Nomogram for Early Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using Dynamic Contrast-enhanced and Diffusion-weighted MRI.
Acad Radiol 2022;
29 Suppl 1:S155-S163. [PMID:
33593702 DOI:
10.1016/j.acra.2021.01.023]
[Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/01/2023]
Abstract
RATIONALE AND OBJECTIVES
The study investigated the potential of the combined use of dynamic contrast-enhanced MRI and diffusion-weighted imaging in predicting the pathological complete response (pCR) of neoadjuvant chemotherapy (NAC) after two cycles of NAC.
MATERIALS AND METHODS
Eighty-seven patients with breast cancer who underwent MR examination before and after two cycles of NAC were enrolled. The patients were randomly assigned to a training cohort and a validation cohort (3:1 ratio). MRI parameters including tumor longest diameter, time-signal intensity curve, early enhanced ratio (E90), maximal enhanced ratio and ADC value were measured, and percentage change in MRI parameters were calculated. Univariate analysis and multivariate logistic regression analysis were used to evaluate independent predictors of pCR in the training cohort. The validation cohort was used to test the prediction model, and the nomogram was created based on the prediction model.
RESULTS
This study demonstrated that the ADC value after two cycles of NAC (OR = 1.041, 95% CI (1.002, 1.081); p = 0.037), percentage decrease in E90 (OR = 0.927, 95% CI (0.881, 0.977); p =0.004) and percentage decrease in tumor size (OR = 0.948, 95% CI (0.909, 0.988); p = 0.011) were significantly important for independently predicting pCR. The prediction model yielded AUC of 0.939 and 0.944 in the training cohort and the validation cohort, respectively.
CONCLUSION
The combined use of dynamic contrast-enhanced MRI and diffusion-weighted imaging could accurately predict pCR after two cycles of NAC. The prediction model and the nomogram had strong predictive value to NAC.
Collapse