1
|
Di Maria S, van Nijnatten TJA, Jeukens CRLPN, Vedantham S, Dietzel M, Vaz P. Understanding the risk of ionizing radiation in breast imaging: Concepts and quantities, clinical importance, and future directions. Eur J Radiol 2024; 181:111784. [PMID: 39423780 DOI: 10.1016/j.ejrad.2024.111784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Conventional mammography remains the primary imaging modality for state-of-the-art breast imaging practice and its benefit (both on diagnostic and screening) was largely reported. In mammography, the typical Mean Glandular Dose (MGD) from X-ray radiation to the breast spans, on average, from 1 to 10 mGy, depending on breast thicknesses, percentage of fibroglandular tissue, and on the examination purpose. METHODS The aim of this narrative review is to describe the extent of radiation risk in X-ray breast imaging and discuss the main steps and parameters (e.g. MGD, screening frequency and number of examination views) that may have an influence on the radiation risk assessment. RESULTS Even though the radiation doses used with these examinations are very low, as compared to other medical or natural radiation exposures, there is a non-negligible associated risk of radiation-induced cancer. Accurate radiation risk assessment permits to better balance the overall estimation of the benefit-to-risk ratio in X-ray breast imaging. CONCLUSIONS It is expected that a better knowledge about radiation-induced cancer risk among population could improve the communications skills between patients and clinicians and could help to increase the awareness in women about radiation risk perception for a transparent and proper informed choice of imaging exam.
Collapse
Affiliation(s)
- S Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10, km 139,7 2695-066, Bobadela LRS, Portugal.
| | - T J A van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands; GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - C R L P N Jeukens
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - S Vedantham
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA
| | - M Dietzel
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - P Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10, km 139,7 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
2
|
Li Y, Zhang Y, Yu Q, He C, Yuan X. Intelligent scoring system based on dynamic optical breast imaging for early detection of breast cancer. BIOMEDICAL OPTICS EXPRESS 2024; 15:1515-1527. [PMID: 38495695 PMCID: PMC10942703 DOI: 10.1364/boe.515135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
Early detection of breast cancer can significantly improve patient outcomes and five-year survival in clinical screening. Dynamic optical breast imaging (DOBI) technology reflects the blood oxygen metabolism level of tumors based on the theory of tumor neovascularization, which offers a technical possibility for early detection of breast cancer. In this paper, we propose an intelligent scoring system integrating DOBI features assessment and a malignancy score grading reporting system for early detection of breast cancer. Specifically, we build six intelligent feature definition models to depict characteristics of regions of interest (ROIs) from location, space, time and context separately. Similar to the breast imaging-reporting and data system (BI-RADS), we conclude the malignancy score grading reporting system to score and evaluate ROIs as follows: Malignant (≥ 80 score), Likely Malignant (60-80 score), Intermediate (35-60 score), Likely Benign (10-35 score), and Benign (<10 score). This system eliminates the influence of subjective physician judgments on the assessment of the malignant probability of ROIs. Extensive experiments on 352 Chinese patients demonstrate the effectiveness of the proposed system compared to state-of-the-art methods.
Collapse
Affiliation(s)
- Yaoyao Li
- Hangzhou Institute of Technology, Xidian University, Qiannong Dong Road No. 8, Hangzhou, Zhejiang, 311231, China
| | - Yipei Zhang
- Hangzhou Institute of Technology, Xidian University, Qiannong Dong Road No. 8, Hangzhou, Zhejiang, 311231, China
| | - Qiang Yu
- Hangzhou Institute of Technology, Xidian University, Qiannong Dong Road No. 8, Hangzhou, Zhejiang, 311231, China
| | - Chenglong He
- Hangzhou Institute of Technology, Xidian University, Qiannong Dong Road No. 8, Hangzhou, Zhejiang, 311231, China
| | - Xiguo Yuan
- Hangzhou Institute of Technology, Xidian University, Qiannong Dong Road No. 8, Hangzhou, Zhejiang, 311231, China
| |
Collapse
|
3
|
Ahmed Shaker Hegian Z, Moh'd Abu Tahoun L, Ramli RM, Noor Azman NZ. The relationship between mean glandular dose and compressed breast thickness specified for Jordan. RADIATION PROTECTION DOSIMETRY 2023; 200:25-31. [PMID: 37738470 DOI: 10.1093/rpd/ncad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
The mean glandular dose (MGD) is a measurement used in mammography to assess the amount of radiation absorbed. By considering specific exposure radiation dose criteria, MGD ensures minimal radiation while maintaining image quality for detecting abnormalities. The relationship between MGD and compressed breast thickness (CBT) is commonly utilized in mammographic dose surveys. This study aims to estimate the MGD-CBT relationship based on patient age in Jordan through retrospective analysis. The analysis involved 3465 screening mammography images of women aged 40-80, divided into three age groups: 40-49, 50-64 and 65-80 years. Each group had a specific CBT range (16.5-156 mm). The results indicate that MGD ranges from 1.6 to 1.7 mGy across all three age groups, independent of CBT. Thus, a significant and positive correlation exists between MGD and CBT in all age groups.
Collapse
Affiliation(s)
- Zeinab Ahmed Shaker Hegian
- School of Physics, Universiti Sains Malaysia, Penang 11800 Minden, Malaysia
- Breast Imaging Unit, King Hussein Cancer Center (KHCC), 11831 Amman, Jordan
| | | | | | | |
Collapse
|
4
|
Fico N, Grezia GD, Cuccurullo V, Salvia AAH, Iacomino A, Sciarra A, La Forgia D, Gatta G. Breast Imaging Physics in Mammography (Part II). Diagnostics (Basel) 2023; 13:3582. [PMID: 38066823 PMCID: PMC10706410 DOI: 10.3390/diagnostics13233582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
One of the most frequently detected neoplasms in women in Italy is breast cancer, for which high-sensitivity diagnostic techniques are essential for early diagnosis in order to minimize mortality rates. As addressed in Part I of this work, we have seen how conditions such as high glandular density or limitations related to mammographic sensitivity have driven the optimization of technology and the use of increasingly advanced and specific diagnostic methodologies. While the first part focused on analyzing the use of a mammography machine from a physical and dosimetric perspective, in this paper, we will examine other techniques commonly used in breast imaging: contrast-enhanced mammography, digital breast tomosynthesis, radio imaging, and include some notes on image processing. We will also explore the differences between these various techniques to provide a comprehensive overview of breast lesion detection techniques. We will examine the strengths and weaknesses of different diagnostic modalities and observe how, with the implementation of improvements over time, increasingly effective diagnoses can be achieved.
Collapse
Affiliation(s)
- Noemi Fico
- Department of Physics “Ettore Pancini”, Università di Napoli Federico II, 80127 Naples, Italy
| | | | - Vincenzo Cuccurullo
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80013 Naples, Italy; (V.C.); (A.A.H.S.); (G.G.)
| | | | - Aniello Iacomino
- Department of Human Science, Guglielmo Marconi University, 00193 Rome, Italy;
| | - Antonella Sciarra
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80013 Naples, Italy;
| | | | - Gianluca Gatta
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80013 Naples, Italy; (V.C.); (A.A.H.S.); (G.G.)
| |
Collapse
|
5
|
Fico N, Di Grezia G, Cuccurullo V, Salvia AAH, Iacomino A, Sciarra A, Gatta G. Breast Imaging Physics in Mammography (Part I). Diagnostics (Basel) 2023; 13:3227. [PMID: 37892053 PMCID: PMC10606465 DOI: 10.3390/diagnostics13203227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer is the most frequently diagnosed neoplasm in women in Italy. There are several risk factors, but thanks to screening and increased awareness, most breast cancers are diagnosed at an early stage when surgical treatment can most often be conservative and the adopted therapy is more effective. Regular screening is essential but advanced technology is needed to achieve quality diagnoses. Mammography is the gold standard for early detection of breast cancer. It is a specialized technique for detecting breast cancer and, thus, distinguishing normal tissue from cancerous breast tissue. Mammography techniques are based on physical principles: through the proper use of X-rays, the structures of different tissues can be observed. This first part of the paper attempts to explain the physical principles used in mammography. In particular, we will see how a mammogram is composed and what physical principles are used to obtain diagnostic images.
Collapse
Affiliation(s)
- Noemi Fico
- Department of Physics Ettore Pancini, Università di Napoli Federico II, 80126 Naples, Italy
| | | | - Vincenzo Cuccurullo
- Nuclear Medicine Unit, Department of Precision Medicine, Università della Campania Luigi Vanvitelli, 81100 Napoli, Italy;
| | | | - Aniello Iacomino
- Department of Human Science, Guglielmo Marconi University, 00193 Rome, Italy;
| | - Antonella Sciarra
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Napoli, Italy;
| | - Gianluca Gatta
- Department of Precision Medicine, Università della Campania Luigi Vanvitelli, 81100 Napoli, Italy; (A.A.H.S.); (G.G.)
| |
Collapse
|
6
|
Wetzl M, Dietzel M, Ohlmeyer S, Uder M, Wenkel E. Spiral breast computed tomography with a photon-counting detector (SBCT): the future of breast imaging? Eur J Radiol 2022; 157:110605. [DOI: 10.1016/j.ejrad.2022.110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
7
|
Di Maria S, Vedantham S, Vaz P. Breast dosimetry in alternative X-ray-based imaging modalities used in current clinical practices. Eur J Radiol 2022; 155:110509. [PMID: 36087425 PMCID: PMC9851082 DOI: 10.1016/j.ejrad.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
In X-ray breast imaging, Digital Mammography (DM) and Digital Breast Tomosynthesis (DBT), are the standard and largely used techniques, both for diagnostic and screening purposes. Other techniques, such as dedicated Breast Computed Tomography (BCT) and Contrast Enhanced Mammography (CEM) have been developed as an alternative or a complementary technique to the established ones. The performance of these imaging techniques is being continuously assessed to improve the image quality and to reduce the radiation dose. These imaging modalities are predominantly used in the diagnostic setting to resolve incomplete or indeterminate findings detected with conventional screening examinations and could potentially be used either as an adjunct or as a primary screening tool in select populations, such as for women with dense breasts. The aim of this review is to describe the radiation dosimetry for these imaging techniques, and to compare the mean glandular dose with standard breast imaging modalities, such as DM and DBT.
Collapse
Affiliation(s)
- S Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10, km 139,7, 2695-066 Bobadela LRS, Portugal.
| | - S Vedantham
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - P Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10, km 139,7, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|