1
|
Portillo EGD, Olivares-Hernández A, Gudino LC, Félix LC, Hernández LB, Domínguez LP, Jiménez DL, Sarmiento RG, Morillo EDB, Sánchez EF, Miramontes-Gonzáleze JP. Evaluation of the effect of metformin as a radiosensitiser in solid tumours: A systematic review. Clin Transl Radiat Oncol 2025; 52:100930. [PMID: 40028423 PMCID: PMC11871473 DOI: 10.1016/j.ctro.2025.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Background Metformin is an antidiabetic drug that has shown its benefit in increasing the effect of radiotherapy in the treatment of solid tumors in preclinical studies. The objective of this systematic review is to study the effect of metformin as a radiosensitizer in studies carried out in clinical practice. Methods Systematic review carried out according to PRISMA criteria of clinical trials, systematic reviews and observational studies focused on the influence of metformin as a radiosensitizer in solid tumors. The studies were published between the years 2010 and 2022. The results of the studies have been analyzed in terms of survival (OS, PFS, DFS, DMFS) and response (ORR) between patients treated with metformin and without it. Results A total of 16 studies have been found in the literature (the most frequent tumor was prostate cancer, 5 studies). External radiotherapy was administered in all the studies and in two of them to greater brachytherapy. The use of metformin with radiotherapy showed a consistent benefit in terms of survival and response in tumors of prostate, hepatic and gynecological origin. The benefit in the rest of the tumors analyzed (lung, rectal, and head and neck cancer) is doubtful, and the results are contradictory. The greatest benefits were observed in prostate tumors both in OS and SLE. Conclusions The use of metformin in combination with radiotherapy in solid tumors is one of the most promising treatments under development in oncology. The benefit observed in real-life studies makes it necessary to develop clinical trials that specifically evaluate its use in clinical practice in the future.
Collapse
Affiliation(s)
| | - Alejandro Olivares-Hernández
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Department of Medical Oncology, University Hospital of Salamanca, Salamanca, Spain
| | - Luis Corral Gudino
- Internal Medicine Unit, Río Hortega Hospital, Valladolid, Spain
- Medicine Department, University of Valladolid Medical School, Spain
| | - Laura Corvo Félix
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Department of Medical Oncology, University Hospital of Salamanca, Salamanca, Spain
| | - Lorena Bellido Hernández
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Department of Medical Oncology, University Hospital of Salamanca, Salamanca, Spain
- Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Luis Posado Domínguez
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Department of Medical Oncology, University Hospital of Salamanca, Salamanca, Spain
| | | | - Rogelio González Sarmiento
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Internal Medicine Unit, Río Hortega Hospital, Valladolid, Spain
| | - Edel del Barco Morillo
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Department of Medical Oncology, University Hospital of Salamanca, Salamanca, Spain
- Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Emilio Fonseca Sánchez
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Department of Medical Oncology, University Hospital of Salamanca, Salamanca, Spain
- Internal Medicine Unit, Río Hortega Hospital, Valladolid, Spain
| | - José Pablo Miramontes-Gonzáleze
- Internal Medicine Unit, Río Hortega Hospital, Valladolid, Spain
- Medicine Department, University of Valladolid Medical School, Spain
| |
Collapse
|
2
|
Fok M, Hill R, Fowler H, Clifford R, Kler A, Uzzi-Daniel J, Rocha S, Grundy G, Parsons J, Vimalachandran D. Enhancing radiotherapy outcomes in rectal cancer: A systematic review of targeting hypoxia-induced radioresistance. Clin Transl Radiat Oncol 2024; 44:100695. [PMID: 37961749 PMCID: PMC10637894 DOI: 10.1016/j.ctro.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Introduction Neoadjuvant radiotherapy is successfully used in rectal cancer to improve overall survival. However, treatment response is both unpredictable and variable. There is strong evidence to show that the phenomenon of tumour hypoxia is associated with radioresistance, however the mechanism(s) behind this are poorly understood. Consequently, there have only been a small number of studies evaluating methods targeting hypoxia-induced radioresistance. The purpose of this systematic review is to evaluate the potential effectiveness of targeting hypoxia-induced radioresistance in rectal cancer and provide recommendations for future research in this area. Methods A comprehensive literature search was performed following the PRISMA guidelines. This study was registered on the Prospero database (CRD42023441983). Results Eight articles met the inclusion criteria. All studies identified were in vitro or in vivo studies, there were no clinical trials. Of the 8 studies identified, 5 assessed the efficacy of drugs which directly or indirectly targeted hypoxia and three that identified potential targets. There was conflicting in vivo evidence for the use of metformin to overcome hypoxia induced radioresistance. Vorinostat, atovaquone, and evofosfamide showed promising preclinical evidence that they can overcome hypoxia-induced radioresistance. Discussion The importance of investigating hypoxia-induced radioresistance in rectal cancer is crucial. However, to date, only a small number of preclinical studies exist evaluating this phenomenon. This systematic review highlights the importance of further research to fully understand the mechanism behind this radioresistance. There are promising targets identified in this systematic review however, substantially more pre-clinical and clinical research as a priority for future research is needed.
Collapse
Affiliation(s)
- Matthew Fok
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Rhianna Hill
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Hayley Fowler
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Rachael Clifford
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Aaron Kler
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Jayanma Uzzi-Daniel
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Sonia Rocha
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Gabrielle Grundy
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Jason Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | - Dale Vimalachandran
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
- Countess of Chester Hospital, Colorectal Surgery Department, Chester, UK
| |
Collapse
|
3
|
Cheki M, Mostafaei S, Hanafi MG, Farasat M, Talaiezadeh A, Ghasemi MS, Modava M, Abdollahi H. Radioproteomics modeling of metformin-enhanced radiosensitivity: an animal study. Jpn J Radiol 2023; 41:1265-1274. [PMID: 37204669 DOI: 10.1007/s11604-023-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE Metformin is considered as radiation modulator in both tumors and healthy tissues. Radiomics has the potential to decode biological mechanisms of radiotherapy response. The aim of this study was to apply radiomics analysis in metformin-induced radiosensitivity and finding radioproteomics associations of computed tomography (CT) imaging features and proteins involved in metformin radiosensitivity signaling pathways. MATERIALS AND METHODS A total of 32 female BALB/c mice were used in this study and were subjected to injection of breast cancer cells. When tumors reached a mean volume of 150 mm3, mice were randomly divided into the four groups including Control, Metformin, Radiation, and Radiation + Metformin. Western blot analysis was performed after treatment to measure expression of proteins including AMPK-alpha, phospho-AMPK-alpha (Thr172), mTOR, phospho-mTOR (Ser2448), phospho-4EBP1 (Thr37/46), phospho-ACC (Ser79), and β-actin. CT imaging was performed before treatment and at the end of treatment in all groups. Radiomics features extracted from segmented tumors were selected using Elastic-net regression and were assessed in terms of correlation with expression of the proteins. RESULTS It was observed that proteins including phospho-mTOR, phospho-4EBP1, and mTOR had positive correlations with changes in tumor volumes in days 28, 24, 20, 16, and 12, while tumor volume changes at these days had negative correlations with AMPK-alpha, phospho-AMPK-alpha, and phospho-ACC proteins. Furthermore, median feature had a positive correlation with AMPK-alpha, phospho-ACC, and phospho-AMPK-alpha proteins. Also, Cluster shade feature had positive correlations with mTOR and p-mTOR. On the other hand, LGLZE feature had negative correlations with AMPK-alpha and phospho-AMPK-alpha. CONCLUSION Radiomics features can decode proteins that involved in response to metformin and radiation, although further studies are warranted to investigate the optimal way to integrate radiomics into biological experiments.
Collapse
Affiliation(s)
- Mohsen Cheki
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shayan Mostafaei
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Maryam Farasat
- Department of Radiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Mohammad Modava
- Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Abdollahi
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Winters TA, Cassatt DR, Harrison-Peters JR, Hollingsworth BA, Rios CI, Satyamitra MM, Taliaferro LP, DiCarlo AL. Considerations of Medical Preparedness to Assess and Treat Various Populations During a Radiation Public Health Emergency. Radiat Res 2023; 199:301-318. [PMID: 36656560 PMCID: PMC10120400 DOI: 10.1667/rade-22-00148.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
During a radiological or nuclear public health emergency, given the heterogeneity of civilian populations, it is incumbent on medical response planners to understand and prepare for a potentially high degree of interindividual variability in the biological effects of radiation exposure. A part of advanced planning should include a comprehensive approach, in which the range of possible human responses in relation to the type of radiation expected from an incident has been thoughtfully considered. Although there are several reports addressing the radiation response for special populations (as compared to the standard 18-45-year-old male), the current review surveys published literature to assess the level of consideration given to differences in acute radiation responses in certain sub-groups. The authors attempt to bring clarity to the complex nature of human biology in the context of radiation to facilitate a path forward for radiation medical countermeasure (MCM) development that may be appropriate and effective in special populations. Consequently, the focus is on the medical (as opposed to logistical) aspects of preparedness and response. Populations identified for consideration include obstetric, pediatric, geriatric, males, females, individuals of different race/ethnicity, and people with comorbidities. Relevant animal models, biomarkers of radiation injury, and MCMs are highlighted, in addition to underscoring gaps in knowledge and the need for consistent and early inclusion of these populations in research. The inclusion of special populations in preclinical and clinical studies is essential to address shortcomings and is an important consideration for radiation public health emergency response planning. Pursuing this goal will benefit the population at large by considering those at greatest risk of health consequences after a radiological or nuclear mass casualty incident.
Collapse
Affiliation(s)
- Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Jenna R. Harrison-Peters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|