1
|
Chen R, Lo HH, Yang C, Law BYK, Chen X, Lam CCI, Ho C, Cheong HL, Li Q, Zhong C, Ng JPL, Peter CKF, Wong VKW. Natural small-molecules reverse Xeroderma Pigmentosum Complementation Group C (XPC) deficient-mediated drug-resistance in renal cell carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155310. [PMID: 38215574 DOI: 10.1016/j.phymed.2023.155310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Renal cancer is insensitive to radiotherapy or most chemotherapies. While the loss of the XPC gene was correlated with drug resistance in colon cancer, the expression of XPC and its role in the drug resistance of renal cancer have not yet been elucidated. With the fact that natural small-molecules have been adopted in combinational therapy with classical chemotherapeutic agents to increase the drug sensitivity and reduce adverse effects, the use of herbal compounds to tackle drug-resistance in renal cancer is advocated. PURPOSE To correlate the role of XPC gene deficiency to drug-resistance in renal cancer, and to identify natural small-molecules that can reverse drug-resistance in renal cancer via up-regulation of XPC. METHODS IHC was adopted to analyze the XPC expression in human tumor and adjacent tissues. Clinical data extracted from The Cancer Genome Atlas (TCGA) database were further analysed to determine the relationship between XPC gene expression and tumor staging of renal cancer. Two types of XPC-KD renal cancer cell models were established to investigate the drug-resistant phenotype and screen XPC gene enhancers from 134 natural small-molecules derived from herbal plants. Furthermore, the identified XPC enhancers were verified in single or in combination with FDA-approved chemotherapy drugs for reversing drug-resistance in renal cancer using MTT cytotoxicity assay. Drug resistance gene profiling, ROS detection assay, immunocytochemistry and cell live-dead imaging assay were adopted to characterize the XPC-related drug resistant mechanism. RESULTS XPC gene expression was significantly reduced in renal cancer tissue compared with its adjacent tissue. Clinical analysis of TCGA database also identified the downregulated level of XPC gene in renal tumor tissue of stage IV patients with cancer metastasis, which was also correlated with their lower survival rate. 6 natural small-molecules derived from herbal plants including tectorigenin, pinostilbene, d-pinitol, polygalasaponin F, atractylenolide III and astragaloside II significantly enhanced XPC expression in two renal cancer cell types. Combinational treatment of the identified natural compound with the treatment of FDA-approved drug, further confirmed the up-regulation of XPC gene expression can sensitize the two types of XPC-KD drug-resistant renal cancer cells towards the FDA-approved drugs. Mechanistic study confirmed that GSTP1/ROS axis was activated in drug resistant XPC-KD renal cancer cells. CONCLUSION XPC gene deficiency was identified in patient renal tumor samples, and knockdown of the XPC gene was correlated with a drug-resistant phenotype in renal cancer cells via activation of the GSTP1/ROS axis. The 6 identified natural small molecules were confirmed to have drug sensitizing effects via upregulation of the XPC gene. Therefore, the identified active natural small molecules may work as an adjuvant therapy for circumventing the drug-resistant phenotype in renal cancer via enhancement of XPC expression.
Collapse
Affiliation(s)
- Ruihong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chenxu Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Calista Chi In Lam
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Charles Ho
- University Hospital, Macau University of Science and Technology, Macao, China
| | - Hio Lam Cheong
- University Hospital, Macau University of Science and Technology, Macao, China
| | - Qianzi Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chenyu Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jerome Pak Lam Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | | | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
2
|
Palazzolo S, Canzonieri V, Rizzolio F. The history of small extracellular vesicles and their implication in cancer drug resistance. Front Oncol 2022; 12:948843. [PMID: 36091133 PMCID: PMC9451101 DOI: 10.3389/fonc.2022.948843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/06/2022] [Indexed: 12/01/2022] Open
Abstract
Small extracellular vesicles (EVs) in the last 20 years are demonstrated to possess promising properties as potential new drug delivery systems, biomarkers, and therapeutic targets. Moreover, EVs are described to be involved in the most important steps of tumor development and progression including drug resistance. The acquired or intrinsic capacity of cancer cells to resist chemotherapies is one of the greatest obstacles to overcome to improve the prognosis of many patients. EVs are involved in this mechanism by exporting the drugs outside the cells and transferring the drug efflux pumps and miRNAs in recipient cells, in turn inducing drug resistance. In this mini-review, the main mechanisms by which EVs are involved in drug resistance are described, giving a rapid and clear overview of the field to the readers.
Collapse
Affiliation(s)
- Stefano Palazzolo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di ricovero e cura a carattere scientifico (IRCCS), Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di ricovero e cura a carattere scientifico (IRCCS), Aviano, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di ricovero e cura a carattere scientifico (IRCCS), Aviano, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscary University, Venice, Italy
| |
Collapse
|
3
|
Single-nucleotide polymorphisms and the effectiveness of taxane-based chemotherapy in premenopausal breast cancer: a population-based cohort study in Denmark. Breast Cancer Res Treat 2022; 194:353-363. [PMID: 35501422 PMCID: PMC9239972 DOI: 10.1007/s10549-022-06596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Purpose Taxane-based chemotherapy is the primary treatment for premenopausal breast cancer. Although being inconsistent, research suggests that variant alleles alter pharmacokinetics through reduced function of OATP transporters (limiting hepatic uptake), CYP-450 enzymes (hampering drug metabolism), and ABC transporters (decreasing clearance). Reduced function of DNA repair enzymes may hamper effectiveness through dose-limiting toxicities. We investigated whether single-nucleotide polymorphisms (SNPs) were associated with breast cancer recurrence or mortality in premenopausal women diagnosed with breast cancer. Methods We conducted a population-based cohort study of premenopausal women diagnosed with non-distant metastatic breast cancer in Denmark during 2007‒2011, when guidelines recommended adjuvant combination chemotherapy (taxanes, anthracyclines, and cyclophosphamide). Using archived formalin-fixed paraffin-embedded primary tumor tissue, we genotyped 26 SNPs using TaqMan assays. Danish health registries provided data on breast cancer recurrence (through September 25, 2017) and death (through December 31, 2019). We fit Cox regression models to calculate crude hazard ratios (HRs) and 95% confidence intervals (CIs) for recurrence and mortality across genotypes. Results Among 2,262 women, 249 experienced recurrence (cumulative incidence: 13%) and 259 died (cumulative incidence: 16%) during follow-up (median 7.0 and 10.1 years, respectively). Mortality was increased in variant carriers of GSTP1 rs1138272 (HR: 1.30, 95% CI 0.95–1.78) and CYP3A rs10273424 (HR: 1.33, 95% CI 0.98–1.81). SLCO1B1 rs2306283 (encoding OATP1B1) variant carriers had decreased recurrence (HR: 0.82, 95% CI 0.64–1.07) and mortality (HR: 0.77, 95% CI 0.60–0.98). Conclusion Docetaxel effectiveness was influenced by SNPs in GSTP1, CYP3A, and SLCO1B1 in premenopausal women with non-distant metastatic breast cancer, likely related to altered docetaxel pharmacokinetics. These SNPs may help determine individual benefit from taxane-based chemotherapy. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-022-06596-2.
Collapse
|
4
|
Predictive and Prognostic Significance of mRNA Expression and DNA Copies Aberrations of ERCC1, RRM1, TOP1, TOP2A, TUBB3, TYMS, and GSTP1 Genes in Patients with Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12020405. [PMID: 35204496 PMCID: PMC8871321 DOI: 10.3390/diagnostics12020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Increasingly, many researchers are focusing on the sensitivity in breast tumors (BC) to certain chemotherapy drugs and have personalized their research based on the assessment of this sensitivity. One such personalized approach is to assess the chemotherapy’s gene expression, as well as aberrations in the number of DNA copies—deletions and amplifications with the ability to have a significant effect on the gene’s activity. Thus, the aim of this work was to study the predictive and prognostic significance of the expression and chromosomal aberrations of eight chemosensitivity genes in breast cancer patients. Material and methods. The study involved 97 patients with luminal B breast cancer IIB–IIIB stages. DNA and RNA were isolated from samples of tumor tissue before and after treatment. Microarray analysis was performed for all samples on high-density microarrays (DNA chips) of Affymetrix (USA) CytoScanTM HD Array and Clariom™ S Assay, human. Detection of expression level of seven chemosensitivity genes—RRM1, ERCC1, TOP1, TOP2a, TUBB3, TYMS, and GSTP1—was performed using PCR real-time (RT-qPCR). Results. The expression of the RRM1 (AC scheme), TOP2α, TYMS, and TUBB3 genes in patients with an objective response to treatment (complete and partial regression) is higher than in patients with stabilization and progression (p < 0.05). According to our results, the presence of a high level of GSTP1 in a tumor biopsy is associated with the low efficiency of the NAC CP scheme (p = 0.05). The presence of RRM1 deletion is associated with complete and partial regression, as for the TOP1 and TUBB3 genes (p < 0.05). Higher rates of metastatic survival are associated with a high level of expression and amplification of the GSTP1 gene (log-rank test p = 0.02 and p = 0.05). Conclusion. Thus, a complex assessment of the chemotherapy’s gene expression is important not only for understanding the heterogeneity and molecular biology of breast cancer but also to obtain a more accurate disease prognosis.
Collapse
|
5
|
Glutathione S-Transferase M3 Is Associated with Glycolysis in Intrinsic Temozolomide-Resistant Glioblastoma Multiforme Cells. Int J Mol Sci 2021; 22:ijms22137080. [PMID: 34209254 PMCID: PMC8268701 DOI: 10.3390/ijms22137080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor. The 5-year relative survival rate of patients with GBM remains <30% on average despite aggressive treatments, and secondary therapy fails in 90% of patients. In chemotherapeutic failure, detoxification proteins are crucial to the activity of chemotherapy drugs. Usually, glutathione S-transferase (GST) superfamily members act as detoxification enzymes by activating xenobiotic metabolites through conjugation with glutathione in healthy cells. However, some overexpressed GSTs not only increase GST activity but also trigger chemotherapy resistance and tumorigenesis-related signaling transductions. Whether GSTM3 is involved in GBM chemoresistance remains unclear. In the current study, we found that T98G, a GBM cell line with pre-existing temozolomide (TMZ) resistance, has high glycolysis and GSTM3 expression. GSTM3 knockdown in T98G decreased glycolysis ability through lactate dehydrogenase A activity reduction. Moreover, it increased TMZ toxicity and decreased invasion ability. Furthermore, we provide next-generation sequencing-based identification of significantly changed messenger RNAs of T98G cells with GSTM3 knockdown for further research. GSTM3 was downregulated in intrinsic TMZ-resistant T98G with a change in the expression levels of some essential glycolysis-related genes. Thus, GSTM3 was associated with glycolysis in chemotherapeutic resistance in T98G cells. Our findings provide new insight into the GSTM3 mechanism in recurring GBM.
Collapse
|
6
|
Vidal I, Zheng Q, Hicks JL, Chen J, Platz EA, Trock BJ, Kulac I, Baena-Del Valle JA, Sfanos KS, Ernst S, Jones T, Maynard JP, Glavaris SA, Nelson WG, Yegnasubramanian S, De Marzo AM. GSTP1 positive prostatic adenocarcinomas are more common in Black than White men in the United States. PLoS One 2021; 16:e0241934. [PMID: 34191807 PMCID: PMC8244883 DOI: 10.1371/journal.pone.0241934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
GSTP1 is a member of the Glutathione-S-transferase (GST) family silenced by CpG island DNA hypermethylation in 90-95% of prostate cancers. However, prostate cancers expressing GSTP1 have not been well characterized. We used immunohistochemistry against GSTP1 to examine 1673 primary prostatic adenocarcinomas on tissue microarrays (TMAs) with redundant sampling from the index tumor from prostatectomies. GSTP1 protein was positive in at least one TMA core in 7.7% of cases and in all TMA cores in 4.4% of cases. The percentage of adenocarcinomas from Black patients who had any GSTP1 positive TMA cores was 14.9%, which was 2.5 times higher than the percentage from White patients (5.9%; P < 0.001). Further, the percentages of tumors from Black patients who had all TMA spots positive for GSTP1 (9.5%) was 3-fold higher than the percentage from White patients (3.2%; P<0.001). In terms of association with other molecular alterations, GSTP1 positivity was enriched in ERG positive cancers among Black men. By in situ hybridization, GSTP1 mRNA expression was concordant with protein staining, supporting the lack of silencing of at least some GSTP1 alleles in GSTP1-positive tumor cells. This is the first report revealing that GSTP1-positive prostate cancers are substantially over-represented among prostate cancers from Black compared to White men. This observation should prompt additional studies to determine whether GSTP1 positive cases represent a distinct molecular subtype of prostate cancer and whether GSTP1 expression could provide a biological underpinning for the observed disparate outcomes for Black men.
Collapse
Affiliation(s)
- Igor Vidal
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jessica L. Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiayu Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth A. Platz
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Bruce J. Trock
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | | | - Karen S. Sfanos
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah Ernst
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tracy Jones
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Janielle P. Maynard
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie A. Glavaris
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William G. Nelson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Srinivasan Yegnasubramanian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Angelo M. De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Guenter J, Abadi S, Lim H, Chia S, Woods R, Jones M, Rebic N, Renouf DJ, Laskin J, Marra M. Evaluating genomic biomarkers associated with resistance or sensitivity to chemotherapy in patients with advanced breast and colorectal cancer. J Oncol Pharm Pract 2020; 27:1371-1381. [PMID: 32847480 DOI: 10.1177/1078155220951845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Carcinogenesis is driven by an array of complex genomic patterns; these patterns can render an individual resistant or sensitive to certain chemotherapy agents. The Personalized Oncogenomics (POG) project at BC Cancer has performed integrative genomic analysis of whole tumour genomes and transcriptomes for over 700 patients with advanced cancers, with an aim to predict therapeutic sensitivities. The aim of this study was to utilize the POG genomic data to evaluate a discrete set of biomarkers associated with chemo-sensitivity or-resistance in advanced stage breast and colorectal cancer POG patients. METHODS This was a retrospective multi-centre analysis across all BC CANCER sites. All breast and colorectal cancer patients enrolled in the POG program between July 1, 2012 and November 30, 2016 were eligible for inclusion. Within the breast cancer population, those treated with capecitabine, paclitaxel, and everolimus were analyzed, and for the colorectal cancer patients, those treated with capecitabine, bevacizumab, irinotecan, and oxaliplatin were analyzed. The expression levels of the selected biomarkers of interest (EPHB4, FIGF, CD133, DICER1, DPYD, TYMP, TYMS, TAP1, TOP1, CKDN1A, ERCC1, GSTP1, BRCA1, PTEN, ABCB1, TLE3, and TXNDC17) were reported as mRNA percentiles. RESULTS For the breast cancer population, there were 32 patients in the capecitabine cohort, 15 in the everolimus cohort, and 12 in the paclitaxel cohort. For the colorectal cancer population, there were 29 patients in the bevacizumab cohort, 12 in the oxaliplatin cohort, 29 in the irinotecan cohort, and 6 in the capecitabine cohort. Of the biomarkers evaluated, the strongest associations were found between Bevacizumab-based therapy and DICER1 (P = 0.0445); and between capecitabine therapy and TYMP (P = 0.0553). CONCLUSIONS Among breast cancer patients, higher TYMP expression was associated with sensitivity to capecitabine. Among colorectal cancer patients, higher DICER1 expression was associated with sensitivity to bevacizumab-based therapy. This study supports further assessment of the potential predictive value of mRNA expression of these genomic biomarkers.
Collapse
|
8
|
A Novel Synthetic Dihydroindeno[1,2-b] Indole Derivative (LS-2-3j) Reverses ABCB1- and ABCG2-Mediated Multidrug Resistance in Cancer Cells. Molecules 2018; 23:molecules23123264. [PMID: 30544754 PMCID: PMC6321174 DOI: 10.3390/molecules23123264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/23/2023] Open
Abstract
10-oxo-5-(3-(pyrrolidin-1-yl) propyl)-5,10-dihydroindeno [1,2-b] indol-9-yl propionate (LS-2-3j) is a new chemically synthesized indole compound and some related analogues are known to be inhibitors (such as alectinib and Ko143) of ATP-binding cassette (ABC) transporters, especially the ABC transporter subfamily B member 1 (ABCB1) and the ABC transporter subfamily G member 2 (ABCG2). This study aimed to evaluate the multidrug resistance (MDR) reversal effects and associated mechanisms of LS-2-3j in drug-resistant cancer cells. The inhibition of cell proliferation in tested agents was evaluated by the 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. Accumulation or efflux of chemotherapy drugs was analyzed by flow cytometry. The ATPase activity was measured using an ATPase activity assay kit. The mRNA transcripts and protein expression levels were detected by real-time PCR and Western blot, respectively. In this connection, LS-2-3j significantly enhanced the activity of chemotherapeutic drugs in MDR cells and could significantly increase the intracellular accumulation of doxorubicin (DOX) and mitoxantrone (MITX) by inhibiting the function of the efflux pumps in ABCB1- or ABCG2-overexpressing cells. Furthermore, reduced ATPase activity, mRNA transcription, and protein expression levels of ABCB1 and ABCG2 were observed in a concentration dependent manner in MDR cancer cells.
Collapse
|
9
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
10
|
Aberrantly Methylated DNA as a Biomarker in Breast Cancer. Int J Biol Markers 2018; 28:141-50. [DOI: 10.5301/jbm.5000009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 11/20/2022]
Abstract
Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.
Collapse
|
11
|
Chen G, Zhang H, Sun L, Jiang Y, Xu Z, Gu H, Xu H, Yang J, Wang Y, Xu T, Zhang Y, Liu C. Prognostic significance of GSTP1 in patients with triple negative breast cancer. Oncotarget 2017; 8:68675-68680. [PMID: 28978147 PMCID: PMC5620287 DOI: 10.18632/oncotarget.19824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023] Open
Abstract
Background Previous studies showed that glutathione S-transferase Pi 1 (GSTP1) is a critical metabolic driver that is heightened specifically in triple negative breast cancer (TNBC) and drives breast cancer pathogenicity. This study focuses on investigating the relationship between the expression of the GSTP1 protein and TNBC metastasis and prognosis in China. Results Chi-square and Fisher's exact tests showed that tumor size (P=0.023) and clinical stage (P=0.049) were significantly associated with GSTP1 expression. Patients with high GSTP1 expression exhibited an improved survival rate compared with patients with low GSTP1 expression, but the difference was not statistically significant (P=0.437). On multivariate analysis, clinical stage proved to be an independent prognostic factor for survival in breast cancer. Materials and methods A total of 175 patients with histologically confirmed TNBC, who also underwent radical surgery between January 2008 and November 2011 at the Liaoning Cancer Hospital, were enrolled. Immunohistochemistry was used to detect GSTP1 expression in breast cancer tissue from 175 patients. The correlations between GSTP1 expression and other parameters were evaluated using the Chi-square and Fisher's exact tests. Univariate and multivariate Cox regression analyses were performed to assess independent prognostic factors for survival. Associations of GSTP1 expression with clinical stage and prognosis were analyzed using Kaplan–Meier survival curves. Conclusions Tumors with high GSTP1 protein expression were independently associated with low clinical stages in TNBC patients in China. The expression of the GSTP1 protein may be a novel prognosis marker for TNBC patients in China.
Collapse
Affiliation(s)
- Guanglei Chen
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hao Zhang
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lisha Sun
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang 110013, China
| | - Yanlin Jiang
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhen Xu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Huizi Gu
- Department of Internal Neurology, The Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Hong Xu
- Cancer Hospital of China Medical University, Shenyang 110042, China.,Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jie Yang
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yining Wang
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tiantian Xu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yingchao Zhang
- Department of Breast Surgery, The Second Hospital of JiLin University, Changchun 130041, China
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
12
|
Targeting MRP4 expression by anti-androgen treatment reverses MRP4-mediated docetaxel resistance in castration-resistant prostate cancer. Oncol Lett 2017; 14:1748-1756. [PMID: 28789405 DOI: 10.3892/ol.2017.6357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
It has been demonstrated that docetaxel (DTX) may improve the overall survival of patients with castration-resistant prostate cancer (CRPC). However, its effectiveness is limited with time, and tumor escape is eventually inevitable. DTX resistance is the main reason for the failure of chemotherapy for CRPC. In the present study, the expression status of multidrug resistance protein 4 (MRP4) in DTX-resistant prostate cancer cells was investigated, and it was explored whether anti-androgen treatment may inhibit MRP4 expression and overcome DTX resistance. DTX-resistant C4-2/D cells were established by exposing DTX-sensitive C4-2/S cells to gradually increasing concentrations of DTX. MRP4 gene expression and the effect of androgen signaling on its expression were assessed by reverse transcription-polymerase chain reaction and western blotting. Intracellular and extracellular concentrations of DTX were detected by high-performance liquid chromatography. Anti-androgen treatment effects on DTX sensitivity were determined by a clonogenic test and an MTT cytotoxicity assay. MRP4 was overexpressed in C4-2/D cells, while its expression was barely detectable in C4-2/S cells. MRP4 expression levels were elevated in C4-2/D cells by dihydrotestosterone, whereas they were blocked by anti-androgen bicalutamide (BKL) treatment. Intracellular and extracellular DTX concentrations in C4-2/D cells were associated with MRP4 levels. The downregulation of MRP4 by BKL increased the intracellular concentration of DTX in C4-2/D cells and re-sensitized C4-2/D cells to DTX. These results indicated that overexpression of MRP4 mediates acquired DTX resistance, and suggest that targeting MRP4 expression by anti-androgen treatment may reverse DTX-resistant prostate cancer cells to DTX chemotherapy.
Collapse
|
13
|
Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene 2017; 623:5-14. [PMID: 28438694 DOI: 10.1016/j.gene.2017.04.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 01/29/2023]
Abstract
Anthracycline/taxane-based chemotherapy regimens are usually used as neoadjuvant chemotherapies to decrease tumour size and prevent metastasis of advanced breast cancer. However, patients have a high risk of developing chemo-resistance during treatment through still unknown mechanisms. Glutathione S-transferase P1 (GSTP1), which belongs to the family of phase II metabolic enzymes, has been reported to function in detoxifying several anti-cancer drugs by conjugating them with glutathione. Previous studies have identified GSTP1 as a predictor of prognosis and chemo-resistance in breast cancer patients, but the mechanisms governing GSTP1-dependent drug resistance are still unclear. We have found that GSTP1 expression is much higher in adriamycin-resistant cells and their corresponding exosomes. The role of GSTP1-containing exosomes in conferring drug resistance was analysed through cell apoptosis and immunofluorescence staining assays. Furthermore, we analysed 42 cases of paired breast cancer tissues collected before and after anthracycline/taxane-based neoadjuvant chemotherapy by immunohistochemistry. Higher GSTP1 expression was shown in the progressive disease (PD)/stable disease (SD) group than in the partial response (PR)/complete response (CR) group both in the samples collected before and after the chemotherapy treatment. Interestingly, GSTP1 partly re-localized from the cell nucleus to the cytoplasm upon treatment, and similar results were obtained for the exosomal marker Tumour susceptibility gene 101 protein (TSG101), which also increased in the cytoplasm after chemotherapy. After analysing the serum exosomes of 30 patients treated with anthracycline/taxane-based neoadjuvant chemotherapy, we discovered that the levels of GSTP1 in exosomes from patients in the PD/SD group were significantly higher than those in the PR/CR group. Here, for the first time, we investigated a novel role for GSTP1-containing exosomes and their capability to transfer drug resistance and evaluated their clinical use in predicting chemo-resistance.
Collapse
|
14
|
Hattinger CM, Vella S, Tavanti E, Fanelli M, Picci P, Serra M. Pharmacogenomics of second-line drugs used for treatment of unresponsive or relapsed osteosarcoma patients. Pharmacogenomics 2016; 17:2097-2114. [PMID: 27883291 DOI: 10.2217/pgs-2016-0116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Second-line treatment of high-grade osteosarcoma (HGOS) patients is based on different approaches and chemotherapy protocols, which are not yet standardized. Although several drugs have been used in HGOS second-line protocols, none of them has provided fully satisfactory results and the role of rescue chemotherapy is not well defined yet. This article focuses on the drugs that have most frequently been used for second-line treatment of HGOS, highlighting the present knowledge on their mechanisms of action and resistance and on gene polymorphisms with possible impact on treatment sensitivity or toxicity. In the near future, validation of the so far identified candidate genetic biomarkers may constitute the basis for tailoring treatment by taking the patients' genetic background into account.
Collapse
Affiliation(s)
- Claudia M Hattinger
- Pharmacogenomics & Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Via di Barbiano 1/10, I-40136 Bologna, Italy
| | - Serena Vella
- Pharmacogenomics & Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Via di Barbiano 1/10, I-40136 Bologna, Italy
| | - Elisa Tavanti
- Pharmacogenomics & Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Via di Barbiano 1/10, I-40136 Bologna, Italy
| | - Marilù Fanelli
- Pharmacogenomics & Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Via di Barbiano 1/10, I-40136 Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Via di Barbiano 1/10, I-40136 Bologna, Italy
| | - Massimo Serra
- Pharmacogenomics & Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Via di Barbiano 1/10, I-40136 Bologna, Italy
| |
Collapse
|
15
|
Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016; 48:541-567. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemoresistance is a disturbing barrier in cancer therapy, which always results in limited therapeutic options and unfavorable prognosis. Nuclear factor E2-related factor 2 (NRF2) controls the expression of genes encoding cytoprotective enzymes and transporters that protect against oxidative stress and electrophilic injury to maintain intrinsic redox homeostasis. However, recent studies have demonstrated that aberrant activation of NRF2 due to genetic and/or epigenetic mutations in tumor contributes to the high expression of phase I and phase II drug-metabolizing enzymes, phase III transporters, and other cytoprotective proteins, which leads to the decreased therapeutic efficacy of anticancer drugs through biotransformation or extrusion during chemotherapy. Therefore, a better understanding of the role of NRF2 in regulation of these enzymes and transporters in tumors is necessary to find new strategies that improve chemotherapeutic efficacy. In this review, we summarized the recent findings about the chemoresistance-promoting role of NRF2, NRF2-regulated phase I and phase II drug-metabolizing enzymes, phase III drug efflux transporters, and other cytoprotective genes. Most importantly, the potential of NRF2 was proposed to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Xupeng Bai
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Yibei Chen
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Xiangyu Hou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Min Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Jing Jin
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
16
|
Histone deacetylase inhibitor abexinostat affects chromatin organization and gene transcription in normal B cells and in mantle cell lymphoma. Gene 2016; 580:134-143. [DOI: 10.1016/j.gene.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/26/2022]
|
17
|
Puhr M, Hoefer J, Neuwirt H, Eder IE, Kern J, Schäfer G, Geley S, Heidegger I, Klocker H, Culig Z. PIAS1 is a crucial factor for prostate cancer cell survival and a valid target in docetaxel resistant cells. Oncotarget 2015; 5:12043-56. [PMID: 25474038 PMCID: PMC4322998 DOI: 10.18632/oncotarget.2658] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
Occurrence of an inherent or acquired resistance to the chemotherapeutic drug docetaxel is a major burden for patients suffering from different kinds of malignancies, including castration resistant prostate cancer (PCa). In the present study we address the question whether PIAS1 targeting can be used to establish a basis for improved PCa treatment. The expression status and functional relevance of PIAS1 was evaluated in primary tumors, in metastatic lesions, in tissue of patients after docetaxel chemotherapy, and in docetaxel resistant cells. Patient data were complemented by functional studies on PIAS1 knockdown in vitro as well as in chicken chorioallantoic membrane and mouse xenograft in vivo models. PIAS1 was found to be overexpressed in local and metastatic PCa and its expression was further elevated in tumors after docetaxel treatment as well as in docetaxel resistant cells. Furthermore, PIAS1 knockdown experiments revealed an increased expression of tumor suppressor p21 and declined expression of anti-apoptotic protein Mcl1, which caused diminished cell proliferation and tumor growth in vitro and in vivo. In summary, the presented data indicate that PIAS1 is crucial for parental and docetaxel resistant PCa cell survival and is therefore a promising new target for treatment of primary, metastatic, and chemotherapy resistant PCa.
Collapse
Affiliation(s)
- Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hoefer
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannes Neuwirt
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck, Austria
| | - Iris E Eder
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Kern
- Oncotyrol Laboratory for Tumor Biology and Angiogenesis, Innsbruck, Austria
| | - Georg Schäfer
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Innsbruck Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Heidegger
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Amer MH. Gene therapy for cancer: present status and future perspective. MOLECULAR AND CELLULAR THERAPIES 2014; 2:27. [PMID: 26056594 PMCID: PMC4452068 DOI: 10.1186/2052-8426-2-27] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
Abstract
Advancements in human genomics over the last two decades have shown that cancer is mediated by somatic aberration in the host genome. This discovery has incited enthusiasm among cancer researchers; many now use therapeutic approaches in genetic manipulation to improve cancer regression and find a potential cure for the disease. Such gene therapy includes transferring genetic material into a host cell through viral (or bacterial) and non-viral vectors, immunomodulation of tumor cells or the host immune system, and manipulation of the tumor microenvironment, to reduce tumor vasculature or to increase tumor antigenicity for better recognition by the host immune system. Overall, modest success has been achieved with relatively minimal side effects. Previous approaches to cancer treatment, such as retrovirus integration into the host genome with the risk of mutagenesis and second malignancies, immunogenicity against the virus and/or tumor, and resistance to treatment with disease relapse, have markedly decreased with the new generation of viral and non-viral vectors. Several tumor-specific antibodies and genetically modified immune cells and vaccines have been developed, yet few are presently commercially available, while many others are still ongoing in clinical trials. It is anticipated that gene therapy will play an important role in future cancer therapy as part of a multimodality treatment, in combination with, or following other forms of cancer therapy, such as surgery, radiation and chemotherapy. The type and mode of gene therapy will be determined based on an individual's genomic constituents, as well as his or her tumor specifics, genetics, and host immune status, to design a multimodality treatment that is unique to each individual's specific needs.
Collapse
Affiliation(s)
- Magid H Amer
- Department of Medicine, St Rita’s Medical Center, 825 West Market Street, Suite #203, Lima, OH 45805 USA
| |
Collapse
|
19
|
Amer MH. Gene therapy for cancer: present status and future perspective. MOLECULAR AND CELLULAR THERAPIES 2014; 2:27. [PMID: 26056594 PMCID: PMC4452068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/22/2014] [Indexed: 11/21/2023]
Abstract
Advancements in human genomics over the last two decades have shown that cancer is mediated by somatic aberration in the host genome. This discovery has incited enthusiasm among cancer researchers; many now use therapeutic approaches in genetic manipulation to improve cancer regression and find a potential cure for the disease. Such gene therapy includes transferring genetic material into a host cell through viral (or bacterial) and non-viral vectors, immunomodulation of tumor cells or the host immune system, and manipulation of the tumor microenvironment, to reduce tumor vasculature or to increase tumor antigenicity for better recognition by the host immune system. Overall, modest success has been achieved with relatively minimal side effects. Previous approaches to cancer treatment, such as retrovirus integration into the host genome with the risk of mutagenesis and second malignancies, immunogenicity against the virus and/or tumor, and resistance to treatment with disease relapse, have markedly decreased with the new generation of viral and non-viral vectors. Several tumor-specific antibodies and genetically modified immune cells and vaccines have been developed, yet few are presently commercially available, while many others are still ongoing in clinical trials. It is anticipated that gene therapy will play an important role in future cancer therapy as part of a multimodality treatment, in combination with, or following other forms of cancer therapy, such as surgery, radiation and chemotherapy. The type and mode of gene therapy will be determined based on an individual's genomic constituents, as well as his or her tumor specifics, genetics, and host immune status, to design a multimodality treatment that is unique to each individual's specific needs.
Collapse
Affiliation(s)
- Magid H Amer
- Department of Medicine, St Rita’s Medical Center, 825 West Market Street, Suite #203, Lima, OH 45805 USA
| |
Collapse
|
20
|
Chen SY, Hu SS, Dong Q, Cai JX, Zhang WP, Sun JY, Wang TT, Xie J, He HR, Xing JF, Lu J, Dong YL. Establishment of paclitaxel-resistant breast cancer cell line and nude mice models, and underlying multidrug resistance mechanisms in vitro and in vivo. Asian Pac J Cancer Prev 2014; 14:6135-40. [PMID: 24289639 DOI: 10.7314/apjcp.2013.14.10.6135] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. METHODS The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. RESULTS Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-π (GST-π) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. CONCLUSION The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-π.
Collapse
Affiliation(s)
- Si-Ying Chen
- Department of Pharmacy, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China E-mail :
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
PAVLIKOVA NELA, BARTONOVA IRENA, DINCAKOVA LUCIA, HALADA PETR, KOVAR JAN. Differentially expressed proteins in human breast cancer cells sensitive and resistant to paclitaxel. Int J Oncol 2014; 45:822-30. [DOI: 10.3892/ijo.2014.2484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/11/2014] [Indexed: 11/05/2022] Open
|
22
|
Fujita N, Kagara N, Yamamoto N, Shimazu K, Shimomura A, Shimoda M, Maruyama N, Naoi Y, Morimoto K, Oda N, Kim SJ, Noguchi S. Methylated DNA and high total DNA levels in the serum of patients with breast cancer following neoadjuvant chemotherapy are predictive of a poor prognosis. Oncol Lett 2014; 8:397-403. [PMID: 24959284 PMCID: PMC4063626 DOI: 10.3892/ol.2014.2068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/20/2014] [Indexed: 01/05/2023] Open
Abstract
In a previous study, we established a one-step methylation-specific polymerase chain reaction (OS-MSP) assay for the detection of methylated DNA (met-DNA) and total DNA levels in serum. For the present study, this OS-MSP assay was used for patients with breast cancer treated with neoadjuvant chemotherapy (NAC) in order to investigate the prognostic significance of met-DNA and total DNA levels. Following treatment with NAC and prior to surgery, serum samples obtained from 120 patients with stage II/III breast cancer were subjected to the OS-MSP assay for analysis of the glutathione S-transferase pi 1, Ras association (RalGDS/AF-6) domain family member 1 and retinoic acid receptor β2 genes. The detection of methylation in a minimum of one of these genes indicated a positive outcome of the assay. The total DNA content of the serum was also determined. Of the 120 stage II/III patients, seven (6%) were positive for met-DNA in serum and showed a significantly worse overall survival (OS) time compared with patients negative for met-DNA (n=113) (5-year OS, 43 vs. 85%; P=0.002). The patients with high total DNA levels in serum (n=40) also showed a significantly worse OS compared with those with low total DNA levels (n=80) (65 vs. 91%; P<0.001). The presence of met-DNA and high total DNA levels in the serum were found to be significant prognostic factors that are independent of a pathological complete response by multivariate analysis. Following NAC, met-DNA and high total DNA levels in the serum detected with the OS-MSP assay constitute novel prognostic factors for patients with breast cancer; this may be clinically useful for the prognosis prediction for patients who do not achieve a pathological complete response following NAC.
Collapse
Affiliation(s)
- Noriko Fujita
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| | - Naofumi Kagara
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| | - Noriaki Yamamoto
- Central Research Laboratories, Sysmex Corporation, Kobe 651-2271, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| | - Atsushi Shimomura
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| | - Naomi Maruyama
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| | - Yasuto Naoi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| | - Koji Morimoto
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| | - Naofumi Oda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| | - Shinzaburo Noguchi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Chen S, Dong Q, Hu S, Cai J, Zhang W, Sun J, Wang T, Xie J, He H, Xing J, Lu J, Dong Y. Proteomic analysis of the proteins that are associated with the resistance to paclitaxel in human breast cancer cells. MOLECULAR BIOSYSTEMS 2014; 10:294-303. [PMID: 24292090 DOI: 10.1039/c3mb70428a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cancers frequently develop resistance to paclitaxel but the underlying molecular mechanisms remain to be determined. We have investigated the proteins that are associated with the paclitaxel resistance in human breast cancer MCF-7 cells using proteomic analysis. Paclitaxel resistant human breast cancer MCF-7 cells (MCF-7/P) were established by escalating the concentrations of paclitaxel to drug-sensitive MCF-7 cells (MCF-7/S). The global protein profiles of MCF-7/P and MCF-7/S were compared using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Eleven proteins were upregulated while six proteins were downregulated in MCF-7/P cells. Western blot and real-time PCR analyses showed that the protein and mRNA levels of heterogeneous nuclear ribonucleoprotein (hnRNP C1/C2), SET nuclear oncogene (SET), aspartate aminotransferase (AAT), transgelin-2 (TAGLN2) were increased, while those of nucleoside-diphosphate kinase A (NDKA) were decreased in MCF-7/P cells. Accordingly, knockdown of TAGLN2 by siRNA sensitized MCF-7/P cells to paclitaxel and reduced the multidrug resistance (MDR). Our identification of differential proteins, particularly transgelin-2, provides new insights into the mechanism of MDR to paclitaxel and novel biological targets for breast cancer treatment.
Collapse
Affiliation(s)
- Siying Chen
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Predictive Role of Midtreatment Changes in Survivin, GSTP1, and Topoisomerase 2α Expressions for Pathologic Complete Response to Neoadjuvant Chemotherapy in Patients With Locally Advanced Breast Cancer. Am J Clin Oncol 2013; 36:215-23. [DOI: 10.1097/coc.0b013e318243913f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Kanakkanthara A, Miller JH. MicroRNAs: Novel mediators of resistance to microtubule-targeting agents. Cancer Treat Rev 2013; 39:161-70. [DOI: 10.1016/j.ctrv.2012.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 01/13/2023]
|
26
|
Genomic methylation profiling combined with gene expression microarray reveals the aberrant methylation mechanism involved in nasopharyngeal carcinoma taxol resistance. Anticancer Drugs 2012; 23:856-64. [DOI: 10.1097/cad.0b013e3283548d73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Jardim BV, Moschetta MG, Gelaleti GB, Leonel C, Regiani VR, de Santi Neto D, Bordin-Junior NA, Perea SA, Zuccari DAPDC. Glutathione transferase pi (GSTpi) expression in breast cancer: an immunohistochemical and molecular study. Acta Histochem 2012; 114:510-7. [PMID: 22000861 DOI: 10.1016/j.acthis.2011.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Prognostic markers are important for diagnosis, allowing therapeutic strategies to be defined more efficiently. The expression of the glutathione S-transferase pi isoenzyme (GSTpi) in tumor cells has been evaluated as a predictor of prognosis and in response to cytotoxic treatments. Its immunoexpression was assessed in 63 women diagnosed with invasive ductal carcinoma in a retrospective study. The results were statistically correlated with clinicopathological parameters of patients. The results showed that high GSTpi expression was related to p53-positive tumors, grade III histology, large tumor size and death (p<0.05). The 37 patients who received adjuvant treatment, checked separately, showed high expression of GSTpi in relation to local recurrence, metastasis and death (p<0.05). In addition, high levels of GSTpi expression were significantly associated with a shorter overall survival (p<0.05). To confirm this suspicion, GSTpi gene expression was checked by Real-time PCR in neoplastic mammary cells cultured and subjected to treatment with doxorubicin. Our results suggest that high levels of GSTpi may be related to the development of resistance to chemotherapy in these tumors, the response of these tumors to treatment and the clinical course of the patients involved.
Collapse
Affiliation(s)
- Bruna Victorasso Jardim
- Graduate Program in Genetics, Universidade Estadual Paulista, IBILCE, São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kanwal R, Pandey M, Bhaskaran N, Maclennan GT, Fu P, Ponsky LE, Gupta S. Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1. Mol Carcinog 2012; 53:8-18. [PMID: 22833520 DOI: 10.1002/mc.21939] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/18/2012] [Accepted: 06/04/2012] [Indexed: 01/10/2023]
Abstract
The pi-class glutathione S-transferase (GSTP1) actively protect cells from carcinogens and electrophilic compounds. Loss of GSTP1 expression via promoter hypermethylation is the most common epigenetic alteration observed in human prostate cancer. Silencing of GSTP1 can increase generation of reactive oxygen species (ROS) and DNA damage in cells. In this study we investigated whether loss of GSTP1 contributes to increased DNA damage that may predispose men to a higher risk of prostate cancer. We found significantly elevated (103%; P < 0.0001) levels of 8-oxo-2'-deoxogunosine (8-OHdG), an oxidative DNA damage marker, in adenocarcinomas, compared to benign counterparts, which positively correlated (r = 0.2) with loss of GSTP1 activity (34%; P < 0.0001). Silencing of GSTP1 using siRNA approach in normal human prostate epithelial RWPE1 cells caused increased intracellular production of ROS and higher susceptibility of cells to H2 O2 -mediated oxidative stress. Additionally, human prostate carcinoma LNCaP cells, which contain a silenced GSTP1 gene, were genetically modified to constitutively express high levels of GSTP1. Induction of GSTP1 activity lowered endogenous ROS levels in LNCaP-pLPCX-GSTP1 cells, and when exposed to H2 O2 , these cells exhibited significantly reduced production of ROS and 8-OHdG levels, compared to vector control LNCaP-pLPCX cells. Furthermore, exposure of LNCaP cells to green tea polyphenols caused reexpression of GSTP1, which protected the cells from H2 O2 -mediated DNA damage through decreased ROS production compared to nonexposed cells. These results suggest that loss of GSTP1 expression in human prostate cells, a process that increases their susceptibility to oxidative stress-induced DNA damage, may be an important target for primary prevention of prostate cancer.
Collapse
Affiliation(s)
- Rajnee Kanwal
- Department of Urology, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | | |
Collapse
|
29
|
Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev 2012; 38:890-903. [PMID: 22465195 DOI: 10.1016/j.ctrv.2012.02.011] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 02/15/2012] [Accepted: 02/24/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Taxanes are established in the treatment of metastatic breast cancer (MBC) and early breast cancer (EBC) as potent chemotherapy agents. However, their therapeutic usefulness is limited by de-novo refractoriness or acquired resistance, which are common drawbacks to most anti-cancer cytotoxics. Considering that the taxanes will remain principle chemotherapeutic agents for the treatment of breast cancer, we reviewed known mechanisms of resistance in with an outlook of optimizing their clinical use. METHODS We searched the PubMed and MEDLINE databases for articles (from inception through to 9th January 2012; last search 10/01/2012) and journals known to publish information relevant to taxane chemotherapy. We imposed no language restrictions. Search terms included: cancer, breast cancer, response, resistance, taxane, paclitaxel, docetaxel, taxol. Due to the possibility of alternative mechanisms of resistance all combination chemotherapy treated data sets were removed from our overview. RESULTS Over-expression of the MDR-1 gene product Pgp was extensively studied in vitro in association with taxane resistance, but data are conflicting. Similarly, the target components microtubules, which are thought to mediate refractoriness through alterations of the expression pattern of tubulins or microtubule associated proteins and the expression of alternative tubulin isoforms, failed to confirm such associations. Little consensus has been generated for reported associations between taxane-sensitivity and mutated p53, or taxane-resistance and overexpression of Bcl-2, Bcl-xL or NFkB. In contrary sufficient in vitro data support an association of spindle assembly checkpoint (SAC) defects with resistance. Clinical data have been limited and inconsistent, which relate to the variety of methods used, lack of standardization of cut-offs for quantitation, differences in clinical endpoints measured and in methods of tissue collection preparation and storage, and study/patient heterogeneity. The most prominent finding is that pharmaceutical down-regulation of HER-2 appears to reverse the taxane resistance. CONCLUSIONS Currently no valid practical biomarkers exist that can predict resistance to the taxanes in breast cancer supporting the principle of individualized cancer therapy. The incorporation of several biomarker analyses into prospectively designed studies in this setting are needed.
Collapse
|
30
|
Miyake T, Nakayama T, Naoi Y, Yamamoto N, Otani Y, Kim SJ, Shimazu K, Shimomura A, Maruyama N, Tamaki Y, Noguchi S. GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer Sci 2012; 103:913-20. [PMID: 22320227 DOI: 10.1111/j.1349-7006.2012.02231.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/20/2012] [Accepted: 01/30/2012] [Indexed: 12/31/2022] Open
Abstract
The purpose of the present study was to investigate the association of glutathione S-transferase P1 (GSTP1) expression with resistance to neoadjuvant paclitaxel followed by 5-fluorouracil/epirubicin/cyclophosphamide (P-FEC) in human breast cancers. The relationship of GSTP1 expression and GSTP1 promoter hypermethylation with intrinsic subtypes was also investigated. In this study, primary breast cancer patients (n = 123, stage II-III) treated with neoadjuvant P-FEC were analyzed. Tumor samples were obtained by vacuum-assisted core biopsy before P-FEC. GSTP1 expression was determined using immunohistochemistry, GSTP1 promoter methylation index (MI) using bisulfite methylation assay and intrinsic subtypes using DNA microarray. The pathological complete response (pCR) rate was significantly higher in GSTP1-negative tumors (80.0%) than GSTP1-positive tumors (30.6%) (P = 0.009) among estrogen receptor (ER)-negative tumors but not among ER-positive tumors (P = 0.267). Multivariate analysis showed that GSTP1 was the only predictive factor for pCR (P = 0.013) among ER-negative tumors. Luminal A, luminal B and HER2-enriched tumors showed a significantly lower GSTP1 positivity than basal-like tumors (P = 0.002, P < 0.001 and P = 0.009, respectively), while luminal A, luminal B and HER2-enriched tumors showed a higher GSTP1 MI than basal-like tumors (P = 0.076, P < 0.001 and P < 0.001, respectively). In conclusion, these results suggest the possibility that GSTP1 expression can predict pathological response to P-FEC in ER-negative tumors but not in ER-positive tumors. Additionally, GSTP1 promoter hypermethylation might be implicated more importantly in the pathogenesis of luminal A, luminal B and HER2-enriched tumors than basal-like tumors.
Collapse
Affiliation(s)
- Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kwee S, Song MA, Cheng I, Loo L, Tiirikainen M. Measurement of circulating cell-free DNA in relation to 18F-fluorocholine PET/CT imaging in chemotherapy-treated advanced prostate cancer. Clin Transl Sci 2012; 5:65-70. [PMID: 22376260 PMCID: PMC3500883 DOI: 10.1111/j.1752-8062.2011.00375.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose: To examine the effects of chemotherapy on circulating cell‐free DNA (cfDNA) composition in relation to investigational whole‐body measurement of tumor activity by fluorine‐18 fluorocholine (FCH) positron emission tomography/computed tomography (PET/CT) in hormone‐refractory prostate cancer (HRPC). Methods: Serial FCH PET/CT scans were performed in eight patients with HRPC receiving docetaxel‐based chemotherapy. Corresponding serial cfDNA samples were characterized by microfluidic electrophoresis, quantified by real‐time PCR, and compared with PET/CT results. Promoter methylation of two prostate cancer‐associated genes, GSTP1 and RARB2, was assessed by methylation‐specific PCR of bisulfite‐converted cfDNA. Results: Plasma cfDNA concentrations increased significantly from 13.3 ng/mL at baseline to 46.8 ng/mL and 50.9 ng/mL after one and three treatment cycles, respectively (p= 0.001). GSTP1 and/or RARB2 promoter methylation was identified in all pretreatment samples. The appearance of large (200 bp–10.4 kb) cfDNA fragments was noted in posttreatment samples along with loss of methylation at GSTP1 and/or RARB2. Tumor activity on PET/CT correlated with cfDNA concentration (r=−0.50, p= 0.01). Patients meeting criteria for PET tumor response had significantly lower pretreatment cfDNA levels than those who did not (8.0 vs. 16.4 ng/mL, p= 0.03). Conclusions: Chemotherapy is associated with significant changes in plasma cfDNA content and FCH PET/CT‐detected tumor activity. These interrelated measures are potential candidate markers of therapeutic response in HRPC. Clin Trans Sci 2012; Volume #: 1–6
Collapse
Affiliation(s)
- Sandi Kwee
- The University of Hawaii Cancer Center, Honolulu, HI, USA.
| | | | | | | | | |
Collapse
|
32
|
de Hoon JPJ, Veeck J, Vriens BEPJ, Calon TGA, van Engeland M, Tjan-Heijnen VCG. Taxane resistance in breast cancer: a closed HER2 circuit? Biochim Biophys Acta Rev Cancer 2012; 1825:197-206. [PMID: 22280939 DOI: 10.1016/j.bbcan.2012.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 12/11/2022]
Abstract
Microtubule inhibitors, such as the taxanes docetaxel and paclitaxel, are commonly used drugs for the treatment of breast cancer. Although highly active in a large fraction of individuals a considerable number of patients show poor response due to either intrinsic or acquired drug resistance. Extensive research in the past identified several taxane resistance-related mechanisms being activated by pathologically altered single gene function. To date, however, a clinically relevant predictive biomarker for taxanes has not been derived yet from this knowledge, most likely due to the manifold of resistance mechanisms that may combine in one tumor, thereby fostering escape from taxane cytotoxicity. Here, we aimed to comprehensively review the current literature on taxane resistance mechanisms in breast cancer. Interestingly, besides altered microtubule physiology we identified the HER2 signaling cascade as a major dominator influencing several routes of cytotoxicity escape, such as cell survival, apoptosis, drug efflux, and drug metabolism. Furthermore, the transcription factor YBX-1, activated by HER2, facilitates a sustaining HER2 signaling feedback loop contributing to the establishment of cellular survival detours. In conclusion, taxane resistance in breast cancer follows a multiplex establishment of drug cytotoxicity escape routes, which may be most efficiently therapeutically targeted by interference with their mutually governing signaling nodes.
Collapse
Affiliation(s)
- Joep P J de Hoon
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Tan KL, Jankova L, Chan C, Fung CLS, Clarke C, Lin BPC, Robertson G, Molloy M, Chapuis PH, Bokey L, Dent OF, Clarke SJ. Clinicopathological correlates and prognostic significance of glutathione S-transferase Pi expression in 468 patients after potentially curative resection of node-positive colonic cancer. Histopathology 2011; 59:1057-70. [DOI: 10.1111/j.1365-2559.2011.04044.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
GSTPi-positive tumour microenvironment-associated fibroblasts are significantly associated with GSTPi-negative cancer cells in paired cases of primary invasive breast cancer and axillary lymph node metastases. Br J Cancer 2011; 105:1224-9. [PMID: 21897388 PMCID: PMC3208492 DOI: 10.1038/bjc.2011.352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Glutathione S-transferase Pi (GSTPi) expression is one of the factors, which is known to be associated with development of resistance to chemotherapeutics in cancer patients, including those with breast cancer. Yet, its expression has been reported to be undetectable in cancer cells in high percent of patients with primary breast cancer. However, GSTPi expression in stromal cells in breast tumour microenvironment, namely cancer-associated fibroblast (CAF), which is recognised to have major roles in cancer progression, remains poorly reported. Methods: The aim of the study was to determine the expression of GSTPi; vimetin, a fibroblast-associated cytoskeleton protein; and α-smooth muscle actin (α-SMA), a known marker of CAF in breast cancer tissue, by immunohistochemical staining method in consecutive histologic sections of formalin-fixed and paraffin-embedded tissue biopsy specimens from a cohort of 39 paired cases of patients with invasive breast cancer and the corresponding axillary lymph nodes metastases. Results: Ductal and acinar luminal epithelial cells, myoepithelial cells and surrounding fibroblasts exhibited a homogeneous cytoplasmic reactivity with anti-GSTPi antibody in 11 of 11 cases of benign breast tissue biopsies. The vimentin-positive fibroblasts were unreactive with anti-α-SMA antibody. Loss of GSTPi expression was observed in breast cancer cells, at both the primary and metastatic sites, in 31 of 39 paired cases, as compared with benign breast epithelial cells (Fisher's exact test P<0.001). A significant association was observed between GSTPi-positive, vimentin-positive and α-SMA-positive fibroblast in tumour microenvironment at both sites. Conclusion: This is an original report of demonstration of a significance association between tumour microenvironment-associated GSTPi-positive CAF (vimentin/α-SMA-positive) and the GSTPi-negative cancer cells in paired cases of primary invasive breast cancer and the corresponding axillary lymph nodes metastases.
Collapse
|
35
|
Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci U S A 2010; 107:2503-8. [PMID: 20133800 DOI: 10.1073/pnas.0910649107] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Paclitaxel has emerged as a front line treatment for aggressive malignancies of the breast, lung, and ovary. Successful therapy of cancer is frequently undermined by the development of paclitaxel resistance. There is a growing need to find other therapeutic targets to facilitate treatment of drug-resistant cancers. Using a proteomics approach, elevated levels of Prohibitin1 (PHB1) and GSTpi were found associated with paclitaxel resistance in discrete subcellular fractions of two drug-resistant sublines relative to their sensitive sublines. Immunofluorescence staining and fractionation studies revealed increased levels of PHB1 on the surface of resistant cell lines. Transiently silencing either PHB1 or GSTpi gene expression using siRNA in the paclitaxel-resistant cancer cell sublines partially sensitized these cells toward paclitaxel. Intriguingly, silencing PHB1 but not GSTpi resulted in activation of the intrinsic apoptosis pathway in response to paclitaxel. Similarly, stably silencing either PHB1 or GSTpi significantly improved paclitaxel sensitivity in A549TR cells both in vitro and in vivo. Our results indicate that PHB1 is a mediator of paclitaxel resistance and that this resistance may depend on the cellular localization of the protein. We suggest PHB1 as a potential target for therapeutic strategies for the treatment of drug-resistant tumors.
Collapse
|
36
|
Ji B, Zhang Z, Zhang M, Zhu H, Zhou K, Yang J, Li Y, Sun L, Feng G, Wang Y, He L, Wan C. Differential expression profiling of the synaptosome proteome in a rat model of antipsychotic resistance. Brain Res 2009; 1295:170-8. [DOI: 10.1016/j.brainres.2009.07.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/30/2009] [Accepted: 07/24/2009] [Indexed: 11/17/2022]
|
37
|
Grau JJ, Caballero M, Campayo M, Jansa S, Vargas M, Alós L, Monzo M. Gene single nucleotide polymorphism accumulation improves survival in advanced head and neck cancer patients treated with weekly paclitaxel. Laryngoscope 2009; 119:1484-90. [DOI: 10.1002/lary.20254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
GSTP1 determines cis-platinum cytotoxicity in gastric adenocarcinoma MGC803 cells: regulation by promoter methylation and extracellular regulated kinase signaling. Anticancer Drugs 2009; 20:208-14. [PMID: 19396019 DOI: 10.1097/cad.0b013e328322fbaa] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Detoxification mechanisms can play a pivotal role in determining tumor cell responses to platinum-based chemotherapy. Glutathione S-transferase-pi (GSTP1) belongs to a supergene family of detoxifying enzymes involved in the prevention of DNA damage and subsequent platinum resistance in numerous cancers. The role of GSTP1 in gastric cancer sensitivity to chemotherapy is, however, not known. In this study, we found that the human gastric cancer cell line MGC803 was significantly more sensitive to cis-platinum (CDDP) than the other gastric cancer lines examined (BGC823 and SGC7901). To explore the potential role of GSTP1 in drug resistance, we measured GSTP1 expression in these cells. GSTP1 mRNA and protein were not detectable in MGC803 cells; both were present in BGC823 and SGC7901 cells. GSTP1 CpG island DNA methylation was examined. We report that promoter hypermethylation was associated with the absence of GSTP1 expression in MGC803 cells. Treatment of these cells with 5-aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, restored GSTP1 expression and suppressed sensitivity to CDDP. The selective mitogen-activated protein kinase/extracellular regulated kinase (ERK) pathway inhibitor PD98059 decreased GSTP1 expression in 5-aza-2'-deoxycytidine-treated cells. A similar decrease was observed in the BGC823 and SGC7901 cell lines, suggesting that mitogen-activated protein kinase/ERK signaling stimulates GSTP1 expression. CDDP sensitivity was also enhanced by PD98059. These observations indicate that somatic promoter hypermethylation and impaired ERK signaling are associated with decreased GSTP1 expression and CDDP sensitivity in gastric cancer cell lines. Evaluation of promoter methylation and ERK activity may be useful for predicting tumor sensitivity to platinum-based chemotherapeutics.
Collapse
|
39
|
Breen L, Murphy L, Keenan J, Clynes M. Development of taxane resistance in a panel of human lung cancer cell lines. Toxicol In Vitro 2008; 22:1234-41. [PMID: 18514476 DOI: 10.1016/j.tiv.2008.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/26/2022]
Abstract
Using a selection process designed to reflect clinically relevant conditions, a panel of taxane-selected variants were developed to study further the mechanisms of resistance in lung cancer. Unlike continuous or pulse exposure to high concentrations of chemotherapeutic drugs which yield high resistance and often cross resistance, most variants developed here displayed low level resistance to the selecting drug with slight cross-resistance. Pulsing with taxol resulted in more highly resistant clones (up to 51.4-fold). Analysis of taxol and taxotere in the four major lung cancer cell types showed the taxanes to be more effective against NSCLC (with the exception of SKMES-taxane selected variants) than against the SCLC. Comparison of taxol and taxotere shows that taxol induces higher levels of resistance than taxotere. Further, in taxotere-selected cell lines, the cells are more resistant to taxol than taxotere, suggesting that taxotere may be a superior taxane from a clinical view. Taxol treatment resulted in increased cross-resistance to 5-FU in all classes of lung cancer except DMS-53. The high levels of Pgp in the DMS-53 and selected variant suggests this mechanism is not related to Pgp expression. Analysis of the Pgp and MRP-1 status by combination inhibitory assays and Western blotting showed no consistent relationship between expression of the membrane pumps Pgp or MRP-1 and resistance. However, where high level resistance was seen, the parent cell line expressed Pgp or MRP-1 and was accompanied by increased levels in the variants. Overall we found that the clinically relevant models used here are useful for investigating mechanisms of taxane resistance.
Collapse
Affiliation(s)
- Laura Breen
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | |
Collapse
|