1
|
Wu Z, Lu J, Loo A, Ho N, Nguyen D, Cheng PY, Mohammed AI, Cirillo N. Role of CD44 in Chemotherapy Treatment Outcome: A Scoping Review of Clinical Studies. Int J Mol Sci 2024; 25:3141. [PMID: 38542115 PMCID: PMC10970610 DOI: 10.3390/ijms25063141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 01/31/2025] Open
Abstract
Cluster of differentiation 44 (CD44), a cell surface adhesion molecule overexpressed in cancer stem cells, has been implicated in chemoresistance. This scoping review, following PRISMA-ScR guidelines, systematically identified and evaluated clinical studies on the impact of CD44 expression on chemotherapy treatment outcomes across various cancer types. The search encompassed PubMed (1985-2023) and SCOPUS (1936-2023) databases, yielding a total of 12,659 articles, of which 40 met the inclusion criteria and were included in the qualitative synthesis using a predefined data extraction table. Data collected included the cancer type, sample size, interventions, control, treatment outcome, study type, expression of CD44 variants and isoforms, and effect of CD44 on chemotherapy outcome. Most of the studies demonstrated an association between increased CD44 expression and negative chemotherapeutic outcomes such as shorter overall survival, increased tumor recurrence, and resistance to chemotherapy, indicating a potential role of CD44 upregulation in chemoresistance in cancer patients. However, a subset of studies also reported non-significant relationships or conflicting results. In summary, this scoping review highlighted the breadth of the available literature investigating the clinical association between CD44 and chemotherapeutic outcomes. Further research is required to elucidate this relationship to aid clinicians in managing CD44-positive cancer patients.
Collapse
Affiliation(s)
- Zihao Wu
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Jillian Lu
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Andrew Loo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Nathan Ho
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Danny Nguyen
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Po Yueh Cheng
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Ali I. Mohammed
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (Z.W.); (A.I.M.)
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
Hu S, Xing X, Liu J, Liu X, Li J, Jin W, Li S, Yan Y, Teng D, Liu B, Wang Y, Xu B, Du X. Correlation between apparent diffusion coefficient and tumor-stroma ratio in hybrid 18F-FDG PET/MRI: preliminary results of a rectal cancer cohort study. Quant Imaging Med Surg 2022; 12:4213-4225. [PMID: 35919050 PMCID: PMC9338373 DOI: 10.21037/qims-21-938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/17/2022] [Indexed: 11/06/2022]
Abstract
Background To explore possible correlations between the tumor-stroma ratio (TSR) and different imaging features of fluorine-18-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) in untreated rectal cancer patients. Methods A patients with rectal cancer were included in this study. All participants were examined preoperatively with whole-body 18F-FDG PET/MRI. Two pathologists evaluated the TSR of tumors together. Apparent diffusion coefficient (ADC) values and PET-related parameters of the primary lesions were measured and compared between the stroma-high and stroma-low groups. Pearson's correlation or Spearman's rank correlation were used to evaluate the correlation between the ADC values, PET-related parameters, and pathological indices. Results Our results showed that in the untreated rectal cancer patients, the ADC mean values correlated with the TSR (r=0.327; P=0.007), and stroma-high (low TSR) rectal cancer corresponded to relatively lower ADC mean values (813.54±88.68 vs. 879.92±133.18; P=0.018). The ADC mean and ADC minimum (ADCmin) values were found to be negatively correlated with the pathological T stages (r=-0.384, P=0.001; r=-0.416, P=0.001, respectively) as well as the largest tumor diameters (r=-0.340, P=0.005; r=-0.314, P=0.010, respectively) of rectal cancer. In addition, the pathological T stages correlated with all PET-related metabolic parameters, including mean standard uptake value (SUV), maximum SUV (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) (r=0.338, P=0.006; r=0.350, P=0.004; r=0.326, P=0.007; and r=0.472, P<0.001, respectively). Our results also identified associations between the ADCmin values and SUVmean, SUVmax, and TLG (r=-0.335, P=0.006; r=-0.343, P=0.005; and r=-0.343, P=0.005, respectively). However, there were no statistical correlations between the PET/MRI parameters and the immunohistochemical (IHC) results. Conclusions This study indicated that the intratumoral heterogeneity measured by PET/MRI may reflect characteristics of the tumor microenvironment. Hence, PET/MRI parameters might be helpful in predicting tumor aggressiveness and prognosis.
Collapse
Affiliation(s)
- Shidong Hu
- Department of General Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiaowei Xing
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiajin Liu
- Department of Nuclear Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jinhang Li
- Department of Pathology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wei Jin
- Department of Pathology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Songyan Li
- Department of General Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yang Yan
- Department of General Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Da Teng
- Department of General Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Boyan Liu
- Department of General Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yufeng Wang
- Department of Hospital Management, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Baixuan Xu
- Department of Nuclear Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiaohui Du
- Department of General Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|