiliation(s)
- Guoliang Xue
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Wenjing Jia
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, China
| | - Gang Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Qingshi Zeng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, China
| | - Nan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Zhichao Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Pikun Cao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Yanting Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jie Xu
- Department of Radiology, Guangrao County People's Hospital, Dongying, Shandong Province, China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
4
|
Xiong Z, Zhao W, Tian D, Zhang J, He Y, Qin D, Li Z. Invasiveness identification in pure ground-glass nodules: exploring the generalizability of radiomics based on external validation and stress testing. J Cancer Res Clin Oncol 2023; 149:12723-12735. [PMID: 37452850 DOI: 10.1007/s00432-023-05105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE This study aimed to apply external validation and stress tests to evaluate the generalizability of radiomics models built using various machine-learning methods for identifying the invasiveness of lung adenocarcinomas manifesting as pure ground-glass nodules (pGGNs). METHODS This retrospective study enrolled 495 patients (514 pGGNs) confirmed as lung adenocarcinomas by postoperative pathology from three centers. All nodules were included in the primary cohort (randomly divided into training and test cohorts), two external validation cohorts, and two stress test cohorts. Six machine-learning radiomics models were constructed in the training cohort using the optimal features. Performance of radiomics models and clinical models were compared in primary cohort and external validation cohorts. The stress tests included stratified performance evaluation and shifted performance evaluation and contrastive evaluation under three single-condition modification settings. The predictive performance was validated by area under curve (AUC) of receiver operating characteristic (ROC). RESULTS Of the six radiomics models, the best logistic regression (LR) model was able to maintain high differential diagnostic capability (AUC: 0.849 ± 0.049) and good stability (relative standard deviation, 5.719%), but it showed poorer performance (AUC = 0.835) than the clinical model (AUC = 0.862) in the external validation cohort E1. The stress tests suggested LR model had no significant difference in performance between subgroups after stratification and had good consistency in the predictions before and after the three transformations (Kappa = 0.960, 0.840, and 0.933, respectively; p < 0.05, all). CONCLUSION The rigorous testing procedure facilitates the selection of high-performance radiomics models with good clinical generalizability.
Collapse
Affiliation(s)
- Ziqi Xiong
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Wenjing Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Di Tian
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jingyu Zhang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Yifan He
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Dongxue Qin
- Department of Radiology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, China
| | - Zhiyong Li
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
5
|
Hsin MKY, Lam DCL. Can Preoperative Radiological Identification of Lung Tumor Invasiveness Be Improved? JAMA Netw Open 2023; 6:e2339175. [PMID: 37843863 DOI: 10.1001/jamanetworkopen.2023.39175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
|
6
|
Zhu YF, Li YS, Zhang Y, Liu YJ, Zhang YN, Tao J, Wang SW. Radiomics model based on intravoxel incoherent motion and diffusion kurtosis imaging for predicting histopathological grade and Ki-67 expression level of soft tissue sarcomas. Acta Radiol 2023; 64:2541-2551. [PMID: 37312501 DOI: 10.1177/02841851231179933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Accurate identification of the histopathological grade and the Ki-67 expression level is important in clinical cases of soft tissue sarcomas (STSs). PURPOSE To explore the feasibility of a radiomics model based on intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) and diffusion kurtosis imaging (DKI) MRI parameter maps in predicting the histopathological grade and Ki-67 expression level of STSs. MATERIAL AND METHODS In total, 42 patients diagnosed with STSs between May 2018 and January 2020 were selected. The MADC software in Functool of GE ADW 4.7 workstation was used to obtain standard apparent diffusion coefficient (ADC), D, D*, f, mean diffusivity, and mean kurtosis (MK). The histopathological grade and Ki-67 expression level of STSs were identified. The radiomics features of IVIM and DKI parameter maps were used as the dataset. The area under the receiver operating characteristic curve (AUC) and F1-score were calculated. RESULTS D-SVM achieved the best diagnostic performance for histopathological grade. The AUC in the validation cohort was 0.88 (sensitivity: 0.75 [low level] and 0.83 [high level]; specificity: 0.83 [low level] and 0.75 [high level]; F1-score: 0.75 [low level] and 0.83 [high level]). MK-SVM achieved the best diagnostic performance for Ki-67 expression level. The AUC in the validation cohort was 0.83 (sensitivity: 0.83 [low level] and 0.50 [high level; specificity: 0.50 [low level] and 0.83 [high level]; F1-score: 0.77 [low level] and 0.57 [high level]). CONCLUSION The proposed radiomics classifier could predict the pathological grade of STSs and the Ki-67 expression level in STSs.
Collapse
Affiliation(s)
- Yi-Feng Zhu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, PR China
| | - Yu-Shi Li
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, PR China
| | - Yu Zhang
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, PR China
| | - Ya-Jie Liu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, PR China
| | - Yi-Ni Zhang
- Department of Pathology, The Second Hospital, Dalian Medical University, Dalian, PR China
| | - Juan Tao
- Department of Pathology, The Second Hospital, Dalian Medical University, Dalian, PR China
| | - Shao-Wu Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, PR China
| |
Collapse
|
7
|
Zhang Y, Yue X, Zhang P, Zhang Y, Wu L, Diao N, Ma G, Lu Y, Ma L, Tao K, Li Q, Han P. Clinical-radiomics-based treatment decision support for KIT Exon 11 deletion in gastrointestinal stromal tumors: a multi-institutional retrospective study. Front Oncol 2023; 13:1193010. [PMID: 37645430 PMCID: PMC10461453 DOI: 10.3389/fonc.2023.1193010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Objective gastrointestinal stromal tumors (GISTs) with KIT exon 11 deletions have more malignant clinical outcomes. A radiomics model was constructed for the preoperative prediction of KIT exon 11 deletion in GISTs. Methods Overall, 126 patients with GISTs who underwent preoperative enhanced CT were included. GISTs were manually segmented using ITK-SNAP in the arterial phase (AP) and portal venous phase (PVP) images of enhanced CT. Features were extracted using Anaconda (version 4.2.0) with PyRadiomics. Radiomics models were constructed by LASSO. The clinical-radiomics model (combined model) was constructed by combining the clinical model with the best diagnostic effective radiomics model. ROC curves were used to compare the diagnostic effectiveness of radiomics model, clinical model, and combined model. Diagnostic effectiveness among radiomics model, clinical model and combine model were analyzed in external cohort (n=57). Statistics were carried out using R 3.6.1. Results The Radscore showed favorable diagnostic efficacy. Among all radiomics models, the AP-PVP radiomics model exhibited excellent performance in the training cohort, with an AUC of 0.787 (95% CI: 0.687-0.866), which was verified in the test cohort (AUC=0.775, 95% CI: 0.608-0.895). Clinical features were also analyzed. Among the radiomics, clinical and combined models, the combined model showed favorable diagnostic efficacy in the training (AUC=0.863) and test cohorts (AUC=0.851). The combined model yielded the largest AUC of 0.829 (95% CI, 0.621-0.950) for the external validation of the combined model. GIST patients could be divided into high or low risk subgroups of recurrence and mortality by the Radscore. Conclusion The radiomics models based on enhanced CT for predicting KIT exon 11 deletion mutations have good diagnostic performance.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaofei Yue
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuying Zhang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Linxia Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Nan Diao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Guina Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuting Lu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ling Ma
- He Kang Corporate Management (SH) Co. Ltd., Shanghai, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
8
|
Logullo P, MacCarthy A, Dhiman P, Kirtley S, Ma J, Bullock G, Collins GS. Artificial intelligence in lung cancer diagnostic imaging: a review of the reporting and conduct of research published 2018-2019. BJR Open 2023; 5:20220033. [PMID: 37389003 PMCID: PMC10301715 DOI: 10.1259/bjro.20220033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 07/01/2023] Open
Abstract
Objective This study aimed to describe the methodologies used to develop and evaluate models that use artificial intelligence (AI) to analyse lung images in order to detect, segment (outline borders of), or classify pulmonary nodules as benign or malignant. Methods In October 2019, we systematically searched the literature for original studies published between 2018 and 2019 that described prediction models using AI to evaluate human pulmonary nodules on diagnostic chest images. Two evaluators independently extracted information from studies, such as study aims, sample size, AI type, patient characteristics, and performance. We summarised data descriptively. Results The review included 153 studies: 136 (89%) development-only studies, 12 (8%) development and validation, and 5 (3%) validation-only. CT scans were the most common type of image type used (83%), often acquired from public databases (58%). Eight studies (5%) compared model outputs with biopsy results. 41 studies (26.8%) reported patient characteristics. The models were based on different units of analysis, such as patients, images, nodules, or image slices or patches. Conclusion The methods used to develop and evaluate prediction models using AI to detect, segment, or classify pulmonary nodules in medical imaging vary, are poorly reported, and therefore difficult to evaluate. Transparent and complete reporting of methods, results and code would fill the gaps in information we observed in the study publications. Advances in knowledge We reviewed the methodology of AI models detecting nodules on lung images and found that the models were poorly reported and had no description of patient characteristics, with just a few comparing models' outputs with biopsies results. When lung biopsy is not available, lung-RADS could help standardise the comparisons between the human radiologist and the machine. The field of radiology should not give up principles from the diagnostic accuracy studies, such as the choice for the correct ground truth, just because AI is used. Clear and complete reporting of the reference standard used would help radiologists trust in the performance that AI models claim to have. This review presents clear recommendations about the essential methodological aspects of diagnostic models that should be incorporated in studies using AI to help detect or segmentate lung nodules. The manuscript also reinforces the need for more complete and transparent reporting, which can be helped using the recommended reporting guidelines.
Collapse
Affiliation(s)
| | | | | | | | | | - Garrett Bullock
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States
| | | |
Collapse
|
9
|
Li M, Xi J, Zhang H, Jin X, Fan Z, Zhan C, Feng M, Tan L, Wang Q. Ground glass nodules with scattered or eccentric island-shaped consolidations may have poor outcomes. CANCER INNOVATION 2023; 2:148-158. [PMID: 38090062 PMCID: PMC10686148 DOI: 10.1002/cai2.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 10/15/2024]
Abstract
Background To explore the effect of scattered or eccentric shaped types of ground glass opacity (GGO) on outcomes of patients with solid-dominant peripheral lung adenocarcinoma. Methods We evaluated patients with solid-dominant peripheral lung adenocarcinoma, who underwent radical surgery at Zhongshan Hospital, Fudan University, between January 2013 and December 2015. Morphologically heterogeneous solid-dominant lung adenocarcinoma in imaging findings was based on the last preoperative computed tomography (CT) scans. Endpoints were recurrence-free survival (RFS) and overall survival (OS). Kaplan-Meier analysis and the log-rank test were used to estimate survival differences. Impact factors were assessed by univariable logistic regression analysis. Results We retrospectively collected data from 200 patients, including 170 patients with central island-shaped CT imaging, 18 patients with scattered shaped CT imaging, and 12 patients with eccentric shaped CT imaging. Eleven patients experienced recurrence or metastases. Kaplan-Meier survival curves showed significant survival differences between the central island-shaped type and scattered shaped or eccentric shaped type for OS (c-stage IA: 5-year OS: 100% vs. 92.1%; HR = 0.019, p = 0.0025; p-stage IA: 100% vs. 95.2%; HR = 0.146, p = 0.1139) and RFS (c-stage IA: 5-year RFS: 100% vs. 59.7%; HR = 0.001, p < 0.0001; p-stage IA: 100% vs. 64.5%; HR < 0.001, p < 0.0001). Univariable logistic regression analysis showed that scattered and eccentric shaped types were related to poor outcomes (p < 0.012, odds ratio = 18.8). Conclusions Relative spatial position of GGO and solid components may affect patient outcomes. Patients with scattered or eccentric shaped GGO may have a poor prognosis.
Collapse
Affiliation(s)
- Ming Li
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
- Cancer Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
- Cancer Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
- Cancer Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
- Cancer Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhuoyang Fan
- Department of Interventional Radiology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
- Cancer Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
- Cancer Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
- Cancer Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Spadarella G, Stanzione A, Akinci D'Antonoli T, Andreychenko A, Fanni SC, Ugga L, Kotter E, Cuocolo R. Systematic review of the radiomics quality score applications: an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol 2023; 33:1884-1894. [PMID: 36282312 PMCID: PMC9935718 DOI: 10.1007/s00330-022-09187-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The main aim of the present systematic review was a comprehensive overview of the Radiomics Quality Score (RQS)-based systematic reviews to highlight common issues and challenges of radiomics research application and evaluate the relationship between RQS and review features. METHODS The literature search was performed on multiple medical literature archives according to PRISMA guidelines for systematic reviews that reported radiomic quality assessment through the RQS. Reported scores were converted to a 0-100% scale. The Mann-Whitney and Kruskal-Wallis tests were used to compare RQS scores and review features. RESULTS The literature research yielded 345 articles, from which 44 systematic reviews were finally included in the analysis. Overall, the median of RQS was 21.00% (IQR = 11.50). No significant differences of RQS were observed in subgroup analyses according to targets (oncological/not oncological target, neuroradiology/body imaging focus and one imaging technique/more than one imaging technique, characterization/prognosis/detection/other). CONCLUSIONS Our review did not reveal a significant difference of quality of radiomic articles reported in systematic reviews, divided in different subgroups. Furthermore, low overall methodological quality of radiomics research was found independent of specific application domains. While the RQS can serve as a reference tool to improve future study designs, future research should also be aimed at improving its reliability and developing new tools to meet an ever-evolving research space. KEY POINTS • Radiomics is a promising high-throughput method that may generate novel imaging biomarkers to improve clinical decision-making process, but it is an inherently complex analysis and often lacks reproducibility and generalizability. • The Radiomics Quality Score serves a necessary role as the de facto reference tool for assessing radiomics studies. • External auditing of radiomics studies, in addition to the standard peer-review process, is valuable to highlight common limitations and provide insights to improve future study designs and practical applicability of the radiomics models.
Collapse
Affiliation(s)
- Gaia Spadarella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Anna Andreychenko
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Healthcare Department, Moscow, Russia
| | | | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Elmar Kotter
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
11
|
Wu L, Li J, Ruan X, Ren J, Ping X, Chen B. Prediction of VEGF and EGFR Expression in Peripheral Lung Cancer Based on the Radiomics Model of Spectral CT Enhanced Images. Int J Gen Med 2022; 15:6725-6738. [PMID: 36039307 PMCID: PMC9419990 DOI: 10.2147/ijgm.s374002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Background Energy spectrum CT is an effective method to evaluate the biological behavior of lung cancer. Radiomics is a non-invasive technology to obtain histological information related to lung cancer. Purpose To investigate the value of the radiomics models on the bases of enhanced spectral CT images of peripheral lung cancer to predict the expression of the vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). Material and Methods This study retrospectively analyzed 73 patients with peripheral lung cancer confirmed by postoperative pathology. All patients underwent dual-phase enhanced spectral CT scans before surgery. Regions of interest (ROI) were delineated in the arterial phase and venous phase. Key radiomics features were extracted and models were established to predict the expression of VEGF and EGFR, respectively. All models were established based on the expression levels of VEGF and EGFR in tissues detected by immunohistochemical staining as reference standards. Receiver operating characteristic (ROC) curve and calibration curve were used to evaluate the predictive performance of each model, and decision curve analysis (DCA) was used to evaluate the clinical utility of the models. Results In predicting the expression level of VEGF, the combined (COMB) model composed of one spectral feature and two radiomics features achieved the best performance with area under ROC (AUC) 0.867 (95% CI: 0.767–0.966), accuracy of 0.812, sensitivity of 0.879, and specificity of 0.667. According to the expression level of EGFR, three importance radiomics features were retained in the arterial and venous phases to establish the multiphase phase model which has the best performance with AUC of 0.950 (95% confidence interval: 0.89–1.00), accuracy of 0.896, sensitivity of 0.868, and specificity of 1. Conclusion The radiomics model of enhanced spectral CT images of peripheral lung cancer can predict the expression of EGFR and VEGF.
Collapse
Affiliation(s)
- Linhua Wu
- Department of Radiology, General Hosipital of Ningxia Medical University, YinChuan, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jian Li
- Department of Radiology, General Hosipital of Ningxia Medical University, YinChuan, Ningxia Hui Autonomous Region, People's Republic of China
| | - Xiaowei Ruan
- Department of Radiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, People's Republic of China
| | - Xuejun Ping
- Department of Clinical Medical Faculty, Medical University of Ningxia, Yinchuan, Ningxia Hui Autonomous Region, People's Republic of China
| | - Bing Chen
- Department of Radiology, General Hosipital of Ningxia Medical University, YinChuan, Ningxia Hui Autonomous Region, People's Republic of China
| |
Collapse
|
12
|
Radiomics based on enhanced CT for differentiating between pulmonary tuberculosis and pulmonary adenocarcinoma presenting as solid nodules or masses. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04256-y. [PMID: 35939114 DOI: 10.1007/s00432-022-04256-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE To investigate the incremental value of enhanced CT-based radiomics in discriminating between pulmonary tuberculosis (PTB) and pulmonary adenocarcinoma (PAC) presenting as solid nodules or masses and to develop an optimal radiomics model. METHODS A total of 128 lesions (from 123 patients) from three hospitals were retrospectively analyzed and were randomly divided into training and test datasets at a ratio of 7:3. Independent predictors in subjective image features were used to develop the subjective image model (SIM). The plain CT-based and enhanced CT-based radiomics features were screened by the correlation coefficient method, univariate analysis, and the least absolute shrinkage and selection operator, then used to build the plain CT radiomics model (PRM) and enhanced CT radiomics model (ERM), respectively. Finally, the combined model (CM) combining PRM and ERM was established. In addition, the performance of three radiologists and one respiratory physician was evaluated. The areas under the receiver operating characteristic curve (AUCs) were used to assess the performance of each model. RESULTS The differential diagnostic capability of the ERM (training: AUC = 0.933; test: AUC = 0.881) was better than that of the PRM (training: AUC = 0.861; test: AUC = 0.756) and the SIM (training: AUC = 0.760; test: AUC = 0.611). The CM was optimal (training: AUC = 0.948; test: AUC = 0.917) and outperformed the respiratory physician and most radiologists. CONCLUSIONS The ERM was more helpful than the PRM for identifying PTB and PAC that present as solid nodules or masses, and the CM was the best.
Collapse
|
13
|
Wu YJ, Wu FZ, Yang SC, Tang EK, Liang CH. Radiomics in Early Lung Cancer Diagnosis: From Diagnosis to Clinical Decision Support and Education. Diagnostics (Basel) 2022; 12:diagnostics12051064. [PMID: 35626220 PMCID: PMC9139351 DOI: 10.3390/diagnostics12051064] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the most frequent cause of cancer-related death around the world. With the recent introduction of low-dose lung computed tomography for lung cancer screening, there has been an increasing number of smoking- and non-smoking-related lung cancer cases worldwide that are manifesting with subsolid nodules, especially in Asian populations. However, the pros and cons of lung cancer screening also follow the implementation of lung cancer screening programs. Here, we review the literature related to radiomics for early lung cancer diagnosis. There are four main radiomics applications: the classification of lung nodules as being malignant/benign; determining the degree of invasiveness of the lung adenocarcinoma; histopathologic subtyping; and prognostication in lung cancer prediction models. In conclusion, radiomics offers great potential to improve diagnosis and personalized risk stratification in early lung cancer diagnosis through patient–doctor cooperation and shared decision making.
Collapse
Affiliation(s)
- Yun-Ju Wu
- Department of Software Engineering and Management, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan;
| | - Fu-Zong Wu
- Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Faculty of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence:
| | - Shu-Ching Yang
- Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
| | - En-Kuei Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Chia-Hao Liang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| |
Collapse
|
14
|
[Chinese Experts Consensus on Artificial Intelligence Assisted Management for
Pulmonary Nodule (2022 Version)]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:219-225. [PMID: 35340198 PMCID: PMC9051301 DOI: 10.3779/j.issn.1009-3419.2022.102.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low-dose computed tomography (CT) for lung cancer screening has been proven to reduce lung cancer deaths in the screening group compared with the control group. The increasing number of pulmonary nodules being detected by CT scans significantly increase the workload of the radiologists for scan interpretation. Artificial intelligence (AI) has the potential to increase the efficiency of pulmonary nodule discrimination and has been tested in preliminary studies for nodule management. As more and more artificial AI products are commercialized, the consensus statement has been organized in a collaborative effort by Thoracic Surgery Committee, Department of Simulated Medicine, Wu Jieping Medical Foundation to aid clinicians in the application of AI-assisted management for pulmonary nodules.
.
Collapse
|