1
|
Cheng L, Zhang L, Wang X, Wang Y, Yu J, Li M, Ma Z, Chi-Lui Ho P, Chen X, Wang L, Sethi G, Goh BC. Extracellular vesicles in the HCC microenvironment: Implications for therapy and biomarkers. Pharmacol Res 2024; 209:107419. [PMID: 39284428 DOI: 10.1016/j.phrs.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as the sixth most prevalent cancer and the third leading cause of cancer mortality globally. Despite surgical resection being the preferred approach for early-stage HCC, most patients are diagnosed at intermediate to advanced stages, limiting treatment options to chemotherapy and immunotherapy, which often yield poor outcomes. Extracellular vesicles (EVs), minute lipid-bilayered particles released by diverse cells under various physiological and pathological conditions, are crucial for mediating communication between cells. Mounting evidence indicates that EVs sourced from different cells can profoundly influence the HCC tumor microenvironment (TME), thereby affecting the progression of HCC. Given their immunogenicity and liver-targeting properties, these EVs not only hold promise for HCC treatment but also provide avenues for advancing early diagnostic methods and assessing prognosis. This review not only describes the function of EVs within the HCC tumor microenvironment but also analyzes their therapeutic advantages and explores their significance in various therapeutic approaches for HCC, including chemotherapy, immunotherapy, combination therapy, and their role as innovative drug delivery carriers. Furthermore, it highlights the potential of EVs as biomarkers for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou 434000, China; The Third Clinical Medical College of Yangtze University, Jingzhou 434000, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yufei Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China.
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Boon-Cher Goh
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| |
Collapse
|
2
|
Farahani M, Ghazimoradi MH. Dissecting the roles of exosomal cancer-associated fibroblasts-derived non-coding RNAs in tumor progression: A complete guide. Pathol Res Pract 2024; 262:155576. [PMID: 39232286 DOI: 10.1016/j.prp.2024.155576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.
Collapse
Affiliation(s)
- Mahnaz Farahani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram, General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Shang H, Lu L, Fan M, Lu Y, Shi X, Lu H. Exosomal circHIF1A derived from hypoxic-induced carcinoma-associated fibroblasts promotes hepatocellular carcinoma cell malignant phenotypes and immune escape. Int Immunopharmacol 2024; 138:112282. [PMID: 38936058 DOI: 10.1016/j.intimp.2024.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Hypoxia is a hallmark of solid tumors. Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment, and CAF-derived exosomes are involved in cancer genesis and progression. Here, this work investigated the role and mechanism of exosomal circHIF1A derived from hypoxia-induced CAFs in hepatocellular carcinoma (HCC) tumorigenesis. CAFs isolated from fresh HCC tissues were incubated in normoxia or hypoxia condition (N/CAFs or H/CAFs), and then the exosomes from N/CAFs or H/CAFs were isolated for functional analysis. Cell proliferation, migration and invasion were analyzed by cell counting kit-8, colony formation, and transwell assays. Immune evasion was evaluated by measuring the cytotoxicity and viability of CD8+T cells. qRT-PCR and western blotting analyses were used for the level measurement of genes and proteins. The binding between Hu antigen R (HuR) and circHIF1A or Programmed death ligand 1 (PD-L1) was analyzed by RNA immunoprecipitation assay. Functionally, we found that CAFs, especially CAFs under hypoxic stress (H/CAFs), promoted the proliferation, migration, invasion and EMT progression in HCC cells, as well as induced immune escape by suppressing CD8+T cell cytotoxicity and activity in an exosome-dependent manner. H/CAFs-derived exosomes showed highly expressed circHIF1A, and could secrete circHIF1A into HCC cells via exosomes. The oncogenic effects of H/CAFs-secreted exosomes were abolished by circHIF1A knockdown. Mechanistically, circHIF1A interacted with HuR to stabilize PD-L1 expression in HCC cells. Meanwhile, circHIF1A silencing suppressed HCC cell proliferation, mobility and immune escape by regulating PD-L1 expression. In all, exosomal circHIF1A derived from hypoxic-induced CAFs promoted the proliferation, migration, invasion, EMT progression and immune escape in HCC cells by up-regulating PD-L1 expression in a HuR-dependent manner.
Collapse
Affiliation(s)
- Hao Shang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City 710004, Shaanxi, China
| | - Le Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City 710004, Shaanxi, China
| | - Meng Fan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City 710004, Shaanxi, China
| | - Yuxuan Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City 710004, Shaanxi, China
| | - Xiali Shi
- Department of Anesthesiology and Operation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City 710004, Shaanxi, China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City 710004, Shaanxi, China.
| |
Collapse
|
4
|
Lin Z, Li G, Jiang K, Li Z, Liu T. Cancer therapy resistance mediated by cancer-associated fibroblast-derived extracellular vesicles: biological mechanisms to clinical significance and implications. Mol Cancer 2024; 23:191. [PMID: 39244548 PMCID: PMC11380334 DOI: 10.1186/s12943-024-02106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a diverse stromal cell population within the tumour microenvironment, where they play fundamental roles in cancer progression and patient prognosis. Multiple lines of evidence have identified that CAFs are critically involved in shaping the structure and function of the tumour microenvironment with numerous functions in regulating tumour behaviours, such as metastasis, invasion, and epithelial-mesenchymal transition (EMT). CAFs can interact extensively with cancer cells by producing extracellular vesicles (EVs), multiple secreted factors, and metabolites. Notably, CAF-derived EVs have been identified as critical mediators of cancer therapy resistance, and constitute novel therapy targets and biomarkers in cancer management. This review aimed to summarize the biological roles and detailed molecular mechanisms of CAF-derived EVs in mediating cancer resistance to chemotherapy, targeted therapy agents, radiotherapy, and immunotherapy. We also discussed the therapeutic potential of CAF-derived EVs as novel targets and clinical biomarkers in cancer clinical management, thereby providing a novel therapeutic strategy for enhancing cancer therapy efficacy and improving patient prognosis.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Ke Jiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
5
|
Su Z, Lu C, Zhang F, Liu H, Li M, Qiao M, Zou X, Luo D, Li H, He M, Se H, Jing J, Wang X, Yang H, Yang H. Cancer-associated fibroblasts-secreted exosomal miR-92a-3p promotes tumor growth and stemness in hepatocellular carcinoma through activation of Wnt/β-catenin signaling pathway by suppressing AXIN1. J Cell Physiol 2024; 239:e31344. [PMID: 38949237 DOI: 10.1002/jcp.31344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are a major cellular component in the tumor microenvironment and have been shown to exhibit protumorigenic effects in hepatocellular carcinoma (HCC). This study aimed to delve into the mechanisms underlying the tumor-promoting effects of CAFs in HCC. Small RNA sequencing was conducted to screen differential expressed microRNAs in exosomes derived from CAFs and normal fibroblasts (NFs). The miR-92a-3p expression was then measured using reverse transcriptase quantitative real-time PCR in CAFs, NFs, CAFs-derived exosomes (CAFs-Exo), and NF-derived exosomes (NFs-Exo). Compared to NFs or NF-Exo, CAFs and CAFs-Exo significantly promoted HCC cell proliferation, migration, and stemness. Additionally, compared to NFs or NF-Exo, miR-92a-3p level was notably higher in CAFs and CAFs-Exo, respectively. Exosomal miR-92a-3p was found to enhance HCC cell proliferation, migration, and stemness. Meanwhile, AXIN1 was targeted by miR-92a-3p. Exosomal miR-92a-3p could activate β-catenin/CD44 signaling in HCC cells by inhibiting AXIN1 messenger RNA. Furthermore, in vivo studies verified that exosomal miR-92a-3p notably promoted tumor growth and stemness through targeting AXIN1/β-catenin axis. Collectively, CAFs secreted exosomal miR-92a-3p was capable of promoting growth and stemness in HCC through activation of Wnt/β-catenin signaling pathway by suppressing AXIN1. Therefore, targeting CAFs-derived miR-92a-3p may be a potential strategy for treating HCC.
Collapse
Affiliation(s)
- Zenong Su
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Department of Graduate School, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Chao Lu
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Department of Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Feifei Zhang
- Department of Nuclear Medicine, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Huan Liu
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Department of Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Meiqing Li
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Meng Qiao
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xiaohong Zou
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Danyang Luo
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Haojing Li
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Min He
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Han Se
- Department of Graduate School, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Jing Jing
- Department of Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xiangcheng Wang
- Department of Nuclear Medicine, Shenzhen People's Hospital, Shenzhen, Guangzhou, China
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Hong Yang
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
6
|
Feng H, Liu J, Jia H, Bu X, Yang W, Su P. Cancer-associated fibroblasts-derived exosomal ZNF250 promotes the proliferation, migration, invasion, and immune escape of hepatocellular carcinoma cells by transcriptionally activating PD-L1. J Biochem Mol Toxicol 2024; 38:e23778. [PMID: 39252517 DOI: 10.1002/jbt.23778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 09/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a lethal form of liver cancer, and the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), plays a critical role in its progression. This study aimed to elucidate the mechanism by which CAF-derived exosomes regulate the development of HCC. The study employed quantitative real-time polymerase chain reaction for mRNA expression analysis and western blot analysis for protein expression detection. Chromatin immunoprecipitation assay and dual-luciferase reporter assay were performed to investigate the relationship between zinc finger protein 250 (ZNF250) and programmed cell death 1 ligand 1 (PD-L1). Transmission electron microscopy and western blot analysis were used to characterize the isolated exosomes. The transferability of CAF-derived exosomes and normal fibroblasts (NFs)-derived exosomes into HCC cells was analyzed using a green fluorescent labeling dye PKH67. Cell proliferation was assessed via a 5-Ethynyl-2'-deoxyuridine assay, while Transwell assays were conducted to evaluate cell migration and invasion. Flow cytometry was performed to measure cell apoptosis, while enzyme-linked immunosorbent assays were used to assess the levels of tumor necrosis factor-α and perforin. Finally, a xenograft mouse model was constructed to examine the effects of exosomes derived from ZNF250-deficient CAFs on the tumor properties of HCC cells. The study revealed increased expression of ZNF250 in HCC tissues and cells, with ZNF250 transcriptionally activating PD-L1 in HCC cells. ZNF250 expression was associated with HbsAg, clinical stage and tumor size of HCC patients. CAF-derived exosomal ZNF250 can regulate PD-L1 expression in HCC cells. Furthermore, exosomes derived from ZNF250-deficient CAFs inhibited the proliferation, migration, invasion, and immune escape of HCC cells by downregulating PD-L1 expression. Moreover, CAF-derived exosomal ZNF250 promoted tumor formation in vivo. These findings provide insights into the role of CAF-derived exosomes in the suppression of HCC development, highlighting the significance of ZNF250 and PD-L1 regulation in tumor progression.
Collapse
Affiliation(s)
- Huizhi Feng
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jingmei Liu
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Haixia Jia
- Department of Scientific Research, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoqian Bu
- Department of Digestive System Cancer Center, Shanxi Bethune Hospital, Taiyuan, China
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Peng Su
- Department of Medical Service, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
9
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
10
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
11
|
Raghav A, Jeong GB. Nanoquercetin and Extracellular Vesicles as Potential Anticancer Therapeutics in Hepatocellular Carcinoma. Cells 2024; 13:638. [PMID: 38607076 PMCID: PMC11011524 DOI: 10.3390/cells13070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Despite world-class sophisticated technologies, robotics, artificial intelligence, and machine learning approaches, cancer-associated mortalities and morbidities have shown continuous increments posing a healthcare burden. Drug-based interventions were associated with systemic toxicities and several limitations. Natural bioactive compounds derived nanoformulations, especially nanoquercetin (nQ), are alternative options to overcome drug-associated limitations. Moreover, the EVs-based cargo targeted delivery of nQ can have enormous potential in treating hepatocellular carcinoma (HCC). EVs-based nQ delivery synergistically regulates and dysregulates several pathways, including NF-κB, p53, JAK/STAT, MAPK, Wnt/β-catenin, and PI3K/AKT, along with PBX3/ERK1/2/CDK2, and miRNAs intonation. Furthermore, discoveries on possible checkpoints of anticancer signaling pathways were studied, which might lead to the development of modified EVs infused with nQ for the development of innovative treatments for HCC. In this work, we abridged the control of such signaling systems using a synergetic strategy with EVs and nQ. The governing roles of extracellular vesicles controlling the expression of miRNAs were investigated, particularly in relation to HCC.
Collapse
Affiliation(s)
| | - Goo Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
12
|
Huang Q, Zhong X, Li J, Hu R, Yi J, Sun J, Xu Y, Zhou X. Exosomal ncRNAs: Multifunctional contributors to the immunosuppressive tumor microenvironment of hepatocellular carcinoma. Biomed Pharmacother 2024; 173:116409. [PMID: 38460375 DOI: 10.1016/j.biopha.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant liver cancer characterized by aggressive progression, unfavorable prognosis, and an increasing global health burden. Therapies that precisely target immunological checkpoints and immune cells have gained significant attention as possible therapeutics in recent years. In truth, the efficacy of immunotherapy is heavily contingent upon the tumor microenvironment (TME). Recent studies have indicated that exosomes serve as a sophisticated means of communication among biomolecules, executing an essential part in the TME of immune suppression. Exosomal non-coding RNAs (ncRNAs) can induce the activation of tumor cells and immunosuppressive immune cells that suppress the immune system, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), CD+8 T cells, regulatory T cells (Tregs), and regulatory B cells (Bregs). This cell-cell crosstalk triggered by exosomal ncRNAs promotes tumor proliferation and metastasis, angiogenesis, malignant phenotype transformation, and drug resistance. Hence, it is imperative to comprehend how exosomal ncRNAs regulate tumor cells or immune cells within the TME to devise more comprehensive and productive immunotherapy programs. This study discusses the features of exosomal ncRNAs in HCC and how the activation of the exosomes redefines the tumor's immunosuppressive microenvironment, hence facilitating the advancement of HCC. Furthermore, we also explored the potential of exosomal ncRNAs as a viable biological target or natural vehicle for HCC therapy.
Collapse
Affiliation(s)
- Qi Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jing Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Rui Hu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jinyu Yi
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China.
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China.
| |
Collapse
|
13
|
Toshida K, Itoh S, Iseda N, Tomiyama T, Yoshiya S, Toshima T, Liu YC, Iwasaki T, Okuzaki D, Taniguchi K, Oda Y, Mori M, Yoshizumi T. Impact of ACSL4 on the prognosis of hepatocellular carcinoma: Association with cancer-associated fibroblasts and the tumour immune microenvironment. Liver Int 2024; 44:1011-1023. [PMID: 38293713 DOI: 10.1111/liv.15839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND & AIMS Recently, the association between hepatocellular carcinoma (HCC) and ferroptosis has been the focus of much attention. The expression of long chain fatty acyl-CoA ligase 4 (ACSL4), a marker of ferroptosis, in tumour tissue is related to better prognosis in various cancers. In HCC, ACSL4 expression indicates poor prognosis and is related to high malignancy. However, the mechanism remains to be fully understood. METHODS We retrospectively enrolled 358 patients with HCC who had undergone hepatic resection. Immunohistochemistry (IHC) for ACSL4 was performed. Factors associated with ASCL4 expression were investigated by spatial transcriptome analysis, and the relationships were investigated by IHC. The association between ACSL4 and the tumour immune microenvironment was examined in a public dataset and investigated by IHC. RESULTS Patients were divided into ACSL4-positive (n = 72, 20.1%) and ACSL4-negative (n = 286, 79.9%) groups. ACSL4 positivity was significantly correlated with higher α-fetoprotein (p = .0180) and more histological liver fibrosis (p = .0014). In multivariate analysis, ACSL4 positivity was an independent prognostic factor (p < .0001). Spatial transcriptome analysis showed a positive correlation between ACSL4 and cancer-associated fibroblasts; this relationship was confirmed by IHC. Evaluation of a public dataset showed the correlation between ACSL4 and exhausted tumour immune microenvironment; this relationship was also confirmed by IHC. CONCLUSION ACSL4 is a prognostic factor in HCC patients and its expression was associated with cancer-associated fibroblasts and anti-tumour immunity.
Collapse
Affiliation(s)
- Katsuya Toshida
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norifumi Iseda
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Tomiyama
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Yoshiya
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Toshima
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu-Chen Liu
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Koji Taniguchi
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Mori
- School of Medicine, Tokai University, Kanagawa, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Chen J, He F, Peng H, Guo J. The underlying mechanism and targeted therapy strategy of miRNAs cross-regulating EMT process through multiple signaling pathways in hepatocellular carcinoma. Front Mol Biosci 2024; 11:1378386. [PMID: 38584703 PMCID: PMC10995332 DOI: 10.3389/fmolb.2024.1378386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
The consistent notion holds that hepatocellular carcinoma (HCC) initiation, progression, and clinical treatment failure treatment failure are affected by the accumulation of various genetic and epigenetic alterations. MicroRNAs (miRNAs) play an irreplaceable role in a variety of physiological and pathological states. meanwhile, epithelial-mesenchymal transition (EMT) is a crucial biological process that controls the development of HCC. miRNAs regulate the intermediation state of EMTor mesenchymal-epithelial transition (MTE)thereby regulating HCC progression. Notably, miRNAs regulate key HCC-related molecular pathways, including the Wnt/β-catenin pathway, PTEN/PI3K/AKT pathway, TGF-β pathway, and RAS/MAPK pathway. Therefore, we comprehensively reviewed how miRNAs produce EMT effects by multiple signaling pathways and their potential significance in the pathogenesis and treatment response of HCC. emphasizing their molecular pathways and progression in HCC initiation. Additionally, we also pay attention to regulatory mechanisms that are partially independent of signaling pathways. Finally, we summarize and propose miRNA-targeted therapy and diagnosis and defense strategies forHCC. The identification of the mechanism leading to the activation of EMT programs during HCC disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Consequently, we summarize the latest progress in this direction, with a promising path for further insight into this fast-moving field.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Fuguo He
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Fu X, Song X, Niu S, Shi S, Chang H, Qi J, Wang P, Bai W. LncRNA-mediated ceRNA network reveals the mechanism of action of Saorilao-4 decoction against pulmonary fibrosis. Front Genet 2024; 15:1339064. [PMID: 38533208 PMCID: PMC10963618 DOI: 10.3389/fgene.2024.1339064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Pulmonary fibrosis (PF), a type of interstitial pneumonia with complex etiology and high mortality, is characterized by progressive scarring of the alveolar interstitium and myofibroblastic lesions. In this study, we screened for potential biomarkers in PF and clarified the role of the lncRNA-miRNA-mRNA ceRNA network in the inhibitory effect of SRL-4 on PF. Methods: Healthy male SPF SD rats were randomly divided into three groups, namely, CON, MOD, and SRL-4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to determine the biological functions of the target genes. A visualized lncRNA-miRNA-mRNA ceRNA network was constructed using Cytoscape, while key genes in the network were identified using the cytoNCA plugin. Results: Seventy-four differentially expressed lncRNAs and 118 differentially expressed mRNAs were identified. Gene Ontology analysis revealed that the target genes were mainly enriched in the cell membrane and in response to organic substances, while Kyoto Encyclopedia of Genes and Genomes analysis showed that the target genes were mainly enriched in the AMPK, PPAR, and cAMP signaling pathways. We elucidated a ceRNA axis, namely, Plcd3-OT1/rno-miR-150-3p/Fkbp5, with potential implications in PF. Key genes, such as AABR07051308.1-201, F2rl2-OT1, and LINC3337, may be important targets for the treatment of PF, while the AMPK, PPAR, and cAMP signaling pathways are potential key targets and important pathways through which SRL-4 mitigates PF. Conclusion: Our findings suggest that SRL-4 improves PF by regulating the lncRNA-miRNA-mRNA network.
Collapse
Affiliation(s)
- Xinyue Fu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xinni Song
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Shufang Niu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Jun Qi
- The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Peng Wang
- The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| |
Collapse
|
16
|
Cao L, Ouyang H. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via exosomes in gastrointestinal tumors. Front Oncol 2024; 14:1374742. [PMID: 38463229 PMCID: PMC10920350 DOI: 10.3389/fonc.2024.1374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Gastrointestinal (GI) tumors are a significant global health threat, with high rates of morbidity and mortality. Exosomes contain various biologically active molecules like nucleic acids, proteins, and lipids and can serve as messengers for intercellular communication. They play critical roles in the exchange of information between tumor cells and the tumor microenvironment (TME). The TME consists of mesenchymal cells and components of the extracellular matrix (ECM), with fibroblasts being the most abundant cell type in the tumor mesenchyme. Cancer-associated fibroblasts (CAFs) are derived from normal fibroblasts and mesenchymal stem cells that are activated in the TME. CAFs can secrete exosomes to modulate cell proliferation, invasion, migration, drug resistance, and other biological processes in tumors. Additionally, tumor cells can manipulate the function and behavior of fibroblasts through direct cell-cell interactions. This review provides a summary of the intercellular crosstalk between GI tumor cells and CAFs through exosomes, along with potential underlying mechanisms.
Collapse
Affiliation(s)
- Longyang Cao
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| | - Hong Ouyang
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| |
Collapse
|
17
|
Zhang L, Chen ZY, Wei XX, Li JD, Chen G. What are the changes in the hotspots and frontiers of microRNAs in hepatocellular carcinoma over the past decade? World J Clin Oncol 2024; 15:145-158. [PMID: 38292666 PMCID: PMC10823937 DOI: 10.5306/wjco.v15.i1.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Emerging research suggests that microRNAs (miRNAs) play an important role in the development of hepatocellular carcinoma (HCC). A comprehensive analysis of recent research concerning miRNAs in HCC development could provide researchers with a valuable reference for further studies. AIM To make a comprehensive analysis of recent studies concerning miRNAs in HCC. METHODS All relevant publications were retrieved from the Web of Science Core Collection database. Bibliometrix software, VOSviewer software and CiteSpace software were used to visually analyze the distribution by time, countries, institutions, journals, and authors, as well as the keywords, burst keywords and thematic map. RESULTS A total of 9426 publications on this topic were found worldwide. According to the keywords analysis, we found that the studies of miRNAs focused on their expression level, effects, and mechanisms on the biological behaviour of HCC. Keywords bursting analysis showed that in the early years (2013-2017), "microRNA expression", "gene expression", "expression profile", "functional polymorphism", "circulating microRNA", "susceptibility" and "mir 21" started to attract attention. In the latest phase (2018-2022), the hot topics turned to "sorafenib resistance", "tumor microenvironment" and so on. CONCLUSION This study provides a comprehensive overview of the role of miRNAs in HCC development based on bibliometric analysis. The hotspots in this field focus on miRNAs expression level, effects, and mechanisms on the biological behavior of HCC. The frontiers turned to sorafenib resistance, tumor microenvironment and so on.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zu-Yuan Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Xian Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
18
|
Toshida K, Itoh S, Iseda N, Izumi T, Yoshiya S, Toshima T, Ninomiya M, Iwasaki T, Oda Y, Yoshizumi T. Impact of TP53-induced glycolysis and apoptosis regulator on malignant activity and resistance to ferroptosis in intrahepatic cholangiocarcinoma. Cancer Sci 2024; 115:170-183. [PMID: 37878531 PMCID: PMC10823267 DOI: 10.1111/cas.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023] Open
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) is an important gene that encodes a regulatory enzyme of glycolysis and reactive oxygen species (ROS) detoxification and is associated with worse prognosis in various cancers. Ferroptosis is a recently identified type of programmed cell death that is triggered by iron-dependent lipid peroxidation. There are no reports on the prognostic impact of TIGAR on intrahepatic cholangiocarcinoma (ICC), and its role in ferroptosis is unclear. Ninety ICC patients who had undergone hepatic resection were enrolled. Immunohistochemical staining for TIGAR was performed. The regulation of malignant activity by TIGAR and the association between ferroptosis and TIGAR were investigated in vitro. Twenty-two (24.4%) patients were categorized into TIGAR-high and -low groups by immunohistochemical staining. There were no noticeable differences in background factors between the two groups, but TIGAR positivity was an independent prognostic factor in disease-free survival (hazard ratio [HR], 2.00; 95% confidence interval [CI], 1.04-3.85, p = 0.0378) and overall survival (HR, 2.10; 95% CI, 1.03-4.30, p = 0.00422) in a multivariate analysis. In vitro, TIGAR knockdown (KD) decreased cell motility (cell proliferation/migration/invasion/colony-forming capabilities) and elevated ROS and lipid peroxidation. This indicated that TIGAR KD induced ferroptosis. TIGAR KD-induced ferroptosis was suppressed using liproxstatin. TIGAR KD decreased the expression of glutathione peroxidase 4, known as factor-suppressing ferroptosis. The combination of TIGAR KD with cisplatin significantly induced more ferroptosis. In conclusion, TIGAR is associated with poor outcomes in ICC patients and resistance to ferroptosis.
Collapse
Affiliation(s)
- Katsuya Toshida
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Norifumi Iseda
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takuma Izumi
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shohei Yoshiya
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Mizuki Ninomiya
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
19
|
Wang HC, Yin WX, Jiang M, Han JY, Kuai XW, Sun R, Sun YF, Ji JL. Function and biomedical implications of exosomal microRNAs delivered by parenchymal and nonparenchymal cells in hepatocellular carcinoma. World J Gastroenterol 2023; 29:5435-5451. [PMID: 37900996 PMCID: PMC10600808 DOI: 10.3748/wjg.v29.i39.5435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
Small extracellular vesicles (exosomes) are important components of the tumor microenvironment. They are small membrane-bound vesicles derived from almost all cell types and play an important role in intercellular communication. Exosomes transmit biological molecules obtained from parent cells, such as proteins, lipids, and nucleic acids, and are involved in cancer development. MicroRNAs (miRNAs), the most abundant contents in exosomes, are selectively packaged into exosomes to carry out their biological functions. Recent studies have revealed that exosome-delivered miRNAs play crucial roles in the tumorigenesis, progression, and drug resistance of hepatocellular carcinoma (HCC). In addition, exosomes have great industrial prospects in the diagnosis, treatment, and prognosis of patients with HCC. This review summarized the composition and function of exosomal miRNAs of different cell origins in HCC and highlighted the association between exosomal miRNAs from stromal cells and immune cells in the tumor microenvironment and the progression of HCC. Finally, we described the potential applicability of exosomal miRNAs derived from mesenchymal stem cells in the treatment of HCC.
Collapse
Affiliation(s)
- Hai-Chen Wang
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Xuan Yin
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Meng Jiang
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Jia-Yi Han
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Xing-Wang Kuai
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Rui Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Yu-Feng Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Ju-Ling Ji
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
20
|
Yan R, Chen H, Selaru FM. Extracellular Vesicles in Hepatocellular Carcinoma: Progress and Challenges in the Translation from the Laboratory to Clinic. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1599. [PMID: 37763719 PMCID: PMC10534795 DOI: 10.3390/medicina59091599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Extracellular vesicles (EVs) play critical roles in intercellular communication by transporting bioactive cargo to recipient cells. EVs have been implicated in a range of physiological and pathological processes, including tumor progression, metastasis, immune modulation, and drug resistance. The objective of this review is to present a thorough overview of recent studies focusing on EVs in hepatocellular carcinoma (HCC), with an emphasis on their potential utility as diagnostic biomarkers as well as therapeutic agents. Initially, we explore the utility of EVs as diagnostic biomarkers for HCC, followed by a discussion of their potential as carriers of therapeutic payloads. Additionally, we delve into the emerging field of therapeutic EVs for modulating tumor immune responses. Through this review, our ultimate aim is to provide a comprehensive understanding of the opportunities and challenges in the clinical translation of EV research in the domain of HCC.
Collapse
Affiliation(s)
- Rong Yan
- Department of Surgical Oncology, the First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061, China
| | - Haiming Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA;
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA;
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21224, USA
- The Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
21
|
Chen G, Shang J, Li M, Zhang H, Xu H. miR-548 predicts clinical prognosis and functions as a tumor promoter in gastric cancer. Clin Exp Med 2023; 23:1633-1639. [PMID: 35976514 DOI: 10.1007/s10238-022-00870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
Numerous pieces of evidence have demonstrated the functional role of miR-548 in various cancers. The expression and function of miR-548 in gastric cancer were investigated in the present study. A total of 123 gastric cancer patients were included and provided paired gastric cancer tissues and matched normal tissues. RT-qPCR was used to detect the expression of miR-548. CCK8 assay was used to evaluate cell proliferation, and Transwell assay was applied to assess cell migration and invasion. The clinical significance of miR-548 was estimated by a series of statistical analyses. miR-548 was found to be upregulated in gastric cancer, which was associated with the lymph node metastasis and TNM stage of patients. Patients with relatively high miR-548 expression possessed bad survival. miR-548 was identified as a prognostic indicator of gastric cancer. miR-548 was also found to promote the proliferation, migration, and invasion of gastric cancer. Upregulated miR-548 was involved in the progression of gastric cancer and predicted the prognosis of patients. Inhibition of miR-548 might be a novel therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Guoyan Chen
- Department of Digestive Internal Medicine, Seventh People's Hospital of Shanghai University of TCM, 358 Gaoqiao Datong Road, Shanghai, 200137, China
| | - Jingjuan Shang
- Department of Digestive Internal Medicine, Seventh People's Hospital of Shanghai University of TCM, 358 Gaoqiao Datong Road, Shanghai, 200137, China
| | - Minhong Li
- Department of Digestive Internal Medicine, Seventh People's Hospital of Shanghai University of TCM, 358 Gaoqiao Datong Road, Shanghai, 200137, China
| | - Huijun Zhang
- Department of Digestive Internal Medicine, Seventh People's Hospital of Shanghai University of TCM, 358 Gaoqiao Datong Road, Shanghai, 200137, China
| | - Hui Xu
- Department of Digestive Internal Medicine, Seventh People's Hospital of Shanghai University of TCM, 358 Gaoqiao Datong Road, Shanghai, 200137, China.
| |
Collapse
|
22
|
Aseervatham J. Dynamic Role of Exosome microRNAs in Cancer Cell Signaling and Their Emerging Role as Noninvasive Biomarkers. BIOLOGY 2023; 12:biology12050710. [PMID: 37237523 DOI: 10.3390/biology12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Exosomes are extracellular vesicles that originate from endosomes and are released by all cells irrespective of their origin or type. They play an important role in cell communication and can act in an autocrine, endocrine, or paracrine fashion. They are 40-150 nm in diameter and have a similar composition to the cell of origin. An exosome released by a particular cell is unique since it carries information about the state of the cell in pathological conditions such as cancer. miRNAs carried by cancer-derived exosomes play a multifaceted role by taking part in cell proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, apoptosis, and immune evasion. Depending on the type of miRNA that it carries as its cargo, it can render cells chemo- or radiosensitive or resistant and can also act as a tumor suppressor. Since the composition of exosomes is affected by the cellular state, stress, and changes in the environment, they can be used as diagnostic or prognostic biomarkers. Their unique ability to cross biological barriers makes them an excellent choice as vehicles for drug delivery. Because of their easy availability and stability, they can be used to replace cancer biopsies, which are invasive and expensive. Exosomes can also be used to follow the progression of diseases and monitor treatment strategies. A better understanding of the roles and functions of exosomal miRNA can be used to develop noninvasive, innovative, and novel treatments for cancer.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Han Q, Tan S, Gong L, Li G, Wu Q, Chen L, Du S, Li W, Liu X, Cai J, Wang Z. Omental cancer-associated fibroblast-derived exosomes with low microRNA-29c-3p promote ovarian cancer peritoneal metastasis. Cancer Sci 2023; 114:1929-1942. [PMID: 36644823 PMCID: PMC10154903 DOI: 10.1111/cas.15726] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is characterized by frequent widespread peritoneal metastasis. Cancer-associated fibroblasts (CAFs) represent a critical stromal component of metastatic niche and promote omentum metastasis in OC patients. However, the role of exosomes derived from omental CAFs in metastasis remains unclear. We isolated exosomes from primary omental normal fibroblasts (NFs) and CAFs from OC patients (NF-Exo and CAF-Exo, respectively) and assessed their effect on metastasis. In mice bearing orthotopic OC xenografts, CAF-Exo treatment led to more rapid intraperitoneal tumor dissemination and shorter animal survival. Similar results were observed in mice undergoing intraperitoneal injection of tumor cells. Among the miRNAs downregulated in CAF-Exo, miR-29c-3p in OC tissues was associated with metastasis and survival in patients. Moreover, increasing miR-29c-3p in CAF-Exo significantly weakened the metastasis-promoting effect of CAF-Exo. Based on RNA sequencing, expression assays, and luciferase assays, matrix metalloproteinase 2 (MMP2) was identified as a direct target of miR-29c-3p. These results verify the significant contribution of exosomes from omental CAFs to OC peritoneal metastasis, which could be partially due to the relief of MMP2 expression inhibition mediated by low exosomal miR-29c-3p.
Collapse
Affiliation(s)
- Qing Han
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- China Three Gorges University People's HospitalChina Three Gorges UniversityYichangChina
| | - Shuran Tan
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lanqing Gong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guoqing Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiulei Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Le Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shi Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
24
|
Tamasi V, Németh K, Csala M. Role of Extracellular Vesicles in Liver Diseases. Life (Basel) 2023; 13:life13051117. [PMID: 37240762 DOI: 10.3390/life13051117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane structures that are formed by budding from the plasma membrane or originate from the endosomal system. These microparticles (100 nm-100 µm) or nanoparticles (>100 nm) can transport complex cargos to other cells and, thus, provide communication and intercellular regulation. Various cells, such as hepatocytes, liver sinusoidal endothelial cells (LSECs) or hepatic stellate cells (HSCs), secrete and take up EVs in the healthy liver, and the amount, size and content of these vesicles are markedly altered under pathophysiological conditions. A comprehensive knowledge of the modified EV-related processes is very important, as they are of great value as biomarkers or therapeutic targets. In this review, we summarize the latest knowledge on hepatic EVs and the role they play in the homeostatic processes in the healthy liver. In addition, we discuss the characteristic changes of EVs and their potential exacerbating or ameliorating effects in certain liver diseases, such as non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease (AFLD), drug induced liver injury (DILI), autoimmune hepatitis (AIH), hepatocarcinoma (HCC) and viral hepatitis.
Collapse
Affiliation(s)
- Viola Tamasi
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Krisztina Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, 1085 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
25
|
Ginsenoside Rh2 suppresses colon cancer growth by targeting the miR-150-3p/SRCIN1/Wnt axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:633-648. [PMID: 36916297 DOI: 10.3724/abbs.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Ginsenoside Rh2, which is extracted from ginseng, exerts antitumor activity. Recent studies suggest that Rh2 may suppress the growth of colon cancer (CC) in vitro. However, the underlying mechanism remains unclear. In this study, we identified the relative levels of miR-150-3p in CC tissues and cells by a comprehensive strategy of data mining, computational biology, and real-time reverse transcription PCR (qRT-PCR) experiments. The regulatory effects of miR-150-3p/SRCIN1 on the proliferative and invasive abilities of CC cells are evaluated by CCK-8, EdU, wound healing, and transwell assays. Cell cycle- and apoptosis-related protein levels are assessed by western blot analysis. An in vivo tumor formation assay was conducted to explore the effects of miR-150-3p on tumor growth. Furthermore, bioinformatics and dual luciferase reporter assays are applied to determine the functional binding of miRNA to mRNA of the target gene. Finally, the relationship between Rh2 and miR-150-3p was further verified in SW620 and HCT-116 cells. miR-150-3p is downregulated in CC tissues and cell lines. Functional assays indicate that the upregulation of miR-150-3p inhibits tumor growth both in vivo and in vitro. In addition, SRCIN1 is upregulated in CC and predicts a poor prognosis, and it is the direct target for miR-150-3p. Moreover, the miR-150-3p mimic decreases Topflash/Fopflash-dependent luciferase activity, resulting in the inhibition of Wnt pathway activity. Rh2 can suppress the growth of CC by increasing miR-150-3p expression. Rh2 alleviates the accelerating effect on Wnt pathway activity, cell proliferation/migration, and colony formation caused by miR-150-3p inhibition. Rh2 inhibits the miR-150-3p/SRCIN1/Wnt axis to suppress colon cancer growth.
Collapse
|
26
|
Toshida K, Itoh S, Harada N, Morinaga A, Yugawa K, Tomiyama T, Kosai-Fujimoto Y, Tomino T, Kurihara T, Nagao Y, Morita K, Oda Y, Yoshizumi T. Cancer-associated fibroblasts promote tumor cell growth via miR-493-5p in intrahepatic cholangiocarcinoma. Cancer Sci 2023; 114:937-947. [PMID: 36369960 PMCID: PMC9986089 DOI: 10.1111/cas.15644] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022] Open
Abstract
The association between tumor microenvironment (TME) and cancer-associated fibroblasts (CAFs) in intrahepatic cholangiocarcinoma (ICC) progression is poorly understood. This study aimed to reveal whether specific microRNAs (miRNAs) in extracellular vesicles (EVs) derived from CAFs were involved in ICC progression. Conditioned medium (CM) and EVs in the CM of CAFs and normal fibroblasts (NFs) derived from ICC specimens were used to investigate the effects on tumor cell lines. miRNA microarray assay was used to examine the miRNAs of EVs derived from CAFs and NFs in ICC, and the effects of miR-493-5p on tumor cell lines were examined. Additionally, databases were used to identify miR-493-5p targets, and the relationship between prognosis of ICC patients and cocaine- and amphetamine-regulated transcript propeptide (CARTPT), one of the targets of miR-493-5p, expression in ICC tissues was retrospectively analyzed. Compared with NF-derived CM and EVs, CAF-derived CM and EVs promoted cell lines in proliferation, scratch, migration, and invasion assays. miRNA microarray analysis revealed that miR-493-5p was significantly increased in CAF-derived EVs compared to NF-derived EVs. Tumor cell lines transfected with miR-493-5p were promoted in proliferation and scratch assays. Immunohistochemical staining was performed on 76 ICC specimens; both overall and recurrence-free survival rates were significantly worse in the CARTPT-negative group. Univariate and multivariate analyses showed that low CARTPT expression was an independent poor prognostic factor for overall and recurrence-free survival. Overall, our data suggest that CAFs in the ICC TME suppress CARTPT in tumor cells and promote tumor cells via miR-493-5p in EVs.
Collapse
Affiliation(s)
- Katsuya Toshida
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Akinari Morinaga
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Kyohei Yugawa
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Takahiro Tomiyama
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Yukiko Kosai-Fujimoto
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Takahiro Tomino
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Takeshi Kurihara
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nagao
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Kazutoyo Morita
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
Yao M, Liang S, Cheng B. Role of exosomes in hepatocellular carcinoma and the regulation of traditional Chinese medicine. Front Pharmacol 2023; 14:1110922. [PMID: 36733504 PMCID: PMC9886889 DOI: 10.3389/fphar.2023.1110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) usually occurs on the basis of chronic liver inflammatory diseases and cirrhosis. The liver microenvironment plays a vital role in the tumor initiation and progression. Exosomes, which are nanometer-sized membrane vesicles are secreted by a number of cell types. Exosomes carry multiple proteins, DNAs and various forms of RNA, and are mediators of cell-cell communication and regulate the tumor microenvironment. In the recent decade, many studies have demonstrated that exosomes are involved in the communication between HCC cells and the stromal cells, including endothelial cells, macrophages, hepatic stellate cells and the immune cells, and serve as a regulator in the tumor proliferation and metastasis, immune evasion and immunotherapy. In addition, exosomes can also be used for the diagnosis and treatment HCC. They can potentially serve as specific biomarkers for early diagnosis and drug delivery vehicles of HCC. Chinese herbal medicine, which is widely used in the prevention and treatment of HCC in China, may regulate the release of exosomes and exosomes-mediated intercellular communication. In this review, we summarized the latest progresses on the role of the exosomes in the initiation, progression and treatment of HCC and the potential value of Traditional Chinese medicine in exosomes-mediated biological behaviors of HCC.
Collapse
Affiliation(s)
- Man Yao
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China,Faculty of Traditional Chinese Medicine, Naval Medical University (The Second Military Medical University), Shanghai, China,*Correspondence: Binbin Cheng,
| |
Collapse
|
28
|
Liu J, Liu M, Xiong F, Xu K, Pu Y, Huang J, Zhang J, Yin L, Pu Y, Sun R. Effects of glyphosate exposure on the miRNA expression profile and construction of the miRNA-mRNA regulatory network in mouse bone marrow cells. Funct Integr Genomics 2022; 23:22. [PMID: 36572786 DOI: 10.1007/s10142-022-00939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Jinyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China.
| |
Collapse
|
29
|
Muñoz-Hernández R, Rojas Á, Gato S, Gallego J, Gil-Gómez A, Castro MJ, Ampuero J, Romero-Gómez M. Extracellular Vesicles as Biomarkers in Liver Disease. Int J Mol Sci 2022; 23:ijms232416217. [PMID: 36555854 PMCID: PMC9786586 DOI: 10.3390/ijms232416217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-derived vesicles released by a variety of cell types, including hepatocytes, hepatic stellate cells, and immune cells in normal and pathological conditions. Depending on their biogenesis, there is a complex repertoire of EVs that differ in size and origin. EVs can carry lipids, proteins, coding and non-coding RNAs, and mitochondrial DNA causing alterations to the recipient cells, functioning as intercellular mediators of cell-cell communication (auto-, para-, juxta-, or even endocrine). Nevertheless, many questions remain unanswered in relation to the function of EVs under physiological and pathological conditions. The development and optimization of methods for EV isolation are crucial for characterizing their biological functions, as well as their potential as a treatment option in the clinic. In this manuscript, we will comprehensively review the results from different studies that investigated the role of hepatic EVs during liver diseases, including non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcoholic liver disease, fibrosis, and hepatocellular carcinoma. In general, the identification of patients with early-stage liver disease leads to better therapeutic interventions and optimal management. Although more light needs to be shed on the mechanisms of EVs, their use for early diagnosis, follow-up, and prognosis has come into the focus of research as a high-potential source of 'liquid biopsies', since they can be found in almost all biological fluids. The use of EVs as new targets or nanovectors in drug delivery systems for liver disease therapy is also summarized.
Collapse
Affiliation(s)
- Rocío Muñoz-Hernández
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.-H.); (M.R.-G.)
| | - Ángela Rojas
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sheila Gato
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Gallego
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Antonio Gil-Gómez
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María José Castro
- Servicio de Citometría y Separación Celular, Instituto de Biomedicina de Sevilla Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Javier Ampuero
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
- UCM Digestive Diseases, Virgen del Rocío University Hospital, 41013 Seville, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
- UCM Digestive Diseases, Virgen del Rocío University Hospital, 41013 Seville, Spain
- Correspondence: (R.M.-H.); (M.R.-G.)
| |
Collapse
|
30
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
31
|
Wang G, Luo G, Zhao M, Miao H. Significance of exosomes in hepatocellular carcinoma. Front Oncol 2022; 12:1056379. [PMID: 36531059 PMCID: PMC9748478 DOI: 10.3389/fonc.2022.1056379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Among the most prevalent cancers in the world, hepatocellular carcinoma (HCC) has a high mortality rate. The diagnosis and management of HCC are presently hindered by difficulties in early detection and suboptimal treatment outcomes. Exosomes have been shown to play an important role in hepatocarcinogenesis and can also be used for diagnosis and treatment. In this review, we discussed the research progress on exosomes in hepatocarcinogenesis development, tumor microenvironment remodeling, treatment resistance, and immunosuppression. HCC can be diagnosed and treated by understanding the pathogenesis and identifying early diagnostic markers. This review will be a significant reference for scholars with an initial understanding of the field to fully understand the role of exosomes in the organism.
Collapse
Affiliation(s)
- GuoYun Wang
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
| | - GaiXiang Luo
- The First Clinical Medical College of Lanzhou University, Gansu Provincial People’s Hospital, Lanzhou, China
| | - MeiJing Zhao
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
| | - HuiLai Miao
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Liver Injury Diagnosis and Repair, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
32
|
Naito Y, Yoshioka Y, Ochiya T. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via extracellular vesicles. Cancer Cell Int 2022; 22:367. [PMID: 36424598 PMCID: PMC9686122 DOI: 10.1186/s12935-022-02784-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication plays an important role in cancer initiation and progression through direct contact and indirect interactions, such as via secretory molecules. Cancer-associated fibroblasts (CAFs) are one of the principal components of such communication with cancer cells, modulating cancer metastasis and tumour mechanics and influencing angiogenesis, the immune system, and therapeutic resistance. Over the past few years, there has been a significant increase in research on extracellular vesicles (EVs) as regulatory agents in intercellular communication. EVs enable the transfer of functional molecules, including proteins, mRNAs and microRNAs (miRNAs), to recipient cells. Cancer cells utilize EVs to dictate the specific characteristics of CAFs within the tumour microenvironment, thereby promoting cancer progression. In response to such "education" by cancer cells, CAFs contribute to cancer progression via EVs. In this review, we summarize experimental data indicating the pivotal roles of EVs in intercellular communication between cancer cells and CAFs.
Collapse
Affiliation(s)
- Yutaka Naito
- grid.410821.e0000 0001 2173 8328Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, 113-8602 Japan
| | - Yusuke Yoshioka
- grid.410793.80000 0001 0663 3325Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023 Japan
| | - Takahiro Ochiya
- grid.410793.80000 0001 0663 3325Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023 Japan
| |
Collapse
|
33
|
Wang Y, Liang H, Zheng J. Exosomal microRNAs mediating crosstalk between cancer cells and cancer-associated fibroblasts in the tumor microenvironment. Pathol Res Pract 2022; 239:154159. [DOI: 10.1016/j.prp.2022.154159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
|
34
|
Pan Z, Xu T, Bao L, Hu X, Jin T, Chen J, Chen J, Qian Y, Lu X, Li L, Zheng G, Zhang Y, Zou X, Song F, Zheng C, Jiang L, Wang J, Tan Z, Huang P, Ge M. CREB3L1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by remodeling the tumor microenvironment. Mol Cancer 2022; 21:190. [PMID: 36192735 PMCID: PMC9531463 DOI: 10.1186/s12943-022-01658-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is an extremely malignant type of endocrine cancer frequently accompanied by extrathyroidal extension or metastasis through mechanisms that remain elusive. We screened for the CREB3 transcription-factor family in a large cohort, consisting of four microarray datasets. This revealed that CREB3L1 was specifically up regulated in ATC tissues and negatively associated with overall survival of patients with thyroid cancer. Consistently, high expression of CREB3L1 was negatively correlated with progression-free survival in an independent cohort. CREB3L1 knockdown dramatically attenuated invasion of ATC cells, whereas overexpression of CREB3L1 facilitated the invasion of papillary thyroid carcinoma (PTC) cells. Loss of CREB3L1 inhibited metastasis and tumor growth of ATC xenografts in zebrafish and nude mouse model. Single-cell RNA-sequencing analysis revealed that CREB3L1 expression gradually increased during the neoplastic progression of a thyroid follicular epithelial cell to an ATC cell, accompanied by the activation of the extracellular matrix (ECM) signaling. CREB3L1 knockdown significantly decreased the expression of collagen subtypes in ATC cells and the fibrillar collagen in xenografts. Due to the loss of CREB3L1, ATC cells were unable to activate alpha-smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs). After CREB3L1 knockdown, the presence of CAFs inhibited the growth of ATC spheroids and the metastasis of ATC cells. Further cytokine array screening showed that ATC cells activated α-SMA-positive CAFs through CREB3L1-mediated IL-1α production. Moreover, KPNA2 mediated the nuclear translocation of CREB3L1, thus allowing it to activate downstream ECM signaling. These results demonstrate that CREB3L1 maintains the CAF-like property of ATC cells by activating the ECM signaling, which remodels the tumor stromal microenvironment and drives the malignancy of ATC.
Collapse
Affiliation(s)
- Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lisha Bao
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Tiefeng Jin
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jianqiang Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yangyang Qian
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xixuan Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lu Li
- Department of Clinical Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Guowan Zheng
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chuanming Zheng
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Liehao Jiang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jiafeng Wang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhuo Tan
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China. .,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China. .,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China. .,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
35
|
Tomiyama T, Shimokawa M, Harada N, Toshida K, Morinaga A, Kosai-Fujimoto Y, Tomino T, Kurihara T, Nagao Y, Toshima T, Morita K, Itoh S, Yoshizumi T. Low syntaxin 17 expression in donor liver is associated with poor graft prognosis in recipients of living donor liver transplantation. Hepatol Res 2022; 52:872-881. [PMID: 35792062 DOI: 10.1111/hepr.13809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023]
Abstract
AIM Liver transplantation (LT) is the only curative therapy for decompensated liver cirrhosis. For recipients of living donor LT (LDLT), restoration of liver function after transplantation is highly dependent on liver regenerative capacity, which requires large amounts of intracellular energy. Mitochondrial metabolism provides a stable supply of adenosine 5'-triphosphate (ATP) for liver regeneration. Mitophagy is a selective process in which damaged, non-functional mitochondria are degraded and replaced with new functional mitochondria. We investigated the relationship between expression of Syntaxin17 (STX17), a key protein in mitophagy regulation, in donor livers and graft survival. METHODS We examined STX17 expression in grafts from 143 LDLT donors who underwent right lobe resection and investigated the relationship between STX17 expression and graft function. We investigated the correlations among STX17 expression, mitochondrial membrane potential and cell proliferation, using a STX17-knockdown hepatocyte cell line. RESULTS Recipients transplanted with low STX17-expression grafts had significantly lower graft survival rates than recipients transplanted with high STX17-expression grafts (88.9% vs. 100%, p < 0.01). Multivariate analysis showed that low STX17 expression (HR: 10.7, CI: 1.29-88.0, p < 0.05) and the absence of splenectomy (HR: 6.27, CI: 1.59-24.8, p < 0.01) were independent predictive factors for small-for-size graft syndrome, which is the severe complication in LDLT. In the vitro experiments, the percentage of depolarized damaged mitochondria was increased in the STX17-knockdown hepatocyte cell line, suggesting decreased mitophagy and ATP synthesis. Cell proliferation was significantly decreased in the STX17-knockdown hepatocyte cell line. CONCLUSION STX17 contributes to mitophagy and maintenance of mitochondrial function in hepatocytes and may be a predictor of graft dysfunction in LDLT patients.
Collapse
Affiliation(s)
- Takahiro Tomiyama
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shimokawa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noboru Harada
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Toshida
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinari Morinaga
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Kosai-Fujimoto
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Tomino
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Kurihara
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nagao
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Toshima
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoyo Morita
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Zhang C, Sun C, Zhao Y, Wang Q, Guo J, Ye B, Yu G. Overview of MicroRNAs as Diagnostic and Prognostic Biomarkers for High-Incidence Cancers in 2021. Int J Mol Sci 2022; 23:ijms231911389. [PMID: 36232692 PMCID: PMC9570028 DOI: 10.3390/ijms231911389] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) about 22 nucleotides in size, which play an important role in gene regulation and are involved in almost all major cellular physiological processes. In recent years, the abnormal expression of miRNAs has been shown to be associated with human diseases including cancer. In the past ten years, the link between miRNAs and various cancers has been extensively studied, and the abnormal expression of miRNAs has been reported in various malignant tumors, such as lung cancer, gastric cancer, colorectal cancer, liver cancer, breast cancer, and prostate cancer. Due to the high malignancy grade of these cancers, it is more necessary to develop the related diagnostic and prognostic methods. According to the study of miRNAs, many potential cancer biomarkers have been proposed for the diagnosis and prognosis of diseases, especially cancer, thus providing a new theoretical basis and perspective for cancer screening. The use of miRNAs as biomarkers for diagnosis or prognosis of cancer has the advantages of being less invasive to patients, with better accuracy and lower price. In view of the important clinical significance of miRNAs in human cancer research, this article reviewed the research status of miRNAs in the above-mentioned cancers in 2021, especially in terms of diagnosis and prognosis, and provided some new perspectives and theoretical basis for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
| | - Caifang Sun
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
| | - Jianlin Guo
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (G.Y.)
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (G.Y.)
| |
Collapse
|
37
|
Wang H, Shi F, Zheng S, Zhao M, Pan Z, Xiong L, Zheng L. Feasibility of hepatocellular carcinoma treatment based on the tumor microenvironment. Front Oncol 2022; 12:896662. [PMID: 36176401 PMCID: PMC9513472 DOI: 10.3389/fonc.2022.896662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of liver cancer is extremely high worldwide and poses a serious threat to human life and health. But at present, apart from radiotherapy, chemotherapy, liver transplantation, and early resection, sorafenib was the main systemic therapy proven to have clinical efficacy for unresectable liver cancer (HCC) until 2017. Despite the emerging immunotherapy in the past decade with immune inhibitors such as PD - 1 being approved and applied to clinical treatment, there are still some patients with no response. This review aims to elucidate the mechanisms underlying the tumor microenvironment of hepatocellular carcinoma and thus analyze the effectiveness of targeting the tumor microenvironment to improve the therapeutic efficacy of hepatocellular carcinoma, including the effectiveness and feasibility of immunotherapy, tumor oncolytic viruses and anti-vascular proliferation therapy.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Lihong Zheng,
| |
Collapse
|
38
|
Zhou Y, Liu F, Ma C, Cheng Q. Involvement of microRNAs and their potential diagnostic, therapeutic, and prognostic role in hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24673. [PMID: 36036748 PMCID: PMC9551129 DOI: 10.1002/jcla.24673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) accounts for 85%-90% of primary liver cancer. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting the 3'UTR of mRNA. Abnormal expression and regulation of miRNAs are involved in the occurrence and progression of HCC, and miRNAs can also play a role in the diagnosis and treatment of HCC as oncogenes or tumor suppressors. METHODS In the past decades, a large number of studies have shown that miRNAs play an essential regulatory role in HCC and have potential as biomarkers for HCC. We reviewed the literature to summarize these studies. RESULTS By reviewing the literature, we retrospected the roles of miRNAs in the development, diagnosis, treatment, and prognosis of HCC, and put forward prospects for the further research on miRNAs in the precision treatment of HCC. CONCLUSION MicroRNAs are important regulators and biomarkers in the occurrence, progression, outcome, and treatment of HCC, and can provide new targets and strategies for improving the therapeutic effect of HCC.
Collapse
Affiliation(s)
- Yilong Zhou
- Department of Surgery, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Fan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chunyang Ma
- Department of Surgery, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
39
|
Dios-Barbeito S, González R, Cadenas M, García LF, Victor VM, Padillo FJ, Muntané J. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide 2022; 128:1-11. [DOI: 10.1016/j.niox.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
|
40
|
Guan MC, Wang MD, Wang WY, Li C, Yao LQ, Zhu H, Yang T. Exosomes as mediators of tumor immune escape and immunotherapy in hepatocellular carcinoma. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Yang S, Wang J, Wang S, Zhou A, Zhao G, Li P. Roles of small extracellular vesicles in the development, diagnosis and possible treatment strategies for hepatocellular carcinoma (Review). Int J Oncol 2022; 61:91. [PMID: 35674180 PMCID: PMC9262158 DOI: 10.3892/ijo.2022.5381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy of hepatocytes accounting for 75-85% of primary hepatic carcinoma cases. Small extracellular vesicles (sEVs), previously known as exosomes with a diameter of 30-200 nm, can transport a variety of biological molecules between cells, and have been proposed to function in physiological and pathological processes. Recent studies have indicated that the cargos of sEVs are implicated in intercellular crosstalk among HCC cells, paratumor cells and the tumor microenvironment. sEV-encapsulated substances (including DNA, RNA, proteins and lipids) regulate signal transduction pathways in recipient cells and contribute to cancer initiation and progression in HCC. In addition, the differential expression of sEV cargos between patients facilitates the potential utility of sEVs in the diagnosis and prognosis of patients with HCC. Furthermore, the intrinsic properties of low immunogenicity and high stability render sEVs ideal vehicles for targeted drug delivery in the treatment of HCC. The present review article summarizes the carcinogenic and anti-neoplastic capacities of sEVs and discusses the potential and prospective diagnostic and therapeutic applications of sEVs in HCC.
Collapse
Affiliation(s)
- Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jiaxin Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Shidong Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
42
|
Nie G, Lian N, Peng D, Lu J, Li B. Prognostic Value of Exosomal Noncoding RNA in Hepatocellular Carcinoma: A Meta-analysis. Carcinogenesis 2022; 43:754-765. [PMID: 35904534 DOI: 10.1093/carcin/bgac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
High morbidity, recurrence and mortality make hepatocellular carcinoma (HCC) a leading cause of cancer-related burden and deaths. The lack of prognostic evaluation methods weakened the therapeutic efficacy for HCC. Exosomal noncoding RNAs (ncRNAs) play a key role in cancer development. Our meta-analysis aimed to assess the prognostic value of exosome-transferred noncoding RNAs in predicting the outcomes of patients with HCC. We obtained 16 articles from PubMed, Web of Science, Scopus and EMBASE up to 4 November 2021. The ncRNAs were divided into three parts:microRNAs (miRNA), long noncoding RNAs (lncRNA) and circular RNAs (circRNA). In the pooled hazard ratios (HRs), upregulated miRNAs were 3.06 (95% CI = 2.51-3.73), downregulated miRNAs were 3.28 (95% CI = 2.61-4.11), lncRNAs were 3.34 (95% CI = 1.87-5.96), and circRNAs were 1.76 (95% CI = 1.36-2.14). As the results of subgroup analysis, upregulated miRNAs had a pooled HR of 3.10 (95% CI = 1.66-5.81), and the HR of downregulated miRNAs was 3.04 (95% CI = 2.17-4.28) for multivariate analysis of overall survival (OS). Meanwhile, upregulated miRNAs had a pooled HR of 2.61 (95% CI = 1.89-3.60), and the HR of downregulated miRNAs was 3.77 (95% CI = 1.11-12.73) for multivariate analysis of other endpoints. Remarkably, miR-21 has a pooled HR of 2.48 (95%CI = 1.52-4.05, I 2 = 0) for disease-free survival (DFS). In conclusion, the expression of exosomal noncoding RNAs can be used to evaluate the prognosis of patients with HCC. Exosome-transferred miR-21 might serve as a potential prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Guilin Nie
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Nan Lian
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Dingzhong Peng
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jiong Lu
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Di Vito Nolfi M, Zazzeroni F, Alesse E, Tessitore A. Role of exosomal microRNAs in cancer therapy and drug resistance mechanisms: focus on hepatocellular carcinoma. Front Oncol 2022; 12:940056. [PMID: 35912267 PMCID: PMC9334682 DOI: 10.3389/fonc.2022.940056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), defined as intercellular messengers that carry their cargos between cells, are involved in several physiological and pathological processes. These small membranous vesicles are released by most cells and contain biological molecules, including nucleic acids, proteins and lipids, which can modulate signaling pathways of nearby or distant recipient cells. Exosomes, one the most characterized classes of EVs, include, among others, microRNAs (miRNAs), small non-coding RNAs able to regulate the expression of several genes at post-transcriptional level. In cancer, exosomal miRNAs have been shown to influence tumor behavior and reshape tumor microenvironment. Furthermore, their possible involvement in drug resistance mechanisms has become evident in recent years. Hepatocellular carcinoma (HCC) is the major type of liver cancer, accounting for 75-85% of all liver tumors. Although the improvement in HCC treatment approaches, low therapeutic efficacy in patients with intermediate-advanced HCC is mainly related to the development of tumor metastases, high risk of recurrence and drug resistance. Exosomes have been shown to be involved in pathogenesis and progression of HCC, as well as in drug resistance, by regulating processes such as cell proliferation, epithelial-mesenchymal transition and immune response. Herein, we summarize the current knowledge about the involvement of exosomal miRNAs in HCC therapy, highlighting their role as modulators of therapeutic response, particularly chemotherapy and immunotherapy, as well as possible therapeutic tools.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Alessandra Tessitore,
| |
Collapse
|
44
|
Exosome-Mediated Immunosuppression in Tumor Microenvironments. Cells 2022; 11:cells11121946. [PMID: 35741075 PMCID: PMC9221707 DOI: 10.3390/cells11121946] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membranous structures secreted by nearly all cell types. As critical messengers for intercellular communication, exosomes deliver bioactive cargoes to recipient cells and are involved in multiple physiopathological processes, including immunoregulation. Our pioneering study revealed that cancer cells release programmed death-ligand 1-positive exosomes into the circulation to counter antitumor immunity systemically via T cells. Tumor cell-derived exosomes (TDEs) also play an immunosuppressive role in other immunocytes, including dendritic cells (DCs), macrophages, natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs). Moreover, exosomes secreted by nontumor cells in the tumor microenvironments (TMEs) also exert immunosuppressive effects. This review systematically provides a summary of the immunosuppression induced by exosomes in tumor microenvironments, which modulates tumor growth, invasion, metastasis, and immunotherapeutic resistance. Additionally, therapeutic strategies targeting the molecular mechanism of exosome-mediated tumor development, which may help overcome several obstacles, such as immune tolerance in oncotherapy, are also discussed. Detailed knowledge of the specific functions of exosomes in antitumor immunity may contribute to the development of innovative treatments.
Collapse
|
45
|
Wang J, Wang X, Zhang X, Shao T, Luo Y, Wang W, Han Y. Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Front Oncol 2022; 12:884369. [PMID: 35692794 PMCID: PMC9175035 DOI: 10.3389/fonc.2022.884369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs. Although EVs show great potential for the treatment of HCC and their role in HCC progression has been extensively studied, there are still many challenges such as time-consuming extraction, difficult storage, easy contamination, and low drug loading rate. We focus on the biogenesis, morphological characteristics, isolation and extraction of EVs and their significance in the progression of HCC, tumor invasion, immune escape and cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of HCC and new targets for tumor-targeted therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoya Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xintong Zhang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Tingting Shao
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yanmei Luo
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
46
|
Luo H, Ye G, Liu Y, Huang D, Luo Q, Chen W, Qi Z. miR-150-3p enhances neuroprotective effects of neural stem cell exosomes after hypoxic-ischemic brain injury by targeting CASP2. Neurosci Lett 2022; 779:136635. [DOI: 10.1016/j.neulet.2022.136635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022]
|
47
|
Yao M, Yang JL, Wang DF, Wang L, Chen Y, Yao DF. Encouraging specific biomarkers-based therapeutic strategies for hepatocellular carcinoma. World J Clin Cases 2022; 10:3321-3333. [PMID: 35611205 PMCID: PMC9048543 DOI: 10.12998/wjcc.v10.i11.3321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The prevention, early discovery and effective treatment of patients with hepatocellular carcinoma (HCC) remain a global medical challenge. At present, HCC is still mainly treated by surgery, supplemented by vascular embolization, radio frequency, radiotherapy, chemotherapy and biotherapy. The application of multikinase inhibitor sorafenib, chimeric antigen receptor T cells, or PD-1/PD-L1 inhibitors can prolong the median survival of HCC patients. However, the treatment efficacy is still unsatisfactory due to HCC metastasis and postoperative recurrence. During the process of hepatocyte malignant transformation, HCC tissues can express and secrete many types of specific biomarkers, or oncogenic antigen molecules into blood, for example, alpha-fetoprotein, glypican-3, Wnt3a (one of the key signaling molecules in the Wnt/β-catenin pathway), insulin-like growth factor (IGF)-II or IGF-I receptor, vascular endothelial growth factor, secretory clusterin and so on. In addition, combining immunotherapy with non-coding RNAs might improve anti-cancer efficacy. These biomarkers not only contribute to HCC diagnosis or prognosis, but may also become molecular targets for HCC therapy under developing or clinical trials. This article reviews the progress in emerging biomarkers in basic research or clinical trials for HCC immunotherapy.
Collapse
Affiliation(s)
- Min Yao
- Research Center of Clinical Medicine & Department of Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jun-Ling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - De-Feng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ying Chen
- Department of Oncology, Affiliated Second Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
48
|
Peng L, Wang D, Han Y, Huang T, He X, Wang J, Ou C. Emerging Role of Cancer-Associated Fibroblasts-Derived Exosomes in Tumorigenesis. Front Immunol 2022; 12:795372. [PMID: 35058933 PMCID: PMC8764452 DOI: 10.3389/fimmu.2021.795372] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most important component of the stromal cell population in the tumor microenvironment and play an irreplaceable role in oncogenesis and cancer progression. Exosomes, a class of small extracellular vesicles, can transfer biological information (e.g., proteins, nucleic acids, and metabolites as messengers) from secreting cells to target recipient cells, thereby affecting the progression of human diseases, including cancers. Recent studies revealed that CAF-derived exosomes play a crucial part in tumorigenesis, tumor cell proliferation, metastasis, drug resistance, and the immune response. Moreover, aberrant expression of CAF-derived exosomal noncoding RNAs and proteins strongly correlates with clinical pathological characterizations of cancer patients. Gaining deeper insight into the participation of CAF-derived exosomes in tumorigenesis may lead to novel diagnostic biomarkers and therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun He
- Department of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, School of Basic Medicine, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Zhou Y, Tang W, Zhuo H, Zhu D, Rong D, Sun J, Song J. Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/ nuclear factor -kappa B (NF-κB) pathway. Bioengineered 2022; 13:4786-4797. [PMID: 35139763 PMCID: PMC8973934 DOI: 10.1080/21655979.2022.2032972] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chemoresistance in hepatocellular carcinoma (HCC) has been found to be influenced by exosomal transport of circRNAs. However, the role of circZFR in HCC chemoresistance still remains unclear. In the present study, circZFR was highly expressed in cisplatin (DDP)-resistant HCC cell lines and could regulate DDP resistance of the HCC cells. Also, circZFR was highly expressed in cancer-associated fibroblast (CAFs) and the exosome of CAFs. In addition, supplementation of CAFs in culture medium could promote DDP resistance of HCC cells. In vivo tumor xenograft experiments showed that knockdown of circZFR inhibited tumor growth and weakened DDP resistance, while CAFs-derived exosomes incubation increased the expression of circZFR, inhibited the STAT3/NF-κB pathway, promoted tumor growth, and enhanced DDP resistance. In general, CAFs-derived exosomes deliver circZFR to HCC cells, inhibit the STAT3/NF-κB pathway, and promote HCC development and chemoresistance. The results provided a new sight for the prevention and treatment of chemoresistance in HCC.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Ultrasonography, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Nhc Key Laboratory of Living Donor Liver Transplantation, Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Han Zhuo
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Nhc Key Laboratory of Living Donor Liver Transplantation, Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Deming Zhu
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Nhc Key Laboratory of Living Donor Liver Transplantation, Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Nhc Key Laboratory of Living Donor Liver Transplantation, Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhua Song
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Nhc Key Laboratory of Living Donor Liver Transplantation, Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Cucarull B, Tutusaus A, Rider P, Hernáez-Alsina T, Cuño C, García de Frutos P, Colell A, Marí M, Morales A. Hepatocellular Carcinoma: Molecular Pathogenesis and Therapeutic Advances. Cancers (Basel) 2022; 14:cancers14030621. [PMID: 35158892 PMCID: PMC8833604 DOI: 10.3390/cancers14030621] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, continues to be a serious medical problem with poor prognosis, without major therapeutic improvement for years and increasing incidence. Fortunately, advances in systemic treatment options are finally arriving for HCC patients. After a decade of sorafenib as a standard therapy for advanced HCC, several tyrosine kinase inhibitors (TKIs), antiangiogenic antibodies, and immune checkpoint inhibitors have reached the clinic. Although infections by hepatitis B virus and hepatitis C virus remain principal factors for HCC development, the rise of non- alcoholic steatohepatitis from diabetes mellitus or metabolic syndrome is impeding HCC decline. Knowledge of specific molecular mechanisms, based on the etiology and the HCC microenvironment that influence tumor growth and immune control, will be crucial for physician decision-making among a variety of drugs to prescribe. In addition, markers of treatment efficacy are needed to speed the movement of patients towards other potentially effective treatments. Consequently, research to provide scientific data for the evidence-based management of liver cancer is guaranteed in the coming years and discussed here.
Collapse
Affiliation(s)
- Blanca Cucarull
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | | | - Carlos Cuño
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Unidad Asociada (IMIM), IIBB-CSIC, CIBERCV, IDIBAPS, 08036 Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08036 Barcelona, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Correspondence: (M.M.); (A.M.); Tel.: +34-932558314 (M.M. & A.M.)
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); Tel.: +34-932558314 (M.M. & A.M.)
| |
Collapse
|