1
|
Boldrin E, Nardo G, Zulato E, Bonanno L, Polo V, Frega S, Pavan A, Indraccolo S, Saggioro D. Detection of Loss of Heterozygosity in cfDNA of Advanced EGFR- or KRAS-Mutated Non-Small-Cell Lung Cancer Patients. Int J Mol Sci 2019; 21:ijms21010066. [PMID: 31861832 PMCID: PMC6981934 DOI: 10.3390/ijms21010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
Liquid biopsy is currently approved for management of epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) patients. However, one unanswered question is whether the rate of cell-free DNA (cfDNA)-negative samples is due to technical limitations rather than to tumor genetic characteristics. Using four microsatellite markers that map specific chromosomal loci often lost in lung cancer, we conducted a pilot study to investigate whether other alterations, such as loss of heterozygosity (LOH), could be detected in EGFR-negative cfDNA. We analyzed EGFR-mutated NSCLC patients (n = 24) who were positive or negative for EGFR mutations in cfDNA and compared the results with a second cohort of 24 patients bearing KRAS-mutated cancer, which served as a representative control population not exposed to targeted therapy. The results showed that in EGFR-negative post-tyrosine-kinase-inhibitor (TKI) cfDNAs, LOH frequency was significantly higher than in both pre- and post-TKI EGFR-positive cfDNAs. By contrast, no association between KRAS status in cfDNA and number of LOH events was found. In conclusion, our study indicates the feasibility of detecting LOH events in cfDNA from advanced NSCLC and suggests LOH analysis as a new candidate molecular assay to integrate mutation-specific assays.
Collapse
Affiliation(s)
- Elisa Boldrin
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (E.B.); (G.N.); (E.Z.); (D.S.)
| | - Giorgia Nardo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (E.B.); (G.N.); (E.Z.); (D.S.)
| | - Elisabetta Zulato
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (E.B.); (G.N.); (E.Z.); (D.S.)
| | - Laura Bonanno
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (L.B.); (S.F.); (A.P.)
| | | | - Stefano Frega
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (L.B.); (S.F.); (A.P.)
| | - Alberto Pavan
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (L.B.); (S.F.); (A.P.)
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (E.B.); (G.N.); (E.Z.); (D.S.)
- Correspondence:
| | - Daniela Saggioro
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (E.B.); (G.N.); (E.Z.); (D.S.)
| |
Collapse
|
2
|
Zandvakili I, Lazaridis KN. Cell-free DNA testing: future applications in gastroenterology and hepatology. Therap Adv Gastroenterol 2019; 12:1756284819841896. [PMID: 31019553 PMCID: PMC6466469 DOI: 10.1177/1756284819841896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 03/04/2019] [Indexed: 02/04/2023] Open
Abstract
The application of next-generation sequencing in clinical practice is increasing as accuracy and interpretation have improved and the cost continues to decline rapidly. Cell-free DNA is a unique source for next-generation sequencing that could change routine clinical practice in gastroenterology and hepatology. Testing of cell-free DNA in blood and fecal samples is an easy, rapid, and noninvasive method to assess for premalignant, malignant, metabolic, infectious, inflammatory, and autoimmune gastrointestinal and liver diseases. In this review, we describe cell-free DNA technologies, current applications of cell-free DNA testing, and proposed cell-free DNA targets for gastrointestinal and hepatic diseases, with a specific focus on malignancy. In addition, we provide commentary on how cell-free DNA can be integrated into clinical practice and help guide diagnosis, prognosis, disease management, and therapeutic response.
Collapse
Affiliation(s)
- Inuk Zandvakili
- Division of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Konstantinos N. Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Koldby KM, Mortensen MB, Detlefsen S, Pfeiffer P, Thomassen M, Kruse TA. Tumor-specific genetic aberrations in cell-free DNA of gastroesophageal cancer patients. J Gastroenterol 2019; 54:108-121. [PMID: 30242476 DOI: 10.1007/s00535-018-1508-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023]
Abstract
The applicability of liquid biopsies is studied intensively in all types of cancer and analysis of circulating tumor DNA (ctDNA) has recently been implemented clinically for mutation detection in lung cancer. ctDNA may provide information about tumor quantity and mutations present in the tumor, and as such have many potential applications in diagnosis and treatment of cancer. It has been suggested that ctDNA analysis may overcome the issue of intra-tumor heterogeneity faced by tissue biopsies and serve as an additional diagnostic tool. Furthermore, liquid biopsies are potentially helpful for monitoring of treatment response as well as detection of minimal residual disease and relapse. Gastroesophageal cancers (GEC) have high mortality rates and the majority of patients present with advanced stage at diagnosis or succumb due to disease recurrence even after radical resection of the primary tumor. Biomarkers that can help optimize treatment strategy are thus highly desirable. The present study is a review of published data on ctDNA in GEC patients. We identified 25 studies in which tumor-specific genetic aberrations were investigated in plasma or serum and discuss these in relation to the methods applied for ctDNA analysis. The methods used for ctDNA detection greatly influence the sensitivity of the analysis and, therefore, the potential clinical applications. We found that studies of ctDNA in GEC, although limited in number, are promising for several applications such as genetic profiling of tumors and monitoring of disease progression. However, more studies are needed to establish if and how this analysis can be clinically implemented.
Collapse
Affiliation(s)
- Kristina Magaard Koldby
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, Odense, Denmark. .,Human Genetics, Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, Odense, Denmark.
| | - Michael Bau Mortensen
- Department of Surgery, Odense University Hospital, J.B. Winsløws Vej 4, Odense, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, Odense, Denmark
| | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, J.B. Winsløws Vej 4, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, Odense, Denmark.,Human Genetics, Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, Odense, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, Odense, Denmark.,Human Genetics, Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, Odense, Denmark
| |
Collapse
|
4
|
Saluja H, Karapetis CS, Pedersen SK, Young GP, Symonds EL. The Use of Circulating Tumor DNA for Prognosis of Gastrointestinal Cancers. Front Oncol 2018; 8:275. [PMID: 30087854 PMCID: PMC6066577 DOI: 10.3389/fonc.2018.00275] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/02/2018] [Indexed: 01/10/2023] Open
Abstract
Gastrointestinal cancers, including oesophageal, gastric and colorectal cancers (CRC) have high rates of disease recurrence despite curative resection. There are a number of recent studies that have investigated the use of circulating tumor DNA (ctDNA) for prognostic value in these cancers. We reviewed studies that had been published prior to March 2018 that assessed the prognostic values of ctDNA in patients with oesophageal and gastric cancers, gastrointestinal stromal tumors (GIST) and CRC. We identified 63 eligible clinical studies that focussed on recurrence and survival. Studies assessed investigated various ctDNA biomarkers in patients with different stages of cancer undergoing surgical resection, chemotherapy and no treatment. For oesophageal squamous cell carcinoma and oesophageal adenocarcinoma, methylation of certain genes such as APC and DAPK have been highlighted as promising biomarkers for prognostication, but these studies are limited and more comprehensive research is needed. Studies focusing on gastric cancer patients showed that methylation of ctDNA in SOX17 and APC were independently associated with poor survival. Two studies demonstrated an association between ctDNA and recurrence and survival in GIST patients, but more studies are needed for this type of gastrointestinal cancer. A large proportion of the literature was on CRC which identified both somatic mutations and DNA methylation biomarkers to determine prognosis. ctDNA biomarkers that identified somatic mutations were more effective if they were personalized based on mutations found in the primary tumor tissue, but ctDNA methylation studies identified various biomarkers that predicted increased risk of recurrence, poor disease free survival and overall survival. While the use of non-invasive ctDNA biomarkers for prognosis is promising, larger studies are needed to validate the clinical utility for optimizing treatment and surveillance strategies to reduce mortality from gastrointestinal cancers.
Collapse
Affiliation(s)
- Hariti Saluja
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Department of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Christos S Karapetis
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Department of Oncology, Flinders Medical Centre, Bedford Park, SA, Australia
| | | | - Graeme P Young
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Erin L Symonds
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Bowel Health Service, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
5
|
Rumiato E, Boldrin E, Malacrida S, Realdon S, Fassan M, Morbin T, Battaglia G, Amadori A, Rugge M, Saggioro D. Detection of genetic alterations in cfDNA as a possible strategy to monitor the neoplastic progression of Barrett's esophagus. Transl Res 2017; 190:16-24.e1. [PMID: 29066320 DOI: 10.1016/j.trsl.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/07/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Barrett's esophagus (BE) is associated with an increased risk of developing esophageal adenocarcinoma. Despite the low absolute risk of neoplastic progression of BE, probability increases with the diagnosis of dysplasia. For this reason, BE patients undergo an endoscopy-based surveillance that is, however, burdensome for patients, subject to inter-observer subjectivity, and expensive for national health systems. Thus, less invasive and low-cost diagnostic tools are needed. This study is aimed at finding a simple and reliable method to detect in the circulating cell-free DNA (cfDNA) of BE patients evidence of the molecular instability that accompanies BE carcinogenesis. We chose the loss of heterozygosity analysis because chromosomal region gains or losses have been described in BE and esophageal adenocarcinoma. Furthermore, this analysis does not require an a priori knowledge of tumor specific mutations and/or rearrangements. Previous data showed a good consistency between tissue and cfDNA alterations. Here, we report that, in the cfDNA of dysplastic BE patients, the frequency of genetic alterations is statistically higher than that of metaplastic BE patients (P = 0.005). Interestingly, after endoscopic treatment, the alteration frequency dropped, suggesting that cfDNA can also be used to monitor curative effects. Among the used markers, those that map nearby TP53 gene were the most discriminant between metaplastic and dysplastic BE. Furthermore, longitudinal follow-up cases showed that genetic alterations can be found in cfDNA before the appearance of a detectable lesion. Altogether, our data suggest that the use of liquid biopsy could become a minimally invasive diagnostic tool to implement BE patient monitoring.
Collapse
Affiliation(s)
- Enrica Rumiato
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Elisa Boldrin
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sandro Malacrida
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefano Realdon
- Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology, University of Padova, Padova, Italy
| | - Tiziana Morbin
- Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Giorgio Battaglia
- Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Alberto Amadori
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Biomedical Sciences, University of Padova, Padova, Italy; Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Medicine (DIMED), Surgical Pathology and Cytopathology, University of Padova, Padova, Italy; Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology, University of Padova, Padova, Italy
| | - Daniela Saggioro
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| |
Collapse
|
6
|
Cree IA, Uttley L, Buckley Woods H, Kikuchi H, Reiman A, Harnan S, Whiteman BL, Philips ST, Messenger M, Cox A, Teare D, Sheils O, Shaw J. The evidence base for circulating tumour DNA blood-based biomarkers for the early detection of cancer: a systematic mapping review. BMC Cancer 2017; 17:697. [PMID: 29061138 PMCID: PMC5654013 DOI: 10.1186/s12885-017-3693-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The presence of circulating cell-free DNA from tumours in blood (ctDNA) is of major importance to those interested in early cancer detection, as well as to those wishing to monitor tumour progression or diagnose the presence of activating mutations to guide treatment. In 2014, the UK Early Cancer Detection Consortium undertook a systematic mapping review of the literature to identify blood-based biomarkers with potential for the development of a non-invasive blood test for cancer screening, and which identified this as a major area of interest. This review builds on the mapping review to expand the ctDNA dataset to examine the best options for the detection of multiple cancer types. METHODS The original mapping review was based on comprehensive searches of the electronic databases Medline, Embase, CINAHL, the Cochrane library, and Biosis to obtain relevant literature on blood-based biomarkers for cancer detection in humans (PROSPERO no. CRD42014010827). The abstracts for each paper were reviewed to determine whether validation data were reported, and then examined in full. Publications concentrating on monitoring of disease burden or mutations were excluded. RESULTS The search identified 94 ctDNA studies meeting the criteria for review. All but 5 studies examined one cancer type, with breast, colorectal and lung cancers representing 60% of studies. The size and design of the studies varied widely. Controls were included in 77% of publications. The largest study included 640 patients, but the median study size was 65 cases and 35 controls, and the bulk of studies (71%) included less than 100 patients. Studies either estimated cfDNA levels non-specifically or tested for cancer-specific mutations or methylation changes (the majority using PCR-based methods). CONCLUSION We have systematically reviewed ctDNA blood biomarkers for the early detection of cancer. Pre-analytical, analytical, and post-analytical considerations were identified which need to be addressed before such biomarkers enter clinical practice. The value of small studies with no comparison between methods, or even the inclusion of controls is highly questionable, and larger validation studies will be required before such methods can be considered for early cancer detection.
Collapse
Affiliation(s)
- Ian A. Cree
- WHO Classification of Tumours Group, International Agency for Research on Cancer (IARC), World Health Organization, 150 Cours Albert Thomas, 69372 Lyon, CEDEX 08 France
- Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB UK
- Institute of Ophthalmology, University College London, EC1V 9EL, London, UK
| | - Lesley Uttley
- The School of Health and Related Research, The University of Sheffield, Regent Court, 30 Regent Street, Sheffield, S1 4DA UK
| | - Helen Buckley Woods
- The School of Health and Related Research, The University of Sheffield, Regent Court, 30 Regent Street, Sheffield, S1 4DA UK
| | - Hugh Kikuchi
- Department of Pathology, University Hospitals Coventry and Warwickshire, Coventry, CV2 2DX UK
| | - Anne Reiman
- Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB UK
| | - Susan Harnan
- The School of Health and Related Research, The University of Sheffield, Regent Court, 30 Regent Street, Sheffield, S1 4DA UK
| | - Becky L. Whiteman
- London North West Healthcare NHS Trust, Northwick Park Hospital, Watford Road, Harrow, HA1 3UJ UK
| | | | - Michael Messenger
- Leeds Centre for Personalised Medicine and Health, University of Leeds and NIHR Diagnostic Evidence Co-Operative Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF UK
| | - Angela Cox
- Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism, The University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX UK
| | - Dawn Teare
- The School of Health and Related Research, The University of Sheffield, Regent Court, 30 Regent Street, Sheffield, S1 4DA UK
| | - Orla Sheils
- Sir Patrick Dun Research Laboratory, Central Pathology Laboratory, St James’s Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Jacqui Shaw
- University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX UK
| | - For the UK Early Cancer Detection Consortium
- WHO Classification of Tumours Group, International Agency for Research on Cancer (IARC), World Health Organization, 150 Cours Albert Thomas, 69372 Lyon, CEDEX 08 France
- Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB UK
- Institute of Ophthalmology, University College London, EC1V 9EL, London, UK
- The School of Health and Related Research, The University of Sheffield, Regent Court, 30 Regent Street, Sheffield, S1 4DA UK
- Department of Pathology, University Hospitals Coventry and Warwickshire, Coventry, CV2 2DX UK
- London North West Healthcare NHS Trust, Northwick Park Hospital, Watford Road, Harrow, HA1 3UJ UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL UK
- Leeds Centre for Personalised Medicine and Health, University of Leeds and NIHR Diagnostic Evidence Co-Operative Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF UK
- Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism, The University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX UK
- Sir Patrick Dun Research Laboratory, Central Pathology Laboratory, St James’s Hospital & Trinity College Dublin, Dublin 8, Ireland
- University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX UK
| |
Collapse
|
7
|
Wang S, Chen Y, Wu Z. Advances in the medical research and clinical applications on the plasma DNA. Transl Pediatr 2014; 3:140-8. [PMID: 26835332 PMCID: PMC4729110 DOI: 10.3978/j.issn.2224-4336.2014.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasma DNA has had a strong impact and influence on basic medical research and clinical practice since the discovery of low levels of plasma DNA in healthy individuals under different physiological conditions. Although the source of circulating DNA still requires further investigation, a wide range of research has also proven the value of qualitative and quantitative measurements of plasma DNA in many disease conditions. The use of plasma DNA has a biomarker is advantageous due to accessibility, reliability, reproducibility, sensitivity, specific and relatively low cost. Recently, the detection of circulating (plasma) DNA quantitative changes have been using in the studies on the tumor gene mutations and to monitor disease progressing and to predict the disease prognosis. Such technique also has been using other many different fields, particularly in prenatal diagnosis, for which plasma DNA testing is preferable due to non-invasiveness. This article reviews the research progression and clinical applications of plasma DNA in the last several years.
Collapse
Affiliation(s)
- Shuye Wang
- 1 Department of Hematology, The first Affiliated Hospital of Harbin Medical University, Harbin 150001, China ; 2 Western Sydney Genomic Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, NSW, Australia
| | - Yuanyuan Chen
- 1 Department of Hematology, The first Affiliated Hospital of Harbin Medical University, Harbin 150001, China ; 2 Western Sydney Genomic Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, NSW, Australia
| | - Zhanhe Wu
- 1 Department of Hematology, The first Affiliated Hospital of Harbin Medical University, Harbin 150001, China ; 2 Western Sydney Genomic Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, NSW, Australia
| |
Collapse
|
8
|
Jung K, Fleischhacker M, Rabien A. Cell-free DNA in the blood as a solid tumor biomarker--a critical appraisal of the literature. Clin Chim Acta 2010; 411:1611-24. [PMID: 20688053 DOI: 10.1016/j.cca.2010.07.032] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/24/2010] [Accepted: 07/25/2010] [Indexed: 12/21/2022]
Abstract
Circulating cell-free DNA (cfDNA) has been suggested as a cancer biomarker. Several studies assessed the usefulness of quantitative and qualitative tumor-specific alterations of cfDNA, such as DNA strand integrity, frequency of mutations, abnormalities of microsatellites, and methylation of genes, as diagnostic, prognostic, and monitoring markers in cancer patients. Most of the papers that could be evaluated in this review resulted in a positive conclusion. However, methodical diversity without the traceability of data and differently designed and often underpowered studies resulted in divergent results between studies. In addition, the limited diagnostic sensitivity and specificity of cfDNA alterations temper the effusive hope of novel tumor markers, raising similar issues as those for other tumor markers. To validate the actual clinical validity of various cfDNA alterations as potential cancer biomarkers in practice for individual tumor types, the main problems of the observed uncertainties must be considered in future studies. These include methodical harmonization concerning sample collection, processing, and analysis with the traceability of measurement results as well as the realization of well-designed prospective studies based on power analysis and sample size calculations.
Collapse
Affiliation(s)
- Klaus Jung
- Department of Urology, Research Division, University Hospital Charité, Schumannstr. 20/21, 10117 Berlin, Germany.
| | | | | |
Collapse
|
9
|
Abstract
Biomarkers are needed to screen multiple stages in the clinical pathway of Barrett's oesophagus patients; from disease diagnosis to risk stratification and predicting response to therapy. Routes to the identification of biomarkers have been recognized by known molecular features of the disease and more recently through transcriptomic, methylation and proteomic screening approaches. The majority of Barrett's oesophagus patients remain undiagnosed in the general population. In order to develop a tool to screen for Barrett's oesophagus in the primary care setting, minimally invasive sampling methods coupled with immunocytology-based biomarkers are currently being assessed. Biomarkers may also have utility in surveillance programmes by allowing endoscopic interval to be adjusted according to individual neoplastic risk. Many individual biomarkers have been proposed in this regard, but have frequently been assessed in studies of limited power, or have lacked sufficient sensitivity or specificity when assessed in wider population-based studies. Biomarker panels may provide a route forward. In this regard, a panel of methylation markers has shown promise in a multicentre, double-blind, validation study. Biomarkers are also being developed to improve detection of high-grade dysplasia and oesophageal adenocarcinoma, utilizing brush cytology combined with FISH (fluorescence in situ hybridization), and to assess therapeutic success and risk of complication during photodynamic therapy. Finally, we outline progress in identifying alternative sources of biomarkers for this condition.
Collapse
|
10
|
Pinzani P, Salvianti F, Pazzagli M, Orlando C. Circulating nucleic acids in cancer and pregnancy. Methods 2010; 50:302-7. [PMID: 20146940 DOI: 10.1016/j.ymeth.2010.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/03/2010] [Accepted: 02/05/2010] [Indexed: 01/06/2023] Open
Abstract
Circulating nucleic acids are present in the blood of humans and other vertebrates. During the last 10 years researchers actively studied cell-free nucleic acids present in plasma or serum with great expectations of their use as potential biomarkers for cancer and other pathologic conditions. In the present manuscript the main findings related to the principal characteristics of circulating nucleic acids, the hypothesis on their origin and some methodological considerations on sample collection and extraction as well as on some innovative assay methods have been summarized. Recent reports on the importance of circulating nucleic acids in the intercellular exchange of genetic information between eukaryotic cells have been reviewed.
Collapse
Affiliation(s)
- Pamela Pinzani
- Department of Clinical Physiopathology, University of Florence and Istituto Toscano Tumori, Viale Pieraccini 6, 50139 Florence, Italy.
| | | | | | | |
Collapse
|
11
|
|
12
|
Chan KCA, Lo YMD. Circulating tumour-derived nucleic acids in cancer patients: potential applications as tumour markers. Br J Cancer 2007; 96:681-5. [PMID: 17311021 PMCID: PMC2360081 DOI: 10.1038/sj.bjc.6603625] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tumour-associated changes have been observed in the circulating nucleic acids of cancer patients and have been proposed to be useful for the detection and monitoring of cancers. In this review, different approaches for detecting tumour-associated nucleic acids in the circulation and their potential applications as tumour markers are discussed.
Collapse
Affiliation(s)
- K C A Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Y M D Lo
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Room 38023, 1/F, Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong SAR; E-mail:
| |
Collapse
|