1
|
Sipos D, Raposa BL, Freihat O, Simon M, Mekis N, Cornacchione P, Kovács Á. Glioblastoma: Clinical Presentation, Multidisciplinary Management, and Long-Term Outcomes. Cancers (Basel) 2025; 17:146. [PMID: 39796773 PMCID: PMC11719842 DOI: 10.3390/cancers17010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma, the most common and aggressive primary brain tumor in adults, presents a formidable challenge due to its rapid progression, treatment resistance, and poor survival outcomes. Standard care typically involves maximal safe surgical resection, followed by fractionated external beam radiation therapy and concurrent temozolomide chemotherapy. Despite these interventions, median survival remains approximately 12-15 months, with a five-year survival rate below 10%. Prognosis is influenced by factors such as patient age, molecular characteristics, and the extent of resection. Patients with IDH-mutant tumors or methylated MGMT promoters generally have improved survival, while recurrent glioblastoma is associated with a median survival of only six months, as therapies in these cases are often palliative. Innovative treatments, including TTFields, add incremental survival benefits, extending median survival to around 20.9 months for eligible patients. Symptom management-addressing seizures, headaches, and neurological deficits-alongside psychological support for patients and caregivers is essential to enhance quality of life. Emerging targeted therapies and immunotherapies, though still limited in efficacy, show promise as part of an evolving treatment landscape. Continued research and clinical trials remain crucial to developing more effective treatments. This multidisciplinary approach, incorporating diagnostics, personalized therapy, and supportive care, aims to improve outcomes and provides a hopeful foundation for advancing glioblastoma management.
Collapse
Affiliation(s)
- David Sipos
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Guba Sándor Street 40, 7400 Kaposvár, Hungary
| | - Bence L. Raposa
- Institute of Pedagogy of Health and Nursing Sciences, Faculty of Health Sciences, University of Pécs, Vörösmarty Str. 4, 7621 Pécs, Hungary;
| | - Omar Freihat
- Department of Public Health, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates;
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Nejc Mekis
- Medical Imaging and Radiotherapy Department, University of Ljubljana, Zdravstvena Pot 5, 100 Ljubljana, Slovenia;
| | - Patrizia Cornacchione
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Árpád Kovács
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
2
|
Abo-Elnour DE, Pichardo-Rojas PS, Abdalla YE, Salama MK, Elboraay T, Rizk MA, Negida A, Raslan AM. Comparative efficacy of awake and asleep motor mapping in glioma surgery: A meta-analysis of 3011 patients. Neurosurg Rev 2024; 47:859. [PMID: 39560794 DOI: 10.1007/s10143-024-03080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024]
Abstract
Standard of care in glioma surgery involves maximal-safe resection. Intraoperative stimulation mapping can improve the extent of resection in eloquent area tumors. Resection is performed during awake craniotomy (AC) or under general anesthesia (GA). Considering the advances in glioma management, an updated meta-analysis is needed. We identified studies evaluating surgical outcomes in adult patients undergoing glioma resection in motor areas, comparing AC and GA mapping until November 2023. Twenty-four observational studies and one randomized controlled trial met our inclusion criteria, adding 3011 patients. The mean extent of resection was 92.2% (95%CI = 89.9%-94.5%) for AC and 92.5% (95%CI = 89.6%-95.3%) for GA. Immediate deficit revealed a nonsignificant risk ratio (RR) of 0.96 favoring AC (95%CI = 0.66-1.41, p = 0.84). Similarly, long-term deficits showed a nonsignificant RR of 1.33 favoring GA (95%CI = 0.91-1.95, p = 0.14). Karnofsky performance score (KPS) analysis revealed a nonsignificant mean difference of 2.32 favoring GA (95%CI = -6.10-10.73, p = 0.59). Intraoperative stimulation-induced seizures analysis yielded a nonsignificant RR of 0.73 (95% CI = 0.27-1.97, p = 0.53) favoring AC. Postoperative seizure analysis showed a significant RR of 0.64 (95% CI = 0.44-0.94, p = 0.02) favoring AC. This meta-analysis suggests that AC and GA are comparable approaches to maximize extent of resection and achieve safe resection in eloquent glioma surgery. These findings can offer guidance to neurosurgeons in the decision-making process.
Collapse
Affiliation(s)
- Dina Essam Abo-Elnour
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA.
| | - Pavel Salvador Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Yomna Emad Abdalla
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA
| | - Moaz Khaled Salama
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA
| | - Toka Elboraay
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA
| | - Marwa Abdelazim Rizk
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA
| | - Ahmed Negida
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA
- Parkinson's and Movement Disorder Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health and Science University, Portland, USA
| |
Collapse
|
3
|
Cozzens JW, Lokaitis BC, Delfino K, Hoeft A, Moore BE, Fifer AS, Amin DV, Espinosa JA, Jones BA, Acakpo-Satchivi L. A Phase 2 Sensitivity and Selectivity Study of High-Dose 5-Aminolevulinic Acid in Adult Patients Undergoing Resection of a Newly Diagnosed or Recurrent Glioblastoma. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01394. [PMID: 39526779 DOI: 10.1227/ons.0000000000001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The utility of oral 5-aminolevulinic acid (5-ALA)/protoporphyrin fluorescence for the resection of high-grade gliomas is well documented, but the problem of false-negative observations remains. This study compares high-grade glioma visualization with low/standard dose 5-ALA (<30 mg/kg) to high-dose 5-ALA (>40 mg/kg) to see if by using this higher dose, it is possible to reduce the rate of false-negative observations without increasing the rate of false-positive (FP) observations and therefore increase the sensitivity. METHODS This is a prospective study of consecutive patients with radiological evidence of presumed high-grade glioma. We reviewed the data from patients who received preoperative low/standard doses and patients who received a preoperative high dose of 5-ALA. Adverse events, dose to observation time, intensity of tumor fluorescence, and results of biopsies in areas of tumor and tumor bed under deep blue light were recorded. RESULTS A total of 22 patients with high-grade glioma received a dose >40 mg/kg (high-dose) and 9 patients received <30 mg/kg (low/standard dose). There were no serious adverse events related to 5-ALA in any subject. There was a very high sensitivity and specificity of 5-ALA for the presence of tumor in both groups. There were no FP observations (fluorescence with no tumor) in either group. The specificity and the positive predictive value were 100% in both groups. The sensitivity and the negative predictive value were 53.3% and 30.0% in the low/standard dose group and 59.5% and 31.8% in the high-dose group, respectively. CONCLUSION High-dose oral 5-aminolevulinic/protoporphyrin fluorescence is a safe and effective aid to the intraoperative detection of high-grade gliomas with high sensitivity and specificity. False-negative observations with a high dose do not seem to be less than that with a low/standard dose. The rate of FP observations with both groups remains very low.
Collapse
Affiliation(s)
- Jeffrey W Cozzens
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Barbara C Lokaitis
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Kristin Delfino
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Ava Hoeft
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Brian E Moore
- Department of Pathology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Amber S Fifer
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Devin V Amin
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - José A Espinosa
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Breck A Jones
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leslie Acakpo-Satchivi
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Springfield Clinic, Springfield, Illinois, USA
| |
Collapse
|
4
|
Barchéus H, Peischl C, Björkman-Burtscher IM, Pettersson C, Smits A, Nilsson D, Farahmand D, Eriksson J, Skoglund T, Corell A. Observations from the first 100 cases of intraoperative MRI - experiences, trends and short-term outcomes. BMC Surg 2024; 24:268. [PMID: 39300452 DOI: 10.1186/s12893-024-02569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND We sought to analyze, in well-defined clinical setting, the first 100 patients treated at the intraoperative MRI (iMRI) hybrid surgical theatre at our facility in a population-based setting to evaluate which pathologies are best approached with iMRI assisted surgeries, as this is not yet clearly defined. METHODS Patients undergoing surgery in the 3T iMRI hybrid surgical theatre at our neurosurgical department between December 2017 to May 2021 were included after informed consent. Demographic, clinical, surgical, histological, radiological and outcome parameters, as well as variables related to iMRI, were retrospectively collected and analyzed. Patients were subdivided into adult and pediatric cohorts. RESULTS Various neurosurgical procedures were performed; resection of tumors and epileptic foci, endoscopic skull base procedures including pituitary lesions, deep brain stimulation (DBS) and laser interstitial thermal therapy (LITT). In total, 41 patients were pediatric. An iMRI scan was carried out in 96% of cases and led to continuation of surgery in 50% of cases, mainly due to visualized remaining pathological tissue (95.2%). Median time to iMRI from intubation was 280 min and median total duration of surgery was 445 min. The majority of patients experienced no postoperative complications (70%), 13 patients suffered permanent postoperative deficits, predominantly visual. CONCLUSION Herein, we demonstrate the first 100 patients undergoing neurosurgery aided by iMRI at our facility since introduction. Indications for surgery differed between pediatric and adult patients. The iMRI was utilized for tumor surgeries, particularly adult low-grade gliomas and pediatric tumors, as well as for epilepsy surgery and DBS. In this heterogenous population, iMRI led to continuation of surgery in 50%. To establish the benefit in maximizing the extent of resection in these brain pathologies future studies are recommended. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hanna Barchéus
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden.
| | - Christoffer Peischl
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Pettersson
- Department of Radiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Anja Smits
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
| | - Daniel Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Dan Farahmand
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Johanna Eriksson
- Department Hybrid and Intervention Operation 5, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Thomas Skoglund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
5
|
Mirzayeva L, Uçar M, Kaymaz AM, Temel E. Intraoperative magnetic resonance imaging in glioma surgery: a single-center experience. J Neurooncol 2024; 168:249-257. [PMID: 38568377 PMCID: PMC11147832 DOI: 10.1007/s11060-024-04660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE To investigate the effect of intraoperative magnetic resonance imaging (Io MRI) on overall and progression-free survival (OS and PFS), on the extent of resection (EOR) in patients with glioma, and impact of the radiological diagnosis on the decision to continue the surgery when a residual mass was detected on Io MRI. METHODS The study comprised 153 glioma patients who received surgical treatment between 2013 and 2023. One-hundred twenty-five of them had Io MRI guidance during surgery. The remainder 28 patients constituted the control group who did not undergo Io MRI. All patients' age at surgery, gender, initial radiological diagnosis, primary tumor localization, EOR, last histopathological diagnosis, and the follow-up periods were recorded. RESULTS The rate of tumor recurrence in Io MRI cases was significantly lower compared to the cases in the control group (p < .0001). It was decided to continue the operation in 45 Io MRI applied cases. This raised the gross total resection (GTR) rate from 33.6% to 49.6% in the Io MRI group. The frequency of GTR was significantly higher in patients with an initial radiological diagnosis of low grade glioma than those with high grade glioma. The shortest OS was seen in occipital gliomas. CONCLUSION In this study, the convenience provided by the high-field MRI device was explored and proven both in reducing the tumor burden, increasing the PFS, and providing the surgeon with a maximal resection in the first operation.
Collapse
Affiliation(s)
- Leyla Mirzayeva
- Gazi University, Faculty of Medicine, Department of Radiology, Ankara, Turkey.
| | - Murat Uçar
- Gazi University, Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Ahmet Memduh Kaymaz
- Gazi University, Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Esra Temel
- Gazi University, Faculty of Medicine, Department of Radiology, Ankara, Turkey
| |
Collapse
|
6
|
Pichardo-Rojas PS, Zarate C, Arguelles-Hernández J, Barrón-Lomelí A, Sanchez-Velez R, Hjeala-Varas A, Gutierrez-Herrera E, Tandon N, Esquenazi Y. Intraoperative ultrasound for surgical resection of high-grade glioma and glioblastoma: a meta-analysis of 732 patients. Neurosurg Rev 2024; 47:120. [PMID: 38498065 DOI: 10.1007/s10143-024-02354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE Here, we conducted a meta-analysis to explore the use of intraoperative ultrasound (iUS)-guided resection in patients diagnosed with high-grade glioma (HGG) or glioblastoma (GBM). Our aim was to determine whether iUS improves clinical outcomes compared to conventional neuronavigation (CNN). METHODS Databases were searched until April 21, 2023 for randomized controlled trials (RCTs) and observational cohort studies that compared surgical outcomes for patients with HGG or GBM with the use of either iUS in addition to standard approach or CNN. The primary outcome was overall survival (OS). Secondary outcomes include volumetric extent of resection (EOR), gross total resection (GTR), and progression-free survival (PFS). Outcomes were analyzed by determining pooled relative risk ratios (RR), mean difference (MD), and standardized mean difference (SMD) using random-effects model. RESULTS Of the initial 867 articles, only 7 articles specifically met the inclusion criteria (1 RCT and 6 retrospective cohorts). The analysis included 732 patients. Compared to CNN, the use of iUS was associated with higher OS (SMD = 0.26,95%CI=[0.12,0.39]) and GTR (RR = 2.02; 95% CI=[1.31,3.1]) for both HGG and GBM. There was no significant difference in PFS or EOR. CONCLUSION The use of iUS in surgical resections for HGG and GBM can improve OS and GTR compared to CNN, but it did not affect PFS. These results suggest that iUS reduces mortality associated with HGG and GBM but not the risk of recurrence. These results can provide valuable cost-effective interventions for neurosurgeons in HGG and GBM surgery.
Collapse
Affiliation(s)
- Pavel S Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Jesse H. Jones Building, 1133 John Freeman Blvd, Suite 431.1, 77030, Houston, TX, U.S.A..
| | - Carlos Zarate
- Facultad de Medicina, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | | | - Aldo Barrón-Lomelí
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Amir Hjeala-Varas
- Universidad Católica Boliviana "San Pablo" Regional Santa Cruz, Santa Cruz, Bolivia
| | - Ernesto Gutierrez-Herrera
- Facultad de Ciencias de la Salud, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Nitin Tandon
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Jesse H. Jones Building, 1133 John Freeman Blvd, Suite 431.1, 77030, Houston, TX, U.S.A
| | - Yoshua Esquenazi
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Jesse H. Jones Building, 1133 John Freeman Blvd, Suite 431.1, 77030, Houston, TX, U.S.A
| |
Collapse
|
7
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
8
|
Pichardo-Rojas PS, Angulo-Lozano JC, Alvarez-Castro JA, Vázquez-Alva D, Osuna-Lau RA, Choque-Ayala LC, Tandon N, Esquenazi Y. Intraoperative Magnetic Resonance Imaging (MRI)-Guided Resection of Glioblastoma: A Meta-Analysis of 1,847 Patients. World Neurosurg 2024; 182:e807-e822. [PMID: 38101537 DOI: 10.1016/j.wneu.2023.12.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Affiliation(s)
- Pavel S Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA.
| | - Juan Carlos Angulo-Lozano
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| | - José Alfonso Alvarez-Castro
- Department of Neurosurgery, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Diego Vázquez-Alva
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Luz Camila Choque-Ayala
- Facultad de Medicina, Universidad Católica Boliviana San Pablo, Santa Cruz de la Sierra, Bolivia
| | - Nitin Tandon
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Yoshua Esquenazi
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
9
|
Roder C, Stummer W, Coburger J, Scherer M, Haas P, von der Brelie C, Kamp MA, Löhr M, Hamisch CA, Skardelly M, Scholz T, Schipmann S, Rathert J, Brand CM, Pala A, Ernemann U, Stockhammer F, Gerlach R, Kremer P, Goldbrunner R, Ernestus RI, Sabel M, Rohde V, Tabatabai G, Martus P, Bisdas S, Ganslandt O, Unterberg A, Wirtz CR, Tatagiba M. Intraoperative MRI-Guided Resection Is Not Superior to 5-Aminolevulinic Acid Guidance in Newly Diagnosed Glioblastoma: A Prospective Controlled Multicenter Clinical Trial. J Clin Oncol 2023; 41:5512-5523. [PMID: 37335962 PMCID: PMC10730068 DOI: 10.1200/jco.22.01862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE Prospective data suggested a superiority of intraoperative MRI (iMRI) over 5-aminolevulinic acid (5-ALA) for achieving complete resections of contrast enhancement in glioblastoma surgery. We investigated this hypothesis in a prospective clinical trial and correlated residual disease volumes with clinical outcome in newly diagnosed glioblastoma. METHODS This is a prospective controlled multicenter parallel-group trial with two center-specific treatment arms (5-ALA and iMRI) and blinded evaluation. The primary end point was complete resection of contrast enhancement on early postoperative MRI. We assessed resectability and extent of resection by an independent blinded centralized review of preoperative and postoperative MRI with 1-mm slices. Secondary end points included progression-free survival (PFS) and overall survival (OS), patient-reported quality of life, and clinical parameters. RESULTS We recruited 314 patients with newly diagnosed glioblastomas at 11 German centers. A total of 127 patients in the 5-ALA and 150 in the iMRI arm were analyzed in the as-treated analysis. Complete resections, defined as a residual tumor ≤0.175 cm³, were achieved in 90 patients (78%) in the 5-ALA and 115 (81%) in the iMRI arm (P = .79). Incision-suture times (P < .001) were significantly longer in the iMRI arm (316 v 215 [5-ALA] minutes). Median PFS and OS were comparable in both arms. The lack of any residual contrast enhancing tumor (0 cm³) was a significant favorable prognostic factor for PFS (P < .001) and OS (P = .048), especially in methylguanine-DNA-methyltransferase unmethylated tumors (P = .006). CONCLUSION We could not confirm superiority of iMRI over 5-ALA for achieving complete resections. Neurosurgical interventions in newly diagnosed glioblastoma shall aim for safe complete resections with 0 cm³ contrast-enhancing residual disease, as any other residual tumor volume is a negative predictor for PFS and OS.
Collapse
Affiliation(s)
- Constantin Roder
- Department of Neurosurgery, University Hospital Tübingen, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, Eberhard-Karls-University, Tübingen, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Westphalian-Wilhelms-University, Münster, Germany
| | - Jan Coburger
- Department of Neurosurgery, University Hospital Ulm/Günzburg, University of Ulm, Günzburg, Germany
| | - Moritz Scherer
- Department of Neurosurgery, University Hospital Heidelberg, Rupprecht-Karls-University, Heidelberg, Germany
| | - Patrick Haas
- Department of Neurosurgery, University Hospital Tübingen, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, Eberhard-Karls-University, Tübingen, Germany
| | - Christian von der Brelie
- Department of Neurosurgery, University Hospital Göttingen, Georg-August-University, Göttingen, Germany
- Department of Neurosurgery, Johanniter Hospital Bonn, Bonn, Germany
| | - Marcel Alexander Kamp
- Department of Neurosurgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Neurosurgery, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Mario Löhr
- Department of Neurosurgery, University Hospital Würzburg, Julius-Maximilians-University, Würzburg, Germany
| | - Christina A. Hamisch
- Department of Neurosurgery, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marco Skardelly
- Department of Neurosurgery, University Hospital Tübingen, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, Eberhard-Karls-University, Tübingen, Germany
- Department of Neurosurgery, Municipal Hospital Reutlingen, Reutlingen, Germany
| | - Torben Scholz
- Department of Neurosurgery, Asklepios Klinik Nord—Heidberg, Hamburg, Germany
| | - Stephanie Schipmann
- Department of Neurosurgery, University Hospital Münster, Westphalian-Wilhelms-University, Münster, Germany
- Department of Neurosurgery, Haukeland University Hospital Bergen, Bergen, Norway
| | - Julian Rathert
- Department of Neurosurgery, Helios Hospital Erfurt, Erfurt, Germany
| | | | - Andrej Pala
- Department of Neurosurgery, University Hospital Ulm/Günzburg, University of Ulm, Günzburg, Germany
| | - Ulrike Ernemann
- Department of Neuroradiology, University Hospital Tübingen, Eberhards-Karls-University, Tübingen, Germany
| | | | - Rüdiger Gerlach
- Department of Neurosurgery, Helios Hospital Erfurt, Erfurt, Germany
| | - Paul Kremer
- Department of Neurosurgery, Asklepios Klinik Nord—Heidberg, Hamburg, Germany
| | - Roland Goldbrunner
- Department of Neurosurgery, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, Julius-Maximilians-University, Würzburg, Germany
| | - Michael Sabel
- Department of Neurosurgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Hospital Göttingen, Georg-August-University, Göttingen, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, German Cancer Consortium (DKTK), Partner Site Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Peter Martus
- Department of Clinical Epidemiology and Applied Biostatistics, Eberhard-Karls-University, Tübingen, Germany
| | - Sotirios Bisdas
- Lysholm Department of Neuroradiology, The National Hospital for Neurology & Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Oliver Ganslandt
- Department of Neurosurgery, Municipal Hospital Stuttgart, Stuttgart, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Rupprecht-Karls-University, Heidelberg, Germany
| | - Christian Rainer Wirtz
- Department of Neurosurgery, University Hospital Ulm/Günzburg, University of Ulm, Günzburg, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University Hospital Tübingen, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
10
|
Banu MA, McKhann GM. Maximizing Extent of Resection for Noneloquent Glioblastoma: Fluorescent Dye or Intraoperative Magnetic Resonance Imaging? J Clin Oncol 2023; 41:5493-5496. [PMID: 37722089 DOI: 10.1200/jco.23.00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 09/20/2023] Open
Affiliation(s)
- Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY
| |
Collapse
|
11
|
Abstract
The care of patients with both high-grade glioma and low-grade glioma necessitates an interdisciplinary collaboration between neurosurgeons, neuro-oncologists, neurologists and other practitioners. In this review, we aim to detail the considerations, approaches and advances in the neurosurgical care of gliomas. We describe the impact of extent-of-resection in high-grade and low-grade glioma, with particular focus on primary and recurrent glioblastoma. We address advances in surgical methods and adjunct technologies such as intraoperative imaging and fluorescence guided surgery that maximize extent-of-resection while minimizing the potential for iatrogenic neurological deficits. Finally, we review surgically-mediated therapies other than resection and discuss the role of neurosurgery in emerging paradigm-shifts in inter-disciplinary glioma management such as serial tissue sampling and "window of opportunity trials".
Collapse
Affiliation(s)
- Andrew A Hardigan
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Joshua D Jackson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Anoop P Patel
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
12
|
Staub-Bartelt F, Rapp M, Sabel M. Resection of Eloquent Located Brain Tumors by Mapping Only-A Feasibility Study. Brain Sci 2023; 13:1366. [PMID: 37891736 PMCID: PMC10605432 DOI: 10.3390/brainsci13101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Patients with eloquently located cerebral lesions require surgery that usually employs mapping and monitoring techniques for the preservation of motor and language function. However, in many cases, mapping only might be sufficient, reducing the need for technical and personnel logistics. Here, we report our experiences using a device that can be operated by the surgeon independently, providing mapping techniques but omitting monitoring techniques. METHODS For monopolar and bipolar cortical/subcortical stimulation, pre-set programs were available and intraoperatively used-two enabling EMG real-time tracking of eight muscles for monopolar (cortical/subcortical) mapping, and two programs for 60 Hz stimulation, one with EMG and one without. Motor mapping was performed under continuous observation of the screened EMG signal and acoustic feedback by the surgeon. For the 60 Hz stimulation, a standard bipolar stimulation probe was connected through a second port. The preoperative application of the subdermal EMG needles, as well as the intraoperative handling of the device, were performed by the surgeons independently. Postoperatively, an evaluation of the autonomous handling and feasibility of the device for the chosen test parameters was conducted. RESULTS From 04/19-09/21, 136 procedures in patients with eloquently located cerebral lesions were performed by using the "mapping-only" device. Mapping was performed in 82% of the monopolar cases and in 42% of the bipolar cases. Regarding the setup and sufficiency for the cortical/subcortical mapping, the device was evaluated as independently usable for motor and language mapping in 129 procedures (95%). Gross total resection was achieved, or functional limit throughout resection was reached, in 79% of the patients. 13 patients postoperatively suffered from a new neurological deficit. At the 3-6-month follow-up, three patients showed persistent deficit (2%). All of them had language disturbances. The setup time for the device was less than 7 min. CONCLUSIONS The device was evaluated as sufficient in over 90% of cases concerning monopolar and bipolar mapping, and the setup and handling was sufficient in all patients. With the present data we show that in well-selected cases, a very simple system providing mapping only is sufficient to achieve gross total resection with the preservation of functionality.
Collapse
|
13
|
Schmidt A, Roder C, Eckert F, Baumann D, Niyazi M, Fideler F, Ernemann U, Tatagiba M, Schäfer J, Urla C, Scherer S, Fuchs J, Paulsen F, Bender B. Increasing Patient Safety and Treatment Quality by Using Intraoperative MRI for Organ-Preserving Tumor Resection and High-Dose Rate Brachytherapy in Children with Bladder/Prostate and Perianal Rhabdomyosarcoma. Cancers (Basel) 2023; 15:3505. [PMID: 37444615 DOI: 10.3390/cancers15133505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
In children with bladder/prostate (BP) and perianal rhabdomyosarcoma (RMS), we use a hybrid treatment concept for those suitable, combining organ-preserving tumor resection and high-dose rate brachytherapy (HDR-BT). This treatment concept has been shown to improve outcomes. However, it is associated with specific challenges for the clinicians. The exact position of the tubes for BT is a prerequisite for precise radiotherapy. It can finally be determined only with an MRI or CT scan. We evaluated the use of an intraoperative MRI (iMRI) to control the position of the BT tubes and for radiotherapy planning in all patients with BP and perianal RMS who received the above-mentioned combination therapy in our department since January 2021. iMRI was used in 12 children. All tubes were clearly localized. No adverse events occurred. In all 12 children, radiotherapy could be started on time. In a historical cohort without iMRI, this was not possible in 3 out of 20 children. The use of iMRI in children with BP and perianal RMS improved patient safety and treatment quality. This technology has proven to be successful for the patient population we have defined and has become a standard procedure in our institution.
Collapse
Affiliation(s)
- Andreas Schmidt
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Constantin Roder
- Department of Neurosurgery, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital, Eberhard Karls University Tuebingen, 72070 Tuebingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
- Department of Radiation Oncology, AKH, Comprehensive Cancer Center Vienna, Medical University Vienna, 1090 Vienna, Austria
| | - David Baumann
- Department of Radiation Oncology, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Frank Fideler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Ulrike Ernemann
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital, Eberhard Karls University Tuebingen, 72070 Tuebingen, Germany
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital, Eberhard Karls University Tuebingen, 72070 Tuebingen, Germany
| | - Jürgen Schäfer
- Department of Pediatric Radiology, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Cristian Urla
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Simon Scherer
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
- Center for Pediatric Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital, Eberhard Karls University Tuebingen, 72070 Tuebingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Benjamin Bender
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital, Eberhard Karls University Tuebingen, 72070 Tuebingen, Germany
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
14
|
Gupta T, Sahoo RK, Singh H, Katke S, Chaurasiya A, Gupta U. Lipid-Based Nanocarriers in the Treatment of Glioblastoma Multiforme (GBM): Challenges and Opportunities. AAPS PharmSciTech 2023; 24:102. [PMID: 37041350 DOI: 10.1208/s12249-023-02555-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Glioblastoma multiforme (also known as glioblastoma; GBM) is one of the most malignant types of brain tumors that occurs in the CNS. Treatment strategies for glioblastoma are majorly comprised of surgical resection, radiotherapy, and chemotherapy along with combination therapy. Treatment of GBM is itself a tedious task but the involved barriers in GBM are one of the main impediments to move one step closer to the treatment of GBM. Basically, two of the barriers are of utmost importance in this regard, namely blood brain barrier (BBB) and blood brain tumor barrier (BBTB). This review will address different challenges and barriers in the treatment of GBM along with their etiology. The role and recent progress of lipid-based nanocarriers like liposomes, solid lipid nanocarriers (SLNs), nanostructured lipid carriers (NLCs), lipoplexes, and lipid hybrid carriers in the effective management of GBM will be discussed in detail.
Collapse
Affiliation(s)
- Tanisha Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Himani Singh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Sumeet Katke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
15
|
Ius T, Sabatino G, Panciani PP, Fontanella MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R, Catapano G, Costantino G, Della Puppa A, Di Meco F, Gagliardi F, Garbossa D, Germanò AF, Iacoangeli M, Mortini P, Olivi A, Pessina F, Pignotti F, Pinna G, Raco A, Sala F, Signorelli F, Sarubbo S, Skrap M, Spena G, Somma T, Sturiale C, Angileri FF, Esposito V. Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review. J Neurooncol 2023; 162:267-293. [PMID: 36961622 PMCID: PMC10167129 DOI: 10.1007/s11060-023-04274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.
Collapse
Affiliation(s)
- Tamara Ius
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
| | - Marco Maria Fontanella
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
- Neurology Unit, Hospital of Castelfranco Veneto, 31033, Castelfranco Veneto, Italy
| | - Antonella Castellano
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico - San Marco" University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Francesco Belotti
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe Catapano
- Division of Neurosurgery, Department of Neurological Sciences, Ospedale del Mare, Naples, Italy
| | | | - Alessandro Della Puppa
- Neurosurgical Clinical Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Torino, Italy
| | | | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica Delle Marche, Azienda Ospedali Riuniti, Ancona, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| | - Fabrizio Pignotti
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonino Raco
- Division of Neurosurgery, Department of NESMOS, AOU Sant'Andrea, Sapienza University, Rome, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134, Verona, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neurosurgery Unit, University "Aldo Moro", 70124, Bari, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Miran Skrap
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery "Giampaolo Cantore"-IRCSS Neuromed, Pozzilli, Italy
- Department of Human, Neurosciences-"Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
16
|
Review of Intraoperative Adjuncts for Maximal Safe Resection of Gliomas and Its Impact on Outcomes. Cancers (Basel) 2022; 14:cancers14225705. [PMID: 36428797 PMCID: PMC9688206 DOI: 10.3390/cancers14225705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Maximal safe resection is the mainstay of treatment in the neurosurgical management of gliomas, and preserving functional integrity is linked to favorable outcomes. How these modalities differ in their effectiveness on the extent of resection (EOR), survival, and complications remains unknown. A systematic literature search was performed with the following inclusion criteria: published between 2005 and 2022, involving brain glioma surgery, and including one or a combination of intraoperative modalities: intraoperative magnetic resonance imaging (iMRI), awake/general anesthesia craniotomy mapping (AC/GA), fluorescence-guided imaging, or combined modalities. Of 525 articles, 464 were excluded and 61 articles were included, involving 5221 glioma patients, 7(11.4%) articles used iMRI, 21(36.8%) used cortical mapping, 15(24.5%) used 5-aminolevulinic acid (5-ALA) or fluorescein sodium, and 18(29.5%) used combined modalities. The heterogeneity in reporting the amount of surgical resection prevented further analysis. Progression-free survival/overall survival (PFS/OS) were reported in 18/61(29.5%) articles, while complications and permanent disability were reported in 38/61(62.2%) articles. The reviewed studies demonstrate that intraoperative adjuncts such as iMRI, AC/GA mapping, fluorescence-guided imaging, and a combination of these modalities improve EOR. However, PFS/OS were underreported. Combining multiple intraoperative modalities seems to have the highest effect compared to each adjunct alone.
Collapse
|
17
|
Gamboa NT, Crabb B, Henson JC, Cole KL, Weaver BD, Karsy M, Jensen RL. High-grade glioma imaging volumes and survival: a single-institution analysis of 101 patients after resection using intraoperative MRI. J Neurooncol 2022; 160:555-565. [DOI: 10.1007/s11060-022-04159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
|
18
|
Mosteiro A, Di Somma A, Ramos PR, Ferrés A, De Rosa A, González-Ortiz S, Enseñat J, González JJ. Is intraoperative ultrasound more efficient than magnetic resonance in neurosurgical oncology? An exploratory cost-effectiveness analysis. Front Oncol 2022; 12:1016264. [PMID: 36387079 PMCID: PMC9650059 DOI: 10.3389/fonc.2022.1016264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Intraoperative imaging is a chief asset in neurosurgical oncology, it improves the extent of resection and postoperative outcomes. Imaging devices have evolved considerably, in particular ultrasound (iUS) and magnetic resonance (iMR). Although iUS is regarded as a more economically convenient and yet effective asset, no formal comparison between the efficiency of iUS and iMR in neurosurgical oncology has been performed. Methods A cost-effectiveness analysis comparing two single-center prospectively collected surgical cohorts, classified according to the intraoperative imaging used. iMR (2013-2016) and iUS (2021-2022) groups comprised low- and high-grade gliomas, with a maximal safe resection intention. Units of health gain were gross total resection and equal or increased Karnofsky performance status. Surgical and health costs were considered for analysis. The incremental cost-effectiveness ratio (ICER) was calculated for the two intervention alternatives. The cost-utility graphic and the evolution of surgical duration with the gained experience were also analyzed. Results 50 patients followed an iMR-assisted operation, while 17 underwent an iUS-guided surgery. Gross total resection was achieved in 70% with iMR and in 60% with iUS. Median postoperative Karnofsky was similar in both group (KPS 90). Health costs were € 3,220 higher with iMR, and so were surgical-related costs (€ 1,976 higher). The ICER was € 322 per complete resection obtained with iMR, and € 644 per KPS gained or maintained with iMR. When only surgical-related costs were analyzed, ICER was € 198 per complete resection with iMR and € 395 per KPS gained or maintained. Conclusion This is an unprecedented but preliminary cost-effectiveness analysis of the two most common intraoperative imaging devices in neurosurgical oncology. iMR, although being costlier and time-consuming, seems cost-effective in terms of complete resection rates and postoperative performance status. However, the differences between both techniques are small. Possibly, iMR and iUS are complementary aids during the resection: iUS real-time images assist while advancing towards the tumor limits, informing about the distance to relevant landmarks and correcting neuronavigation inaccuracy due to brain shift. Yet, at the end of resection, it is the iMR that reliably corroborates whether residual tumor remains.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Alejandra Mosteiro,
| | - Alberto Di Somma
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Roldán Ramos
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Andrea De Rosa
- Division of Neurosurgery, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sofía González-Ortiz
- Division of Neurosurgery, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Joaquim Enseñat
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Jose Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Abstract
Glioblastoma is the most aggressive primary brain tumor with a poor prognosis. The 2021 WHO CNS5 classification has further stressed the importance of molecular signatures in diagnosis although therapeutic breakthroughs are still lacking. In this review article, updates on the current and novel therapies in IDH-wildtype GBM will be discussed.
Collapse
Affiliation(s)
- Jawad M Melhem
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - James R Perry
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
20
|
Surgical Treatment of Glioblastoma: State-of-the-Art and Future Trends. J Clin Med 2022; 11:jcm11185354. [PMID: 36143001 PMCID: PMC9505564 DOI: 10.3390/jcm11185354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive disease and is associated with poor prognosis despite treatment advances in recent years. Surgical resection of tumor remains the main therapeutic option when approaching these patients, especially when combined with adjuvant radiochemotherapy. In the present study, we conducted a comprehensive literature review on the state-of-the-art and future trends of the surgical treatment of GBM, emphasizing topics that have been the object of recent study.
Collapse
|
21
|
Xiong Z, Luo C, Wang P, Hameed NUF, Song S, Zhang X, Wu S, Wu J, Mao Y. The Intraoperative Utilization of Multimodalities Could Improve the Prognosis of Adult Glioblastoma: A Single-Center Observational Study. World Neurosurg 2022; 165:e532-e545. [PMID: 35760324 DOI: 10.1016/j.wneu.2022.06.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In recent years, numerous neurosurgical multimodal techniques have been utilized to maximize tumor resection safely and effectively. However, the synergetic effects of neurosurgical multimodalities on the survival of glioblastoma patients remain unclear. This study evaluated the role of intraoperative utilization of multimodalities in glioblastoma patients. METHODS Data of 912 adult patients with glioblastoma were obtained from the Huashan Glioma Registry. The utilization of fewer than 2 (multimodality value < 2) intraoperative multimodal techniques was defined as the nonmultimodal group. In contrast, the utilization of 2 or more (multimodality value ≥ 2) intraoperative multimodal techniques was regarded as the multimodal group. The prognosis of the 2 cohorts was compared and further stratified based on the diagnosis date (2010-2014 or 2015-2019) to reveal the role of the application of multimodal techniques. RESULTS The median overall survival (OS) and progression-free survival of glioblastoma patients were 17.70 months and 12.03 months, respectively. The OS time of the multimodal group was noticeably longer than that of the nonmultimodal group (21.0 months vs. 16.0 months, P < 0.001). Multimodal techniques were more frequently applied in surgery in the 2015-2019 group than in the 2010-2014 group. The popularity of multimodal techniques contributed to significant improvement in the prognosis of glioblastoma patients from 2010-2014 to 2015-2019 (OS, 16.0 months vs. 22.0 months, P < 0.001). CONCLUSIONS This study indicated that the utilization of intraoperative multimodal techniques improved the extent of resection and elevated the survival for adult glioblastoma patients.
Collapse
Affiliation(s)
- Zhang Xiong
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China
| | - Chen Luo
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China
| | - Peng Wang
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China
| | - N U Farrukh Hameed
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sida Song
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China
| | - Xiaoluo Zhang
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China
| | - Shuai Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China
| | - Ying Mao
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
22
|
Zheng H, Yan T, Han Y, Wang Q, Zhang G, Zhang L, Zhu W, Xie L, Guo X. Nomograms for prognostic risk assessment in glioblastoma multiforme: Applications and limitations. Clin Genet 2022; 102:359-368. [PMID: 35882630 DOI: 10.1111/cge.14200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/26/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer. Prognosis evaluation is of great significance in guiding individualized treatment and monitoring of GBM. By integrating different prognostic variables, nomograms simplify the statistical risk prediction model into numerical estimates for death or recurrence, and are hence widely applied in prognosis prediction. In the past two decades, the application of high-throughput profiling technology and the establishment of TCGA database and other public data deposits have provided opportunities to identify cancer-related molecules and prognostic biomarkers. As a result, both molecular features and clinical characteristics of cancer have been reported to be the key factors in nomogram model construction. This article comprehensively reviewed 35 studies of GBM nomograms, analyzed the present situation of GBM nomograms, and discussed the role and significance of nomograms in personalized risk assessment and clinical treatment decision-making. To facilitate the application of nomograms in the prognostic prediction of GBM patients, a website has been established for the online access of nomograms based on the studies of this review, which is called Consensus Nomogram Spectrum for Glioblastoma (CNSgbm) and is accessible through https://bioinfo.henu.edu.cn/nom/NomList.jsp.
Collapse
Affiliation(s)
- Hong Zheng
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Taoning Yan
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yunsong Han
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Qiang Wang
- School of Software, Institute of Biomedical Informatics, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Guosen Zhang
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Lu Zhang
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, California, USA
| | - Longxiang Xie
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Institute of Biomedical Informatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| |
Collapse
|
23
|
Ruiz-Garcia H, Middlebrooks EH, Trifiletti DM, Chaichana KL, Quinones-Hinojosa A, Sheehan JP. The Extent of Resection in Gliomas-Evidence-Based Recommendations on Methodological Aspects of Research Design. World Neurosurg 2022; 161:382-395.e3. [PMID: 35505558 DOI: 10.1016/j.wneu.2021.08.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Modern neurosurgery has established maximal safe resection as a cornerstone in the management of diffuse gliomas. Evaluation of the extent of resection (EOR), and its association with certain outcomes or interventions, heavily depends on an adequate methodology to draw strong conclusions. We aim to identify weaknesses and limitations that may threaten the internal validity and generalizability of studies involving the EOR in patients with glioma and to suggest methodological recommendations that may help mitigate these threats. METHODS A systematic search was performed by querying PubMed, Web of Science, and Scopus since inception to April 30, 2021 using PICOS/PRISMA guidelines. Articles were then screened to identify high-impact studies evaluating the EOR in patients diagnosed with diffuse gliomas in accordance with predefined criteria. We identify common weakness and limitations during the evaluation of the EOR in the selected studies and then delineate potential methodological recommendations for future endeavors dealing with the EOR. RESULTS We identified 31 high-impact studies and found several research design issues including inconsistencies regarding EOR terminology, measurement, data collection, analysis, and reporting. Although some of these issues were related to now outdated reporting standards, many were still present in recent publications and deserve attention in contemporary and future research. CONCLUSIONS There is a current need to focus more attention to the methodological aspects of glioma research. Methodological inconsistencies may introduce weaknesses into the internal validity of the studies and hamper comparative analysis of cohorts from different institutions. We hope our recommendations will eventually help develop stronger methodological designs in future research endeavors.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida, USA; Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA; Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Jacksonville, Florida, USA
| | - Erik H Middlebrooks
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida, USA; Department of Radiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Daniel M Trifiletti
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, Florida, USA; Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
24
|
Fuentes AM, Ansari D, Burch TG, Mehta AI. Use of intraoperative MRI for resection of intracranial tumors: A nationwide analysis of short-term outcomes. J Clin Neurosci 2022; 99:152-157. [PMID: 35279588 DOI: 10.1016/j.jocn.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Recent evidence supports the use of intraoperative MRI (iMRI) during resection of intracranial tumors due to its demonstrated efficacy and clinical benefit. Though many single-center investigations have been conducted, larger nationwide outcomes have yet to be characterized. METHODS We used the American College of Surgeons National Surgical Quality Improvement Program database to examine baseline characteristics and 30-day postoperative outcomes among patients undergoing craniotomy for tumor resection with and without iMRI. Comparisons between outcomes were accomplished after propensity matching using chi-square tests for categorical variables and Welch two-sample t-tests for continuous variables. RESULTS A total of 38,003 patients met inclusion criteria. Of this population, 54 (0.1%) received iMRI, while 37,949 (99.9%) did not receive iMRI. After propensity score matching, the resulting groups consisted of an iMRI group (n = 54) and a matched non-iMRI group (n = 54). Procedures involving iMRI were associated with significantly increased operation length compared to those without (p < 0.01). Length of hospital stay was higher in patients without iMRI, with this difference trending towards significance (p = 0.05) in the unmatched comparison. Patients undergoing craniotomy without iMRI had a higher rate of readmission (p = 0.04). There was no significant difference in occurrence of other adverse events between the two patient groups. CONCLUSION Despite increasing operative length, iMRI is not associated with higher infection rate and may have a clinical benefit associated with reducing readmissions and a trend towards reducing inpatient length of stay. Additional nationwide analyses including more iMRI patients would provide further insight into the strength of these findings.
Collapse
Affiliation(s)
- Angelica M Fuentes
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Darius Ansari
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Taylor G Burch
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ankit I Mehta
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
26
|
Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review. J Neurooncol 2022; 156:233-256. [PMID: 34989964 DOI: 10.1007/s11060-021-03901-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
IMPORTANCE High-grade gliomas (HGG) are the most aggressive and common malignant brain tumors in adults. They have a dismally fatal prognosis. Even if gross total resection of the enhancing tumor is achieved, inevitably, invading tumor cells that are indistinguishable to the un-aided eye are left behind, which eventually leads to tumor recurrence. 5-aminolevulinic acid (5-ALA) is an increasingly utilized intraoperative fluorescent imaging agent for patients with HGG. It enhances visualization of HGG tissue. Despite early promising randomized clinical trial data suggesting a survival benefit for 5-ALA-guided surgery, the growing body of literature must be analyzed to confirm efficacy on patient outcomes. OBJECTIVE To perform a systematic review of the literature to evaluate whether there is a beneficial effect upon survival and extent of resection due to the utilization of 5-ALA in HGG surgery. EVIDENCE REVIEW Literature regarding 5-ALA usage in HGG surgery was reviewed according to the PRISMA guidelines. Two databases, PubMed and SCOPUS, were searched for assorted combinations of the keywords "5-ALA," "high-grade glioma," "5-aminolevulinic acid," and "resection" in July 2020 for case reports and retrospective, prospective, and randomized clinical trials assessing and analyzing 5-ALA intraoperative use in patients with HGG. Entailed studies on PubMed and SCOPUS were found for screening using a snowball search technique upon the initially searched papers. Systematic reviews and meta-analyses were excluded from our PRISMA table. FINDINGS 3756 previously published studies were screened, 536 of which were further evaluated, and ultimately 45 were included in our systematic review. There were no date restrictions on the screened publications. Our literature search was finalized on July 16, 2020. We found an observed increase in the overall survival (OS) and progression-free survival (PFS) of the 5-ALA group compared to the white light group, as well as an observed increase in the OS and PFS of complete resections compared to incomplete resections. Of the studies that directly compared the use of 5-ALA to white light (13 of the total analyzed 45, or 28.9%), 5-ALA lead to a better PFS and OS in 88.4 and 67.5% of patients, respectively. When the studies that reported postoperative neurologic outcomes of surgeries using 5-ALA vs. white light were analyzed, 42.2% of subjects demonstrated 5-ALA use was associated with less post-op neurological deficits, whereas 34.5% demonstrated no difference between 5-ALA and without. 23.3% of studies showed that intraoperative 5-ALA guided surgeries lead to more post-op neurological deficits. CONCLUSIONS AND RELEVANCE Utilization of 5-ALA was found to be associated with a greater extent of resection in HGG surgeries, as well as longer OS and PFS. Postop neurologic deficit rates were mixed and inconclusive when comparing 5-ALA groups to white light groups. 5-ALA is a useful surgical adjunct for resection of HGG when patient safety is preserved.
Collapse
|
27
|
Sa’adeh I, Saadh MJ. Multifocal glioblastoma multiform with “encephalitis-like presentation” : a case report. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Abstract
Background
Glioblastoma multiform is the most common and aggressive type of primary malignant tumor that affects the central nervous system in adults. It clinically presents with seizures, headache, and/or progressive focal neurological deficits. Radiologically, glioblastoma multiform appears as a single distinguishable, large heterogeneous lesion affecting the cerebrum with characteristic central necrosis, marginal enhancement, and surrounding vasogenic edema. This article describes a patient that exhibited an atypical clinical presentation of multifocal glioblastoma multiform with misleading early radiological features that simulated herpetic encephalitis.
Results
A 66-year-old female that presented with left-sided hemiparesis and left partial motor seizures underwent multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) scans. A cerebrospinal fluid (CSF) polymerase chain reaction (PCR) test was also performed to screen for herpes simplex virus 1 (HSV-1).
Conclusions
The early stages of glioblastoma may manifest as symptoms typical to encephalitis, which can delay diagnosis and treatment. Therefore, early diagnosis and identification of atypical glioblastoma multiform presentations, as reported in this article, are essential.
Collapse
|
28
|
Cho SS, Salinas R, De Ravin E, Teng CW, Li C, Abdullah KG, Buch L, Hussain J, Ahmed F, Dorsey J, Mohan S, Brem S, Singhal S, Lee JYK. Near-Infrared Imaging with Second-Window Indocyanine Green in Newly Diagnosed High-Grade Gliomas Predicts Gadolinium Enhancement on Postoperative Magnetic Resonance Imaging. Mol Imaging Biol 2021; 22:1427-1437. [PMID: 31712948 DOI: 10.1007/s11307-019-01455-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Intraoperative molecular imaging with tumor-targeting fluorophores offers real-time detection of neoplastic tissue. The second window indocyanine green (SWIG) technique relies on passive accumulation of indocyanine green (ICG), a near-infrared fluorophore, in neoplastic tissues. In this study, we explore the ability of SWIG to detect neoplastic tissue and to predict postoperative magnetic resonance imaging (MRI) findings intraoperatively. PROCEDURES Retrospective data were collected from 36 patients with primary high-grade gliomas (HGG) enrolled as part of a larger trial between October 2014 and October 2018. Patients received systemic ICG infusions at 2.5-5 mg/kg 24 h preoperatively. Near-infrared fluorescence was recorded throughout the case and from biopsy specimens. The presence/location of residual SWIG signal after resection was compared to the presence/location of residual gadolinium enhancement on postoperative MRI. The extent of resection was not changed based on near-infrared imaging. RESULTS All 36 lesions demonstrated strong near-infrared fluorescence (signal-to-background = 6.8 ± 2.2) and 100 % of tumors reaching the cortex were visualized before durotomy. In 78 biopsy specimens, near-infrared imaging demonstrated higher sensitivity and accuracy than white light for diagnosing neoplastic tissue intraoperatively. Furthermore, near-infrared imaging predicted gadolinium enhancement on postoperative MRI with 91 % accuracy, with visualization of residual enhancement as small as 0.3 cm3. Patients with no residual near-infrared signal after resection were significantly more likely to have complete resection on postoperative MRI (p value < 0.0001). CONCLUSIONS Intraoperative imaging with SWIG demonstrates highly sensitive detection of HGG tissue in real time. Furthermore, post-resection near-infrared imaging correlates with postoperative MRI. Overall, our findings suggest that SWIG can provide surgeons with MRI-like results in real time, potentially increasing resection rates.
Collapse
Affiliation(s)
- Steve S Cho
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Salinas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Emma De Ravin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Clare W Teng
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Carrie Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Love Buch
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jasmin Hussain
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Fahad Ahmed
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Dorsey
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Brem
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Shah AS, Sylvester PT, Yahanda AT, Vellimana AK, Dunn GP, Evans J, Rich KM, Dowling JL, Leuthardt EC, Dacey RG, Kim AH, Grubb RL, Zipfel GJ, Oswood M, Jensen RL, Sutherland GR, Cahill DP, Abram SR, Honeycutt J, Shah M, Tao Y, Chicoine MR. Intraoperative MRI for newly diagnosed supratentorial glioblastoma: a multicenter-registry comparative study to conventional surgery. J Neurosurg 2021; 135:505-514. [PMID: 33035996 DOI: 10.3171/2020.6.jns19287] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/04/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intraoperative MRI (iMRI) is used in the surgical treatment of glioblastoma, with uncertain effects on outcomes. The authors evaluated the impact of iMRI on extent of resection (EOR) and overall survival (OS) while controlling for other known and suspected predictors. METHODS A multicenter retrospective cohort of 640 adult patients with newly diagnosed supratentorial glioblastoma who underwent resection was evaluated. iMRI was performed in 332/640 cases (51.9%). Reviews of MRI features and tumor volumetric analysis were performed on a subsample of cases (n = 286; 110 non-iMRI, 176 iMRI) from a single institution. RESULTS The median age was 60.0 years (mean 58.5 years, range 20.5-86.3 years). The median OS was 17.0 months (95% CI 15.6-18.4 months). Gross-total resection (GTR) was achieved in 403/640 cases (63.0%). Kaplan-Meier analysis of 286 cases with volumetric analysis for EOR (grouped into 100%, 95%-99%, 80%-94%, and 50%-79%) showed longer OS for 100% EOR compared to all other groups (p < 0.01). Additional resection after iMRI was performed in 104/122 cases (85.2%) with initial subtotal resection (STR), leading to a 6.3% mean increase in EOR and a 2.2-cm3 mean decrease in tumor volume. For iMRI cases with volumetric analysis, the GTR rate increased from 54/176 (30.7%) on iMRI to 126/176 (71.5%) postoperatively. The EOR was significantly higher in the iMRI group for intended GTR and STR groups (p = 0.02 and p < 0.01, respectively). Predictors of GTR on multivariate logistic regression included iMRI use and intended GTR. Predictors of shorter OS on multivariate Cox regression included older age, STR, isocitrate dehydrogenase 1 (IDH1) wild type, no O 6-methylguanine DNA methyltransferase (MGMT) methylation, and no Stupp therapy. iMRI was a significant predictor of OS on univariate (HR 0.82, 95% CI 0.69-0.98; p = 0.03) but not multivariate analyses. Use of iMRI was not associated with an increased rate of new permanent neurological deficits. CONCLUSIONS GTR increased OS for patients with newly diagnosed glioblastoma after adjusting for other prognostic factors. iMRI increased EOR and GTR rate and was a significant predictor of GTR on multivariate analysis; however, iMRI was not an independent predictor of OS. Additional supporting evidence is needed to determine the clinical benefit of iMRI in the management of glioblastoma.
Collapse
Affiliation(s)
- Amar S Shah
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Peter T Sylvester
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Alexander T Yahanda
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Ananth K Vellimana
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gavin P Dunn
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - John Evans
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Keith M Rich
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua L Dowling
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Eric C Leuthardt
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Ralph G Dacey
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Albert H Kim
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Robert L Grubb
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory J Zipfel
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Mark Oswood
- 2Department of Radiology, University of Minnesota, Minneapolis, Minnesota
- 3Allina Health, Minneapolis, Minnesota
| | - Randy L Jensen
- 4Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Garnette R Sutherland
- 5Department of Clinical Sciences and Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Daniel P Cahill
- 6Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven R Abram
- 7Department of Neurosurgery, St. Thomas Hospital, Nashville, Tennessee
| | - John Honeycutt
- 8Department of Neurosurgery, Cook Children's Hospital, Fort Worth, Texas; and
| | - Mitesh Shah
- 9Department of Neurological Surgery, Goodman Campbell and Indiana University, Indianapolis, Indiana
| | - Yu Tao
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R Chicoine
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Gosal JS, Tiwari S, Sharma T, Agrawal M, Garg M, Mahal S, Bhaskar S, Sharma RK, Janu V, Jha DK. Simulation of surgery for supratentorial gliomas in virtual reality using a 3D volume rendering technique: a poor man's neuronavigation. Neurosurg Focus 2021; 51:E23. [PMID: 34333461 DOI: 10.3171/2021.5.focus21236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Different techniques of performing image-guided neurosurgery exist, namely, neuronavigation systems, intraoperative ultrasound, and intraoperative MRI, each with its limitations. Except for ultrasound, other methods are expensive. Three-dimensional virtual reconstruction and surgical simulation using 3D volume rendering (VR) is an economical and excellent technique for preoperative surgical planning and image-guided neurosurgery. In this article, the authors discuss several nuances of the 3D VR technique that have not yet been described. METHODS The authors included 6 patients with supratentorial gliomas who underwent surgery between January 2019 and March 2021. Preoperative clinical data, including patient demographics, preoperative planning details (done using the VR technique), and intraoperative details, including relevant photos and videos, were collected. RadiAnt software was used for generating virtual 3D images using the VR technique on a computer running Microsoft Windows. RESULTS The 3D VR technique assists in glioma surgery with a preoperative simulation of the skin incision and craniotomy, virtual cortical surface marking and navigation for deep-seated gliomas, preoperative visualization of morbid cortical surface and venous anatomy in surfacing gliomas, identifying the intervenous surgical corridor in both surfacing and deep-seated gliomas, and pre- and postoperative virtual 3D images highlighting the exact spatial geometric residual tumor location and extent of resection for low-grade gliomas (LGGs). CONCLUSIONS Image-guided neurosurgery with the 3D VR technique using RadiAnt software is an economical, easy-to-learn, and user-friendly method of simulating glioma surgery, especially in resource-constrained countries where expensive neuronavigation systems are not readily available. Apart from cortical sulci/gyri anatomy, FLAIR sequences are ideal for the 3D visualization of nonenhancing diffuse LGGs using the VR technique. In addition to cortical vessels (especially veins), contrast MRI sequences are perfect for the 3D visualization of contrast-enhancing high-grade gliomas.
Collapse
Affiliation(s)
| | - Sarbesh Tiwari
- 2Diagnostic & Interventional Radiology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | | | | | | | - Sayani Mahal
- 2Diagnostic & Interventional Radiology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | | | | | | | | |
Collapse
|
31
|
Ishikawa E, Sugii N, Matsuda M, Kohzuki H, Tsurubuchi T, Akutsu H, Takano S, Mizumoto M, Sakurai H, Matsumura A. Maximum resection and immunotherapy improve glioblastoma patient survival: a retrospective single-institution prognostic analysis. BMC Neurol 2021; 21:282. [PMID: 34281518 PMCID: PMC8287820 DOI: 10.1186/s12883-021-02318-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is a refractory disease with a poor prognosis and various methods, including maximum resection and immunotherapy, have been tested to improve outcomes. In this retrospective study we analyzed the prognostic factors of 277 newly diagnosed GBM patients over 11 years of consecutive cases at our institution to evaluate the effect of these methods on prognosis. Various data, including the extent of removal (EOR) and type of adjuvant therapy, were examined and prognostic relationships were analyzed. The median overall survival (OS) of the entire 277-case cohort, 200 non-biopsy cases, and 77 biopsy cases was 16.6 months, 19.7 months, and 9.7 months, respectively. Gross total removal (GTR; 100% of EOR) was achieved in 32.9% of the cases. Univariate analysis revealed younger age, right side, higher Karnofsky performance status, GTR, intraoperative magnetic resonance imaging (MRI) use for removal, proton therapy, combination immunotherapy, and discharge to home as good prognostic factors. Intraoperative MRI use and EOR were closely related. In the multivariate analysis, GTR, proton therapy, and a combination of immunotherapies, including autologous formalin-fixed tumor vaccine, were the significant prognostic factors. A multivariate analysis of 91 GTR cases showed that immunotherapy contributed to prognostic improvements. The median OS and 5-year OS % values were 36.9 months and 43.3% in GTR cases receiving immunotherapy. In conclusion, GTR, proton therapy, and immunotherapy were good prognostic factors in single-center GBM cases. Tumor vaccine therapy for GTR cases achieved a notably high median survival time and long-term survival ratio, indicating its usefulness in GTR cases.
Collapse
Affiliation(s)
- Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Narushi Sugii
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hidehiro Kohzuki
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takao Tsurubuchi
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shingo Takano
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
32
|
Kudulaiti N, Zhou Z, Luo C, Zhang J, Zhu F, Wu J. A nomogram for individualized prediction of overall survival in patients with newly diagnosed glioblastoma: a real-world retrospective cohort study. BMC Surg 2021; 21:238. [PMID: 33957923 PMCID: PMC8101102 DOI: 10.1186/s12893-021-01233-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/22/2021] [Indexed: 01/01/2023] Open
Abstract
Background This study aimed to identify the most valuable predictors of prognosis in glioblastoma (GBM) patients and develop and validate a nomogram to estimate individualized survival probability. Methods We conducted a real-world retrospective cohort study of 987 GBM patients diagnosed between September 2010 and December 2018. Computer generated random numbers were used to assign patients into a training cohort (694 patients) and internal validation cohort (293 patients). A least absolute shrinkage and selection operator (LASSO)-Cox model was used to select candidate variables for the prediction model. Cox proportional hazards regression was used to estimate overall survival. Models were internally validated using the bootstrap method and generated individualized predicted survival probabilities at 6, 12, and 24 months, which were compared with actual survival. Results The final nomogram was developed using the Cox proportional hazards model, which was the model with best fit and calibration. Gender, age at surgery, extent of tumor resection, radiotherapy, chemotherapy, and IDH1 mutation status were used as variables. The concordance indices for 6-, 12-, 18-, and 24-month survival probabilities were 0.776, 0.677, 0.643, and 0.629 in the training set, and 0.725, 0.695, 0.652, and 0.634 in the validation set, respectively. Conclusions Our nomogram that assesses individualized survival probabilities (6-, 12-, and 24-month) in newly diagnosed GBM patients can assist healthcare providers in optimizing treatment and counseling patients. Trial registration: retrospectively registered.
Collapse
Affiliation(s)
- Nijiati Kudulaiti
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,Neurosurgical Institute of Fudan University, Shanghai, China. .,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China. .,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
33
|
Moin A, Rizvi SMD, Hussain T, Gowda DV, Subaiea GM, Elsayed MMA, Ansari M, Alanazi AS, Yadav H. Current Status of Brain Tumor in the Kingdom of Saudi Arabia and Application of Nanobiotechnology for Its Treatment: A Comprehensive Review. Life (Basel) 2021; 11:421. [PMID: 34063122 PMCID: PMC8148129 DOI: 10.3390/life11050421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Brain tumors are the most challenging of all tumors and accounts for about 3% of all cancer allied deaths. The aim of the present review is to examine the brain tumor prevalence and treatment modalities available in the Kingdom of Saudi Arabia. It also provides a comprehensive analysis of the application of various nanotechnology-based products for brain cancer treatments along with their prospective future advancements. METHODS A literature review was performed to identify and summarize the current status of brain cancer in Saudi Arabia and the scope of nanobiotechnology in its treatment. RESULTS Depending upon the study population data analysis, gliomas, astrocytoma, meningioma, and metastatic cancer have a higher incidence rate in Saudi Arabia than in other countries, and are mostly treated in accordance with conventional treatment modalities for brain cancer. Due to the poor prognosis of cancer, it has an average survival rate of 2 years. Conventional therapy includes surgery, radiotherapy, chemotherapy, and a combination thereof, but these do not control the disease's recurrence. Among the various nanomaterials discussed, liposomes and polymeric nanoformulations have demonstrated encouraging outcomes for facilitated brain cancer treatment. CONCLUSIONS Nanomaterials possess the capacity to overcome the shortcomings of conventional therapies. Polymer-based nanomaterials have shown encouraging outcomes against brain cancer when amalgamated with other nano-based therapies. Nonetheless, nanomaterials could be devised that possess minimal toxicity towards normal cells or that specifically target tumor cells. In addition, rigorous clinical investigations are warranted to prepare them as an efficient and safe modality for brain cancer therapy.
Collapse
Affiliation(s)
- Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - D. V. Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, Mysuru 570015, India;
| | - Gehad M. Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Mustafa M. A. Elsayed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (M.M.A.E.)
| | - Mukhtar Ansari
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (M.A.); (A.S.A.)
| | - Abulrahman Sattam Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (M.A.); (A.S.A.)
| | - Hemant Yadav
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| |
Collapse
|
34
|
Giammalva GR, Brunasso L, Costanzo R, Paolini F, Umana GE, Scalia G, Gagliardo C, Gerardi RM, Basile L, Graziano F, Gulì C, Messina D, Pino MA, Feraco P, Tumbiolo S, Midiri M, Iacopino DG, Maugeri R. Brain Mapping-Aided SupraTotal Resection (SpTR) of Brain Tumors: The Role of Brain Connectivity. Front Oncol 2021; 11:645854. [PMID: 33738262 PMCID: PMC7960910 DOI: 10.3389/fonc.2021.645854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Brain gliomas require a deep knowledge of their effects on brain connectivity. Understanding the complex relationship between tumor and functional brain is the preliminary and fundamental step for the subsequent surgery. The extent of resection (EOR) is an independent variable of surgical effectiveness and it correlates with the overall survival. Until now, great efforts have been made to achieve gross total resection (GTR) as the standard of care of brain tumor patients. However, high and low-grade gliomas have an infiltrative behavior and peritumoral white matter is often infiltrated by tumoral cells. According to these evidences, many efforts have been made to push the boundary of the resection beyond the contrast-enhanced lesion core on T1w MRI, in the so called supratotal resection (SpTR). SpTR is aimed to maximize the extent of resection and thus the overall survival. SpTR of primary brain tumors is a feasible technique and its safety is improved by intraoperative neuromonitoring and advanced neuroimaging. Only transient cognitive impairments have been reported in SpTR patients compared to GTR patients. Moreover, SpTR is related to a longer overall and progression-free survival along with preserving neuro-cognitive functions and quality of life.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Federica Paolini
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | | | | | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosa Maria Gerardi
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Luigi Basile
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | | | - Carlo Gulì
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Domenico Messina
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Maria Angela Pino
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Paola Feraco
- Neuroradiology Unit, S. Chiara Hospital, Trento, Italy
| | - Silvana Tumbiolo
- Department of Neurosurgery, Villa Sofia Hospital, Palermo, Italy
| | - Massimo Midiri
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| |
Collapse
|
35
|
Lo YT, Lee H, Shui C, Lamba N, Korde R, Devi S, Chawla S, Nam Y, Patel R, Doucette J, Bunevicius A, Mekary RA. Intraoperative Magnetic Resonance Imaging for Low-Grade and High-Grade Gliomas: What Is the Evidence? A Meta-Analysis. World Neurosurg 2021; 149:232-243.e3. [PMID: 33540099 DOI: 10.1016/j.wneu.2021.01.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The benefit of intraoperative magnetic resonance imaging (iMRI) in gliomas remains unclear. We performed a meta-analysis of outcomes with iMRI-guided surgery in high-grade gliomas (HGGs) and low-grade gliomas (LGGs). METHODS Databases were searched until November 29, 2018 for randomized controlled trials (RCTs) and observational studies (OBS) comparing iMRI use with conventional neurosurgery. Pooled risk ratios (RRs) or hazard ratios were evaluated with the random-effects model. Outcomes included extent of resection (EOR), gross total resection (GTR), progression-free survival (PFS), overall survival (OS), and length of surgery (LOS), stratified by study design and glioma grade. RESULTS Fifteen articles (3 RCTs and 12 OBS) were included. In RCTs, GTR was higher in iMRI compared with conventional neurosurgery (RR, 1.42; 95% confidence interval [CI], 1.17-1.73; I2, 7%) overall, for LGGs (1.91; 95% CI, 1.19-3.06), but not HGGs (1.24; 95% CI, 0.89-1.73), with no difference in EOR, PFS, OS, and LOS. For OBS, GTR was higher (RR, 1.65; 95% CI, 1.43-1.90; I2, 4%) overall, and for LGGs (1.63; 95% CI, 1.17-2.28; I2, 0%) and HGGs (1.62; 95% CI, 1.36-1.92; I2, 19%). EOR was greater with iMRI (6%; 95% CI, 4%-8%; I2, 44%) overall, in LGGs (5%; 95% CI, 2%-8%; I2, 37%) and HGGs (7%; 95% CI, 4%-10%; I2, 13%). There was no difference in PFS, OS, and LOS with iMRI. CONCLUSIONS IMRI use improved GTR in gliomas, including LGGs. However, no PFS and OS benefit was shown in the meta-analysis.
Collapse
Affiliation(s)
- Yu Tung Lo
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Neurosurgery, National Neuroscience Institute, Singapore
| | - Hyunkyung Lee
- School of Pharmacy, MCPHS University, Boston, Massachusetts, USA
| | - Cher Shui
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nayan Lamba
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rasika Korde
- School of Pharmacy, MCPHS University, Boston, Massachusetts, USA
| | - Sharmila Devi
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Shreya Chawla
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Younjong Nam
- School of Pharmacy, MCPHS University, Boston, Massachusetts, USA
| | - Romel Patel
- School of Pharmacy, MCPHS University, Boston, Massachusetts, USA
| | - Joanne Doucette
- School of Pharmacy, MCPHS University, Boston, Massachusetts, USA
| | - Adomas Bunevicius
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA; Neuroscience Institute, Lithuanian University of Health Science, Kaunas, Lithuania; Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Rania A Mekary
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA; School of Pharmacy, MCPHS University, Boston, Massachusetts, USA.
| |
Collapse
|
36
|
Golub D, Hyde J, Dogra S, Nicholson J, Kirkwood KA, Gohel P, Loftus S, Schwartz TH. Intraoperative MRI versus 5-ALA in high-grade glioma resection: a network meta-analysis. J Neurosurg 2021; 134:484-498. [PMID: 32084631 DOI: 10.3171/2019.12.jns191203] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/16/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE High-grade gliomas (HGGs) continue to carry poor prognoses, and patient outcomes depend heavily on the extent of resection (EOR). The utility of conventional image-guided surgery is limited by intraoperative brain shift. More recent techniques to maximize EOR, including intraoperative imaging and the use of fluorescent dyes, combat these limitations. However, the relative efficacy of these two techniques has never been systematically compared. Thus, the authors performed an exhaustive systematic review in conjunction with quantitative network meta-analyses to evaluate the comparative effectiveness of 5-aminolevulinic acid (5-ALA) and intraoperative MRI (IMRI) in optimizing EOR in HGG. They secondarily analyzed associated progression-free and overall survival and performed subgroup analyses by level of evidence. METHODS PubMed, Embase, Cochrane Central, and Web of Science were searched for studies evaluating conventional neuronavigation, IMRI, and 5-ALA in HGG resection. The primary study endpoint was the proportion of patients attaining gross-total resection (GTR), defined as 100% elimination of contrast-enhancing lesion on postoperative MRI. Secondary endpoints included overall and progression-free survival and subgroup analyses for level of evidence. Comparative efficacy analysis of IMRI and 5-ALA was performed using Bayesian network meta-analysis models. RESULTS This analysis included 11 studies. In a classic meta-analysis, both IMRI (OR 4.99, 95% CI 2.65-9.39, p < 0.001) and 5-ALA (OR 2.866, 95% CI 2.127-3.863, p < 0.001) were superior to conventional navigation in achieving GTR. Bayesian network analysis was employed to indirectly compare IMRI to 5-ALA, and no significant difference in GTR was found between the two (OR 1.9 favoring IMRI, 95% CI 0.905-3.989, p = 0.090). A handful of studies additionally suggested that the use of either IMRI (2 and 4 studies, respectively) or 5-ALA (2 and 2 studies, respectively) improves progression-free and overall survival. CONCLUSIONS IMRI and 5-ALA are individually superior to conventional neuronavigation for achieving GTR of HGG. Between IMRI and 5-ALA, neither method is clearly more effective. Future studies evaluating the comparative cost and surgical time associated with IMRI and 5-ALA will better inform any cost-benefit analysis.
Collapse
Affiliation(s)
| | | | - Siddhant Dogra
- 2Radiology, New York University School of Medicine, New York, New York
| | - Joseph Nicholson
- 3NYU Health Sciences Library, New York University School of Medicine, New York, New York
| | - Katherine A Kirkwood
- 4Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Stephen Loftus
- 5Department of Science, Technology, Engineering and Math, Sweet Briar College, Sweet Briar, Virginia
| | - Theodore H Schwartz
- 6Departments of Neurosurgery, Otolaryngology, and Neuroscience, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York; and
| |
Collapse
|
37
|
Nagaraja TN, Lee IY. Cerebral microcirculation in glioblastoma: A major determinant of diagnosis, resection, and drug delivery. Microcirculation 2021; 28:e12679. [PMID: 33474805 DOI: 10.1111/micc.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with a dismal prognosis. Current standard of treatment is safe maximal tumor resection followed by chemotherapy and radiation. Altered cerebral microcirculation and elevated blood-tumor barrier (BTB) permeability in tumor periphery due to glioma-induced vascular dysregulation allow T1 contrast-enhanced visualization of resectable tumor boundaries. Newer tracers that label the tumor and its vasculature are being increasingly used for intraoperative delineation of glioma boundaries for even more precise resection. Fluorescent 5-aminolevulinic acid (5-ALA) and indocyanine green (ICG) are examples of such intraoperative tracers. Recently, magnetic resonance imaging (MRI)-based MR thermometry is being employed for laser interstitial thermal therapy (LITT) for glioma debulking. However, aggressive, fatal recurrence always occurs. Postsurgical chemotherapy is hampered by the inability of most drugs to cross the blood-brain barrier (BBB). Understanding postsurgical changes in brain microcirculation and permeability is crucial to improve chemotherapy delivery. It is important to understand whether any microcirculatory indices can differentiate between true recurrence and radiation necrosis. LITT leads to peri-ablation BBB opening that persists for several weeks. Whether it can be a conduit for chemotherapy delivery is yet to be explored. This review will address the role of cerebral microcirculation in such emerging ideas in GBM diagnosis and therapy.
Collapse
Affiliation(s)
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
38
|
Schupper AJ, Yong RL, Hadjipanayis CG. The Neurosurgeon's Armamentarium for Gliomas: An Update on Intraoperative Technologies to Improve Extent of Resection. J Clin Med 2021; 10:jcm10020236. [PMID: 33440712 PMCID: PMC7826675 DOI: 10.3390/jcm10020236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Maximal safe resection is the standard of care in the neurosurgical treatment of high-grade gliomas. To aid surgeons in the operating room, adjuvant techniques and technologies centered around improving intraoperative visualization of tumor tissue have been developed. In this review, we will discuss the most advanced technologies, specifically fluorescence-guided surgery, intraoperative imaging, neuromonitoring modalities, and microscopic imaging techniques. The goal of these technologies is to improve detection of tumor tissue beyond what conventional microsurgery has permitted. We describe the various advances, the current state of the literature that have tested the utility of the different adjuvants in clinical practice, and future directions for improving intraoperative technologies.
Collapse
|
39
|
Policicchio D, Ticca S, Dipellegrini G, Doda A, Muggianu G, Boccaletti R. Multimodal Surgical Management of Cerebral Lesions in Motor-Eloquent Areas Combining Intraoperative 3D Ultrasound with Neurophysiological Mapping. J Neurol Surg A Cent Eur Neurosurg 2020; 82:344-356. [PMID: 33352612 DOI: 10.1055/s-0040-1717111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Resection of tumors adjacent to motor pathways carries risks of both postoperative motor deficit and incomplete resection. Our aim was to assess usefulness and limitations of a multimodal strategy that combines intraoperative ultrasound (iUS) guided resection with intraoperative neurophysiology. METHODOLOGY This is a prospective study of 25 patients with brain lesions adjacent to motor areas who underwent intracranial surgery with assistance of the iUS guidance system and intraoperative neurophysiological monitoring and mapping. Pathologies treated included 19 gliomas, 3 metastases, 1 anaplastic meningioma, 1 arteriovenous malformation (AVM), and 1 ependymoma. The iUS-guided lesion removal accuracy and the extent of resection were estimated and compared with a 30-day postoperative brain MRI. The results were assessed considering the extent of resection related to 6-month motor function outcome. RESULTS iUS was accurate in checking the extent of resection in 17 patients, whereas in 8 cases the decline of the iUS images quality did not allow a valuable assessment. Positive mapping was obtained in 16 patients. Gross total resection was achieved in 16 patients. In five of nine cases with subtotal resection, surgery was stopped because a functional area was reached. In four patients, tumor removal was limited due to the difficulty of identifying neoplastic tissue. Motor function worsening was transient in six patients and permanent in two. CONCLUSIONS The integrated use of intraoperative neuromonitoring to identify motor areas and iUS to identify tumor-tissue interface could help increase the rate of radical resection respecting the eloquent areas.
Collapse
Affiliation(s)
- Domenico Policicchio
- Department of Neurosurgery, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy
| | - Stefano Ticca
- Department of Neurosurgery, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy
| | - Giosuè Dipellegrini
- Department of Neurosurgery, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy
| | - Artan Doda
- Department of Neurosurgery, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy
| | - Giampiero Muggianu
- Department of Neurosurgery, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy
| | - Riccardo Boccaletti
- Department of Neurosurgery, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy
| |
Collapse
|
40
|
Domino JS, Ormond DR, Germano IM, Sami M, Ryken TC, Olson JJ. Cytoreductive surgery in the management of newly diagnosed glioblastoma in adults: a systematic review and evidence-based clinical practice guideline update. J Neurooncol 2020; 150:121-142. [PMID: 33215341 DOI: 10.1007/s11060-020-03606-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/23/2020] [Indexed: 11/29/2022]
Abstract
TARGET POPULATION These recommendations apply to adults with newly diagnosed or suspected glioblastoma. QUESTION What is the effect of extent of surgical resection on patient outcome in the initial management of adult patients with suspected newly diagnosed glioblastoma? RECOMMENDATION Level II: Maximal cytoreductive surgery is recommended in adult patients with suspected newly diagnosed supratentorial glioblastoma with gross total resection defined as removal of contrast enhancing tumor. Level III: Biopsy, subtotal resection, or gross total resection is suggested depending on medical comorbidities, functional status, and location of tumor if maximal resection may cause significant neurologic deficit. QUESTION What is the role of cytoreductive surgery in adults with newly diagnosed bi-frontal "butterfly" glioblastoma? RECOMMENDATION Level III: Resection of newly diagnosed bi-frontal "butterfly" glioblastoma is suggested to improve overall survival over biopsy alone. QUESTION What is the goal of cytoreductive surgery in elderly adult patients with newly diagnosed glioblastoma? RECOMMENDATION Level III: Elderly patients (> 65 years) show survival benefit with gross total resection and it is suggested they undergo cytoreductive surgery. QUESTION What is the role of advanced intraoperative guidance techniques in cytoreductive surgery in adults with newly diagnosed glioblastoma? RECOMMENDATION Level III: The use of intraoperative guidance adjuncts such as intraoperative MRI (iMRI) or 5-aminolevulinic acid (5-ALA) are suggested to maximize extent of resection in newly diagnosed glioblastoma. There is insufficient evidence to make a suggestion on the use of fluorescein, indocyanine green, or intraoperative ultrasound.
Collapse
Affiliation(s)
- Joseph S Domino
- Department of Neurosurgery, University of Kansas School of Medicine, Kansas City, KS, USA. .,Department of Neurosurgery, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3021, Kansas City, KS, 66160, USA.
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle M Germano
- Department of Neurosurgery, The Mount Sinai Medical Center, New York, NY, USA
| | - Mairaj Sami
- Department of Neurosurgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Timothy C Ryken
- Department of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
41
|
|
42
|
Manini I, Caponnetto F, Dalla E, Ius T, Pepa GMD, Pegolo E, Bartolini A, Rocca GL, Menna G, Loreto CD, Olivi A, Skrap M, Sabatino G, Cesselli D. Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways. Cancers (Basel) 2020; 12:cancers12102960. [PMID: 33066172 PMCID: PMC7601979 DOI: 10.3390/cancers12102960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary 5-ALA Fluorescence Guided Surgery aims at extending the boundaries of glioblastoma (GBM) resection. It is based on the use of a fluorescent dye, 5-aminolevulinic acid (5-ALA). Depending on the fluorescence levels, it is possible to distinguish the core of the tumor, the infiltrating borders and the healthy tissue. Since GBM progression is supported by tumor cells and their interaction with the surrounding microenvironment, we hypothesized that 5-ALA intensity could identify microenvironments with different tumor supporting properties. Taking advantage of glioma-associated stem cells; a human in vitro model of the glioma microenvironment, we demonstrate that all regions of the tumor support the tumor growth, but through different pathways. This study highlights the importance of understanding the TME to obtain key information on GBM biology and develop new therapeutic approaches. Abstract The glioblastoma microenvironment plays a substantial role in glioma biology. However, few studies have investigated its spatial heterogeneity. Exploiting 5-ALA Fluorescence Guided Surgery (FGS), we were able to distinguish between the tumor core (ALA+), infiltrating area (ALA-PALE) and healthy tissue (ALA−) of the glioblastoma, based on the level of accumulated fluorescence. The aim of this study was to investigate the properties of the microenvironments associated with these regions. For this purpose, we isolated glioma-associated stem cells (GASC), resident in the glioma microenvironment, from ALA+, ALA-PALE and ALA− samples and compared them in terms of growth kinetic, phenotype and for the expression of 84 genes associated with cancer inflammation and immunity. Differentially expressed genes were correlated with transcriptomic datasets from TCGA/GTEX. Our results show that GASC derived from the three distinct regions, despite a similar phenotype, were characterized by different transcriptomic profiles. Moreover, we identified a GASC-based genetic signature predictive of overall survival and disease-free survival. This signature, highly expressed in ALA+ GASC, was also well represented in ALA PALE GASC. 5-ALA FGS allowed to underline the heterogeneity of the glioma microenvironments. Deepening knowledge of these differences can contribute to develop new adjuvant therapies targeting the crosstalk between tumor and its supporting microenvironment.
Collapse
Affiliation(s)
- Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Correspondence:
| | - Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Emiliano Dalla
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Giuseppe Maria Della Pepa
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Enrico Pegolo
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
| | - Anna Bartolini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Grazia Menna
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Carla Di Loreto
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| |
Collapse
|
43
|
Baria E, Pracucci E, Pillai V, Pavone FS, Ratto GM, Cicchi R. In vivo detection of murine glioblastoma through Raman and reflectance fiber-probe spectroscopies. NEUROPHOTONICS 2020; 7:045010. [PMID: 33274251 PMCID: PMC7707056 DOI: 10.1117/1.nph.7.4.045010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/14/2020] [Indexed: 05/29/2023]
Abstract
Significance: Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. With a worldwide incidence rate of 2 to 3 per 100,000 people, it accounts for more than 60% of all brain cancers; currently, its 5-year survival rate is < 5 % . GBM treatment relies mainly on surgical resection. In this framework, multimodal optical spectroscopy could provide a fast and label-free tool for improving tumor detection and guiding the removal of diseased tissues. Aim: Discriminating healthy brain from GBM tissues in an animal model through the combination of Raman and reflectance spectroscopies. Approach: EGFP-GL261 cells were injected into the brains of eight laboratory mice for inducing murine GBM in these animals. A multimodal optical fiber probe combining fluorescence, Raman, and reflectance spectroscopy was used to localize in vivo healthy and tumor brain areas and to collect their spectral information. Results: Tumor areas were localized through the detection of EGFP fluorescence emission. Then, Raman and reflectance spectra were collected from healthy and tumor tissues, and later analyzed through principal component analysis and linear discriminant analysis in order to develop a classification algorithm. Raman and reflectance spectra resulted in 92% and 93% classification accuracy, respectively. Combining together these techniques allowed improving the discrimination between healthy and tumor tissues up to 97%. Conclusions: These preliminary results demonstrate the potential of multimodal fiber-probe spectroscopy for in vivo label-free detection and delineation of brain tumors, and thus represent an additional, encouraging step toward clinical translation and deployment of fiber-probe spectroscopy.
Collapse
Affiliation(s)
- Enrico Baria
- University of Florence, Department of Physics, Sesto Fiorentino, Italy
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Enrico Pracucci
- Scuola Normale Superiore, National Enterprise for Nanoscience and Nanotechnology, Pisa, Italy
| | - Vinoshene Pillai
- Scuola Normale Superiore, National Enterprise for Nanoscience and Nanotechnology, Pisa, Italy
| | - Francesco S. Pavone
- University of Florence, Department of Physics, Sesto Fiorentino, Italy
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- National Institute of Optics – National Research Council, Sesto Fiorentino, Italy
| | - Gian M. Ratto
- Scuola Normale Superiore, National Enterprise for Nanoscience and Nanotechnology, Pisa, Italy
| | - Riccardo Cicchi
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- National Institute of Optics – National Research Council, Sesto Fiorentino, Italy
| |
Collapse
|
44
|
5-Aminolevulinic acid for recurrent malignant gliomas: A systematic review. Clin Neurol Neurosurg 2020; 195:105913. [DOI: 10.1016/j.clineuro.2020.105913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/28/2020] [Accepted: 05/10/2020] [Indexed: 11/24/2022]
|
45
|
Reichel D, Sagong B, Teh J, Zhang Y, Wagner S, Wang H, Chung LWK, Butte P, Black KL, Yu JS, Perez JM. Near Infrared Fluorescent Nanoplatform for Targeted Intraoperative Resection and Chemotherapeutic Treatment of Glioblastoma. ACS NANO 2020; 14:8392-8408. [PMID: 32551496 PMCID: PMC7438253 DOI: 10.1021/acsnano.0c02509] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Despite significant efforts to improve glioblastoma multiforme (GBM) treatment, GBM remains one of the most lethal cancers. Effective GBM treatments require sensitive intraoperative tumor visualization and effective postoperative chemotherapeutic delivery. Unfortunately, the diffusive and infiltrating nature of GBM limits the detection of GBM tumors, and current intraoperative visualization methods limit complete tumor resection. In addition, although chemotherapy is often used to eliminate any cancerous tissue remaining after surgery, most chemotherapeutic drugs do not effectively cross the brain-blood barrier (BBB) or enter GBM tumors. As a result, GBM has limited treatment options with high recurrence rates, and methods that improve its complete visualization during surgery and treatment are needed. Herein, we report a fluorescent nanoparticle platform for the near-infrared fluorescence (NIRF)-based tumor boundary visualization and image-guided drug delivery into GBM tumors. Our nanoplatform is based on ferumoxytol (FMX), an FDA-approved magnetic resonance imaging-sensitive superparamagnetic iron oxide nanoparticle, which is conjugated with hepthamethine cyanine (HMC), a NIRF ligand that specifically targets the organic anion transporter polypeptides that are overexpressed in GBM. We have shown that HMC-FMX nanoparticles cross the BBB and selectively accumulate in the tumor using orthotopic GBM mouse models, enabling NIRF-based visualization of infiltrating tumor tissue. In addition, HMC-FMX can encapsulate chemotherapeutic drugs, such as paclitaxel or cisplatin, and deliver these agents into GBM tumors, reducing tumor size and increasing survival. Taken together, these observations indicate that HMC-FMX is a promising nanoprobe for GBM surgical visualization and drug delivery.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Bien Sagong
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - James Teh
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, CA 90048
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, CA 90048
| | - Hongqiang Wang
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Leland W. K. Chung
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai
Medical Center, Los Angeles, CA 90048
| | - Pramod Butte
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - John S. Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
- Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, CA 90048
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai
Medical Center, Los Angeles, CA 90048
| |
Collapse
|
46
|
Della Pepa GM, Ius T, Menna G, La Rocca G, Battistella C, Rapisarda A, Mazzucchi E, Pignotti F, Alexandre A, Marchese E, Olivi A, Sabatino G. "Dark corridors" in 5-ALA resection of high-grade gliomas: combining fluorescence-guided surgery and contrast-enhanced ultrasonography to better explore the surgical field. J Neurosurg Sci 2020; 63:688-696. [PMID: 31961118 DOI: 10.23736/s0390-5616.19.04862-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Increasing the extent of resection (EOR) is considered a main goal in high grade glioma (HGG) surgery. Significant advancements have been recently made to assist surgery: namely the use of 5-aminolevulinic acid (5ALA) and the application of contrast-enhanced ultrasound (CEUS) embody two of the most recently introduced tools in the neuro-oncology field. A combined approach including the two techniques has been suggested in literature. Our primary aim is to identify in which conditions CEUS final survey has a real impact in a 5-ALA guided context and assess which preoperative tumor characteristics, with specific attention to working corridors can predict strains of the fluorescence guided procedure and hence recommend the use of the combined technique. METHODS Forty-nine HGG glioma surgeries were performed at our institution with the abovementioned protocol between January 2016 and June 2016. Based on preoperative MRI, we stratified glioma characteristics according to three determinants: localization (deep versus superficial), size (<3.5 versus >3.5 cm) and shape (regular versus irregular). RESULTS CEUS modified 5-ALA guided resection in 11 cases (22.45%): this appeared to be associated with statistically significance to deep tumor localization (P=0.04) and irregular/multi-lobulated margins (P=0.003). On the other hand, tumor size alone did not appear as a statistically significant determinant. CONCLUSIONS When dark corridors are presents or when overlying brain parenchyma hinders illumination, drawbacks to the 5-ALA assistance can be expected, hence CEUS final survey has a crucial role of 'refinement'. In those selected cases, an integrated 5ALA+CEUS protocol was shown as advisable in EOR improvement.
Collapse
Affiliation(s)
- Giuseppe M Della Pepa
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy -
| | - Tamara Ius
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Grazia Menna
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giuseppe La Rocca
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | | | - Alessandro Rapisarda
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Edoardo Mazzucchi
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | | | - Andrea Alexandre
- Institute of Neuroradiology, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Enrico Marchese
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Alessandro Olivi
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| |
Collapse
|
47
|
Elastic Fusion Enables Fusion of Intraoperative Magnetic Resonance Imaging Data with Preoperative Neuronavigation Data. World Neurosurg 2020; 142:e223-e228. [PMID: 32599196 DOI: 10.1016/j.wneu.2020.06.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Intraoperative magnetic resonance imaging (iMRI) has been shown to optimize the extent of resection of parenchymal brain tumors. To facilitate the use of preoperative treatment plans after an intraoperative navigation update via iMRI, an elastic image fusion (EIF) algorithm was developed. METHODS Ten MRI-iMRI data pairs of patients with brain tumor were evaluated and typical anatomic landmarks were assessed. The pre- and iMRI scans were elastically fused by using a prototype EIF software (Elements Virtual iMRI [Brainlab AG]). For each landmark pair, the Euclidean distance was calculated for rigidly and elastically fused image data. RESULTS The Euclidean distance was 2.67 ± 2.62 mm using standard rigid image fusion and 1.8 ± 1.57 mm using our EIF algorithm (P = 0.005). For landmarks near the resected lesion, which were subject to higher anatomic distortion, the Euclidian distances were 4.38 ± 2.51 and 2.52 ± 1.9 mm (P = 0.003). CONCLUSIONS This feasibility study shows that EIF can compensate for surgery-related brain shift in a highly significant manner even in this small number of cases. The establishment of an easy applicable and reliable EIF tool integrated in the clinical workflow could open a large variety of new options for image-guided tumor surgery.
Collapse
|
48
|
Giotta Lucifero A, Luzzi S, Brambilla I, Trabatti C, Mosconi M, Savasta S, Foiadelli T. Innovative therapies for malignant brain tumors: the road to a tailored cure. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:5-17. [PMID: 32608372 PMCID: PMC7975829 DOI: 10.23750/abm.v91i7-s.9951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Background: Immune tolerance, immune escape, neoangiogenesis, phenotypic changes, and glioma stem cells are all responsible for the resistance of malignant brain tumors to current therapies and persistent recurrence. The present study provides a panoramic view of innovative therapies for malignant brain tumors, especially glioblastoma, aimed at achieving a tailored approach. Methods: PubMed/Medline and ClinicalTrials.gov were the main sources of an extensive literature review in which “Regenerative Medicine,” “Cell-Based Therapy,” “Chemotherapy,” “Vaccine,” “Cell Engineering,” “Immunotherapy, Active,” “Immunotherapy, Adoptive,” “Stem Cells,” “Gene Therapy,” “Target Therapy,” “Brain Cancer,” “Glioblastoma,” and “Malignant Brain Tumor” were the search terms. Only articles in English published in the last 5 years were included. A further selection was made according to the quality of the studies and level of evidence. Results: Cell-based and targeted therapies represent the newest frontiers of brain cancer treatment. Active and adoptive immunotherapies, stem cell therapies, and gene therapies represent a tremendous evolution in recent years due to many preclinical and clinical studies. Clinical trials have validated the effectiveness of antibody-based immunotherapies, including an in-depth study of bevacizumab, in combination with standard of care. Preclinical data highlights the role of vaccines, stem cells, and gene therapies to prevent recurrence. Conclusion: Monoclonal antibodies strengthen the first-line therapy for high grade gliomas. Vaccines, engineered cells, stem cells, and gene and targeted therapies are good candidates for second-line treatment of both newly diagnosed and recurrent gliomas. Further data are necessary to validate this tailored approach at the bedside. (www.actabiomedica.it)
Collapse
Affiliation(s)
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Chiara Trabatti
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
49
|
Piao H, Ye D, Yu T, Shi J. Comparison of intraoperative magnetic resonance imaging, ultrasound, 5-aminolevulinic acid, and neuronavigation for guidance in glioma resection: A network meta-analysis. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
50
|
Dimou J, Beland B, Kelly J. Supramaximal resection: A systematic review of its safety, efficacy and feasibility in glioblastoma. J Clin Neurosci 2019; 72:328-334. [PMID: 31864830 DOI: 10.1016/j.jocn.2019.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/01/2019] [Indexed: 02/03/2023]
Abstract
The philosophy of 'supramaximal resection' (SMR) beyond the T1-enhanced margin holds some potential in glioblastoma surgery, but the quality of available literature has not been elucidated. A systematic review of published studies of SMR in glioblastoma surgery was performed. Articles were sought in MEDLINE, EMBASE, Scopus and Cochrane Central Register for Clinical Trials. The search items were grouped into three themes; supramaximal resection, glioblastoma and outcomes. Cases were included wherein the initial extent of resection was described as exceeding gross total resection, that is to say, beyond the area of T1-enhancement on MRI. Only newly diagnosed glioblastoma was considered. Articles containing primary patient data, including outcome data, were included; reviews, editorials, descriptive articles and systematic reviews were excluded. Subsequently, 1123 unique articles were initially retrieved. After screening article titles and abstracts for relevance to SMR in glioblastoma, seven articles remained, and were all included post-full text review. No randomized controlled trials were discovered. Almost all studies were of Level 4 quality, according to Oxford Center for Evidence-Based Medicine guidelines. The included articles yielded a total of 2019 surgically treated glioblastoma patients, 13.5% of whom underwent SMR. Preliminary results suggest SMR of glioblastoma positively impacts overall and progression free survival. However, the contemporaneous literature supporting glioblastoma SMR is of low quality, with neither anatomical nor radiographic definitional consensus for what constitutes SMR. Prospective studies of larger pooled populations with standardized technical, radiological and outcome measures in designated centers would help minimize bias and validate SMR in appropriately selected glioblastoma patients.
Collapse
Affiliation(s)
- James Dimou
- Division of Neurosurgery, University of Calgary, Alberta, Canada.
| | - Benjamin Beland
- Division of Neurosurgery, University of Calgary, Alberta, Canada
| | - John Kelly
- Division of Neurosurgery, University of Calgary, Alberta, Canada
| |
Collapse
|