1
|
Simonsen M, Mendoza López RV, Maistro S, Ikeoka LT, Pereira GFDL, Lugão AB, Sadalla JC, Katayama MLH, Folgueira MAAK. Peritoneal chemotherapy delivery systems for ovarian cancer treatment: systematic review of animal models. Front Oncol 2025; 14:1487376. [PMID: 39845320 PMCID: PMC11750819 DOI: 10.3389/fonc.2024.1487376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Intraperitoneal chemotherapy for ovarian cancer treatment has controversial benefits as most methodologies are associated with significant morbidity. We carried out a systematic review to compare tumor response, measured by tumor weight and volume, between intraperitoneal chemotherapy delivered via drug delivery systems (DDSs) and free intraperitoneal chemotherapy in animal models of ovarian cancer. The secondary aim was to assess the toxicity of DDS-delivered chemotherapy, based on changes in animal body weight. Methods Based on PRISMA and SYRCLE guidelines, we identified 38 studies for review, of which 20, were used in the meta-analysis. We evaluated outcome, through tumor volume and tumor weight and, toxicity, through animal weight. Analysis was based on drugs employed and treatment duration. Results Most studies were performed on mice. Ovarian cancer cell lines most commonly used to induce xenografts were SKOV3 (19 studies) and A2780 (6 studies). Intraperitoneal device, also known as drug delivery systems (DDS), consisted in nanoparticles, hydrogels, lipid polymer and others. The most commonly used drugs were paclitaxel and cisplatin. Most studies used as the control treatment the same chemotherapy applied free intraperitoneally and tumor response/animal weight were evaluated weekly. There was a small benefit in overall tumor reduction in animals treated with intraperitoneal chemotherapy applied through the slow release device compared with animals treated with intraperitoneal free chemotherapy, as evaluated through tumor weight - results in standardized mean difference. (-1.06; 95% CI: -1.34, -0.78) and tumor volume (-3.72; 95% CI: -4.47, -2.97), a benefit that was seen in most weekly evaluations and for most chemotherapy drugs, such as carboplatin (tumor weight: -5.60; 95% CI: -7.83, -3.37), paclitaxel (tumor weight: -1.18; 95% CI: -1.52, -0.83), and cisplatin (tumor volume: -2.85; 95% CI: -3.66, -2.04) carboplatin (tumor volume: -12.71; 95% CI: -17.35, -8.07); cisplatin (tumor volume: -7.76; 95% CI: -9.88, -5.65); paclitaxel (tumor volume: -2.85; 95% CI: -3.66, -2.04). Regarding animal weight, there was no weight reduction in animals treated with intraperitoneal chemotherapy applied through the slow-release device compared with animals treated with intraperitoneal free chemotherapy. However, significant heterogeneity was observed in some comparisons. Conclusion slow-release devices are overall safe and effective in animal models of ovarian cancer. It was not possible to evaluate which one is the most promising device to treat ovarian cancer, because many different types were used to apply chemotherapy intraperitoneally. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021224573.
Collapse
Affiliation(s)
- Marcelo Simonsen
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
- Gynecology and Obstetrics Department, Instituto de Assistência Médica ao Servidor Público Estadual (IAMSPE), São Paulo, SP, Brazil
| | - Rossana Verónica Mendoza López
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| | - Simone Maistro
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| | - Lucas Takeshi Ikeoka
- Faculdade de Medicina, Undergraduate program, Universidade de Sao Paulo (FMUSP), Sao Paulo, SP, Brazil
| | - Glaucia Fernanda de Lima Pereira
- Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| | - Ademar Benévolo Lugão
- Nuclear and Energy Research Institute, IPEN-Comissão Nacional de Energia Nuclear (CNEN)/SP—University of São Paulo, São Paulo, SP, Brazil
| | - José Carlos Sadalla
- Departamento de Ginecologia e Obstetrícia, Instituto do Câncer do Estado de Sao Paulo do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Maria Lúcia Hirata Katayama
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| | - Maria Aparecida Azevedo Koike Folgueira
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Gül S, Alberto M, Annika K, Pratschke J, Rau B. Emerging Treatment Modalities for Gastric Cancer With Macroscopic Peritoneal Metastases: A Systematic Review. J Surg Oncol 2024. [PMID: 39658832 DOI: 10.1002/jso.27987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 12/12/2024]
Abstract
Gastric cancer with macroscopic peritoneal metastases represents a major therapeutic challenge and is associated with a poor prognosis. This review aims to evaluate the efficacy and safety of new treatment modalities. A systematic search of PubMed was conducted to identify studies published between January 2014 and April 2024. Inclusion criteria were trials investigating novel therapies for gastric cancer with peritoneal metastases. Data on treatment efficacy, survival outcomes, and side effects were extracted.
Collapse
Affiliation(s)
- Safak Gül
- Surgical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Miguel Alberto
- Surgical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kurreck Annika
- Department of Medical Oncology and Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johann Pratschke
- Surgical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Beate Rau
- Surgical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Min SH, Lee J, Yoo M, Hwang D, Lee E, Kang SH, Lee K, Park YS, Ahn SH, Suh YS, Park DJ, Kim HH. Efficacy of Hyperthermic Pressurized Intraperitoneal Aerosol Chemotherapy in an In Vitro Model Using a Human Gastric Cancer AGS Cell Line and an Abdominal Cavity Model. J Gastric Cancer 2024; 24:246-256. [PMID: 38960884 PMCID: PMC11224724 DOI: 10.5230/jgc.2024.24.e24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Peritoneal carcinomatosis (PC) presents a major challenge in the treatment of late-stage, solid tumors, with traditional therapies limited by poor drug penetration. We evaluated a novel hyperthermic pressurized intraperitoneal aerosol chemotherapy (HPIPAC) system using a human abdominal cavity model for its efficacy against AGS gastric cancer cells. MATERIALS AND METHODS A model simulating the human abdominal cavity and AGS gastric cancer cell line cultured dishes were used to assess the efficacy of the HPIPAC system. Cell viability was measured to evaluate the impact of HPIPAC under 6 different conditions: heat alone, PIPAC with paclitaxel (PTX), PTX alone, normal saline (NS) alone, heat with NS, and HPIPAC with PTX. RESULTS Results showed a significant reduction in cell viability with HPIPAC combined with PTX, indicating enhanced cytotoxic effects. Immediately after treatment, the average cell viability was 66.6%, which decreased to 49.2% after 48 hours and to a further 19.6% after 120 hours of incubation, demonstrating the sustained efficacy of the treatment. In contrast, control groups exhibited a recovery in cell viability; heat alone showed cell viability increasing from 90.8% to 94.4%, PIPAC with PTX from 82.7% to 89.7%, PTX only from 73.3% to 74.8%, NS only from 90.9% to 98.3%, and heat with NS from 74.4% to 84.7%. CONCLUSIONS The HPIPAC system with PTX exhibits a promising approach in the treatment of PC in gastric cancer, significantly reducing cell viability. Despite certain limitations, this study highlights the system's potential to enhance treatment outcomes. Future efforts should focus on refining HPIPAC and validating its effectiveness in clinical settings.
Collapse
Affiliation(s)
- Sa-Hong Min
- Department of Gastrointestinal Surgery, Asan Medical Center, Seoul, Korea
| | - Jieun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Mira Yoo
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Duyeong Hwang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eunju Lee
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea
| | - So Hyun Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kanghaeng Lee
- Department of Surgery, St. Vincent's Hospital, Suwon, Korea
| | - Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Williams NO, Quiroga D, Johnson C, Brufsky A, Chambers M, Bhattacharya S, Patterson M, Sardesai SD, Stover D, Lustberg M, Noonan AM, Cherian M, Bystry DM, Hill KL, Chen M, Phelps MA, Grever M, Stephens JA, Ramaswamy B, Carson WE, Wesolowski R. Phase Ib study of HSP90 inhibitor, onalespib (AT13387), in combination with paclitaxel in patients with advanced triple-negative breast cancer. Ther Adv Med Oncol 2023; 15:17588359231217976. [PMID: 38152697 PMCID: PMC10752118 DOI: 10.1177/17588359231217976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023] Open
Abstract
Background Heat shock protein 90 (HSP90) is a molecular chaperone required for stabilization of client proteins over-activated in triple-negative breast cancer (TNBC). Over-expression of HSP90 client proteins has been implicated in paclitaxel resistance. Onalespib (AT13387) is a potent inhibitor of HSP90 that could improve paclitaxel efficacy when administered in combination. Design This phase Ib trial administered onalespib with paclitaxel in patients with advanced TNBC to assess safety and establish a recommended phase II dose (RP2D). Objectives The primary objectives were determining the dose-limiting toxicities and maximum tolerated dose of combination therapy. Secondary objectives included pharmacokinetic (PK) analysis and determination of overall response rate (ORR), duration of response (DOR), and progression-free survival (PFS). Methods Patients with advanced TNBC were treated with standard dose intravenous paclitaxel in combination with intravenous onalespib at doses ranging from 120 to 260 mg/m2 administered on days 1, 8, and 15 of a 28-day cycle using a standard 3 + 3 design. A total of 15 patients were enrolled to dose expansion cohort at RP2D to confirm safety profile. Results Thirty-one patients were enrolled in the study, of which over 90% had received prior taxane therapy. Paclitaxel was given for metastatic disease in 23% of patients. Adverse events (AEs) included anemia (grade 3: 20%), lymphopenia (grade 3: 17%), and neutropenia (grade 3: 33%, grade 4: 4%). The most frequent grade ⩾3 non-hematologic AE was diarrhea (7%). The established RP2D was 260 mg/m2 onalespib when given with paclitaxel at 80 mg/m2. PK analysis revealed a modest drug interaction profile for onalespib in the combination regimen. ORR was 20%. Three patients achieved complete responses, all of whom had received prior taxane therapy. Median DOR was 5.6 months; median PFS was 2.9 months. Conclusion Combination treatment with onalespib and paclitaxel had an acceptable toxicity profile and RP2D was determined to be 260 mg/m2 of onalespib. Combination therapy showed antitumor activity in patients with advanced TNBC. Trial registration Onalespib and paclitaxel in treating patients with advanced TNBC https://clinicaltrials.gov/ct2/show/NCT02474173.
Collapse
Affiliation(s)
- Nicole O. Williams
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Dionisia Quiroga
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Courtney Johnson
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Adam Brufsky
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mara Chambers
- University of Kentucky Markey Cancer Center, Lexington, KY, USA
| | | | - Maria Patterson
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University, Columbus, OH, USA
| | - Sagar D. Sardesai
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Daniel Stover
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maryam Lustberg
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Anne M. Noonan
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Mathew Cherian
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Darlene M. Bystry
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Kasey L. Hill
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Min Chen
- The Ohio State University College of Pharmacy, Columbus, OH, USA
| | - Mitch A. Phelps
- The Ohio State University – Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University College of Pharmacy, Columbus, OH, USA
| | - Michael Grever
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Julie A. Stephens
- Center for Biostatistics, Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - William E. Carson
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Robert Wesolowski
- The Ohio State University Comprehensive Cancer Center, 1800 Cannon Drive, 1310D Lincoln Tower, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Wang L, Piao Y, Guo F, Wei J, Chen Y, Dai X, Zhang X. Current progress of pig models for liver cancer research. Biomed Pharmacother 2023; 165:115256. [PMID: 37536038 DOI: 10.1016/j.biopha.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Preclinical trials play critical roles in assessing the safety and efficiency of novel therapeutic strategies for human diseases including live cancer. However, most therapeutic strategies that were proved to be effective in preclinical cancer models failed in human clinical trials due to the lack of appropriate disease animal models. Therefore, it is of importance and urgent to develop a precise animal model for preclinical cancer research. Liver cancer is one of the most frequently diagnosed cancers with low 5-year survival rate. Recently, porcine attracted increasing attentions as animal model in biomedical research. Porcine liver cancer model may provide a promising platform for biomedical research due to their similarities to human being in body size, anatomical characteristics, physiology and pathophysiology. In this review, we comprehensively summarized and discussed the advantages and disadvantages, rationale, current status and progress of pig models for liver cancer research.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yuexian Piao
- Invasive Technology Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Jiarui Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Baggaley AE, Lafaurie GBRC, Tate SJ, Boshier PR, Case A, Prosser S, Torkington J, Jones SEF, Gwynne SH, Peters CJ. Pressurized intraperitoneal aerosol chemotherapy (PIPAC): updated systematic review using the IDEAL framework. Br J Surg 2022; 110:10-18. [PMID: 36056893 PMCID: PMC10364525 DOI: 10.1093/bjs/znac284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Alice E Baggaley
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, London, UK
| | | | - Sophia J Tate
- Department of Anaesthesia, Swansea Bay University Health Board, Swansea, UK
| | - Piers R Boshier
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, London, UK
| | - Amy Case
- Department of Cancer Services, Swansea Bay University Health Board, Swansea, UK
| | - Susan Prosser
- Department of Library Services, Swansea Bay University Health Board, Swansea, UK
| | - Jared Torkington
- Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - Sadie E F Jones
- Department of Obstetrics and Gynaecology, University Hospital of Wales, Cardiff, UK
| | - Sarah H Gwynne
- Department of Cancer Services, Swansea Bay University Health Board, Swansea, UK
| | - Christopher J Peters
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, London, UK
| |
Collapse
|
7
|
Gwee YX, Chia DKA, So J, Ceelen W, Yong WP, Tan P, Ong CAJ, Sundar R. Integration of Genomic Biology Into Therapeutic Strategies of Gastric Cancer Peritoneal Metastasis. J Clin Oncol 2022; 40:2830. [PMID: 35649219 PMCID: PMC9390822 DOI: 10.1200/jco.21.02745] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
The peritoneum is a common site of metastasis in advanced gastric cancer (GC). Diagnostic laparoscopy is now routinely performed as part of disease staging, leading to an earlier diagnosis of synchronous peritoneal metastasis (PM). The biology of GCPM is unique and aggressive, leading to a dismal prognosis. These tumors tend to be resistant to traditional systemic therapy, and yet, this remains the current standard-of-care recommended by most international clinical guidelines. As this is an area of unmet clinical need, several translational studies and clinical trials have focused on addressing this specific disease state. Advances in genomic sequencing and molecular profiling have revealed several promising therapeutic targets and elucidated novel biology, particularly on the role of the surrounding tumor microenvironment in GCPM. Peritoneal-specific clinical trials are being designed with a combination of locoregional therapeutic strategies with systemic therapy. In this review, we summarize the new knowledge of cancer biology, advances in surgical techniques, and emergence of novel therapies as an integrated strategy emerges to address GCPM as a distinct clinical entity.
Collapse
Affiliation(s)
- Yong Xiang Gwee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Daryl Kai Ann Chia
- University Surgical Cluster, National University Health System, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore
| | - Jimmy So
- University Surgical Cluster, National University Health System, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chin-Ann Johnny Ong
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), National Cancer Centre Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Singapore General Hospital, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore
| |
Collapse
|
8
|
Boettcher AN, Schachtschneider KM, Schook LB, Tuggle CK. Swine models for translational oncological research: an evolving landscape and regulatory considerations. Mamm Genome 2022; 33:230-240. [PMID: 34476572 PMCID: PMC8888764 DOI: 10.1007/s00335-021-09907-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023]
Abstract
Swine biomedical models have been gaining in popularity over the last decade, particularly for applications in oncology research. Swine models for cancer research include pigs that have severe combined immunodeficiency for xenotransplantation studies, genetically modified swine models which are capable of developing tumors in vivo, as well as normal immunocompetent pigs. In recent years, there has been a low success rate for the approval of new oncological therapeutics in clinical trials. The two leading reasons for these failures are either due to toxicity and safety issues or lack of efficacy. As all therapeutics must be tested within animal models prior to clinical testing, there are opportunities to expand the ability to assess efficacy and toxicity profiles within the preclinical testing phases of new therapeutics. Most preclinical in vivo testing is performed in mice, canines, and non-human primates. However, swine models are an alternative large animal model for cancer research with similarity to human size, genetics, and physiology. Additionally, tumorigenesis pathways are similar between human and pigs in that similar driver mutations are required for transformation. Due to their larger size, the development of orthotopic tumors is easier than in smaller rodent models; additionally, porcine models can be harnessed for testing of new interventional devices and radiological/surgical approaches as well. Taken together, swine are a feasible option for preclinical therapeutic and device testing. The goals of this resource are to provide a broad overview on regulatory processes required for new therapeutics and devices for use in the clinic, cross-species differences in oncological therapeutic responses, as well as to provide an overview of swine oncology models that have been developed that could be used for preclinical testing to fulfill regulatory requirements.
Collapse
Affiliation(s)
| | - Kyle M. Schachtschneider
- University of Illinois at Chicago, Department of Radiology, Chicago, Illinois, United States,University of Illinois at Urbana-Champaign, National Center for Supercomputing Applications, Urbana, Illinois, United States,University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics, Chicago, Illinois, United States
| | - Lawrence B. Schook
- University of Illinois at Chicago, Department of Radiology, Chicago, Illinois, United States,University of Illinois at Urbana-Champaign, National Center for Supercomputing Applications, Urbana, Illinois, United States,University of Illinois at Urbana-Champaign, Department of Animal Sciences, Illinois, United States
| | - Christopher K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, 806 Stange Road, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Park SJ, Lee EJ, Seol A, Park S, Ham J, Yim GW, Shim SH, Lim W, Chang SJ, Song G, Park JW, Kim HS. Rotational intraperitoneal pressurized aerosol chemotherapy with paclitaxel and cisplatin: pharmacokinetics, tissue concentrations, and toxicities in a pig model. J Gynecol Oncol 2022; 33:e56. [PMID: 35712969 PMCID: PMC9428304 DOI: 10.3802/jgo.2022.33.e56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/15/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Soo Jin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Ji Lee
- Department of Obstetrics and Gynecology, Chung-Ang University Hospital, Seoul, Korea
| | - Aeran Seol
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials science, Gyeongsang National University, Jinju, Korea
| | - Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ga Won Yim
- Department of Obstetrics and Gynecology, Dongguk University College of Medicine, Goyang, Korea
| | - Seung-Hyuk Shim
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Suk-Joon Chang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|
10
|
Lurvink RJ, Van der Speeten K, Rovers KP, de Hingh IHJT. The emergence of pressurized intraperitoneal aerosol chemotherapy as a palliative treatment option for patients with diffuse peritoneal metastases: a narrative review. J Gastrointest Oncol 2021; 12:S259-S270. [PMID: 33968442 DOI: 10.21037/jgo-20-497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is an emerging palliative treatment for patients with unresectable peritoneal metastases. Potential advantages of PIPAC over current treatment options are a homogeneous intraperitoneal distribution, low local and systemic toxicity, and enhanced tumour penetration. Given these possible benefits, PIPAC is increasingly implemented in many centres worldwide. Scientific research into PIPAC is currently available from in vitro/in vivo/in animal studies, retrospective cohorts in humans, and phase I and II studies in humans. There are no results from randomised trials comparing PIPAC with conventional treatment, such as palliative systemic therapy. This narrative review aimed to provide an overview of the currently available literature on PIPAC. In general, repetitive PIPAC was feasible and safe for patients and operating room personnel. Primary and secondary non-access rates varied from 0-17% and 0-15%, respectively. Iatrogenic bowel injury was observed in 0-3% of PIPAC procedures. CTCAE grade 1-2 complications were common, mostly consisting of abdominal pain, nausea, vomiting, and fatigue. CTCAE grade 3-4 complications were uncommon, occurring on 0-15% of PIPAC procedures. Post-operative mortality rates of 0-2% were reported. The risk of occupational exposure to cytotoxic drugs was very low when strict safety guidelines were followed. Clinical heterogeneity was high in most studies, since, in general, patients with unresectable peritoneal metastases from a variety of primary tumours were included. Also, patients received either PIPAC monotherapy or PIPAC combined with concomitant systemic therapy, and were able to receive PIPAC in any line of palliative treatment. Since the results were generally not stratified for these three important factors, this severely complicates the interpretation of results. Based on the current literature, PIPAC may be regarded as a promising palliative treatment option in patients with diffuse peritoneal metastases. Initial results show that it is feasible and safe. However, well designed and (ideally) randomized controlled trials are urgently needed to determine the additional value of PIPAC in this setting. Until then, PIPAC should preferably be performed in the setting of clinical trials.
Collapse
Affiliation(s)
- Robin J Lurvink
- Department of Surgery, Catharina Hospital, Eindhoven, the Netherlands
| | | | - Koen P Rovers
- Department of Surgery, Catharina Hospital, Eindhoven, the Netherlands
| | - Ignace H J T de Hingh
- Department of Surgery, Catharina Hospital, Eindhoven, the Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|