1
|
He Y, Liu T. Oxidized low-density lipoprotein regulates macrophage polarization in atherosclerosis. Int Immunopharmacol 2023; 120:110338. [PMID: 37210916 DOI: 10.1016/j.intimp.2023.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Atherosclerosis is the pathological basis of acute cardiovascular and cerebrovascular diseases. Oxidized LDL has been recognized as a major atherogenic factor in the vessel wall for decades. A growing body of evidence suggests that oxidized LDL modulates macrophage phenotypes in atherosclerosis. This article reviews the research progress on the regulation of macrophage polarization by oxidized LDL. Mechanistically, oxidized LDL induces macrophage polarization via cell signaling, metabolic reprogramming, epigenetic regulation, and intercellular regulation. This review is expected to provide new targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yonghang He
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, China
| | - Tingting Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan City, Guangdong Province 523710, China; The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
2
|
Komal S, Han SN, Cui LG, Zhai MM, Zhou YJ, Wang P, Shakeel M, Zhang LR. Epigenetic Regulation of Macrophage Polarization in Cardiovascular Diseases. Pharmaceuticals (Basel) 2023; 16:141. [PMID: 37259293 PMCID: PMC9963081 DOI: 10.3390/ph16020141] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 08/17/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of hospitalization and death worldwide, especially in developing countries. The increased prevalence rate and mortality due to CVDs, despite the development of several approaches for prevention and treatment, are alarming trends in global health. Chronic inflammation and macrophage infiltration are key regulators of the initiation and progression of CVDs. Recent data suggest that epigenetic modifications, such as DNA methylation, posttranslational histone modifications, and RNA modifications, regulate cell development, DNA damage repair, apoptosis, immunity, calcium signaling, and aging in cardiomyocytes; and are involved in macrophage polarization and contribute significantly to cardiac disease development. Cardiac macrophages not only trigger damaging inflammatory responses during atherosclerotic plaque formation, myocardial injury, and heart failure but are also involved in tissue repair, remodeling, and regeneration. In this review, we summarize the key epigenetic modifications that influence macrophage polarization and contribute to the pathophysiology of CVDs, and highlight their potential for the development of advanced epigenetic therapies.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Zhai
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yue-Jiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Jin Z, Zhao H, Luo Y, Li X, Cui J, Yan J, Yang P. Identification of core genes associated with the anti-atherosclerotic effects of Salvianolic acid B and immune cell infiltration characteristics using bioinformatics analysis. BMC Complement Med Ther 2022; 22:190. [PMID: 35842645 PMCID: PMC9288713 DOI: 10.1186/s12906-022-03670-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
Background Atherosclerosis (AS) is the greatest contributor to pathogenesis of atherosclerotic cardiovascular disease (ASCVD), which is associated with increased mortality and reduced quality of life. Early intervention to mitigate AS is key to prevention of ASCVD. Salvianolic acid B (Sal B) is mainly extracted from root and rhizome of Salvia Miltiorrhiza Bunge, and exerts anti-atherosclerotic effect. The purpose of this study was to screen for anti-AS targets of Sal B and to characterize immune cell infiltration in AS. Methods We identified targets of Sal B using SEA (http://sea.bkslab.org/) and SIB (https://www.sib.swiss/) databases. GSE28829 and GSE43292 datasets were obtained from Gene Expression Omnibus database. We identified differentially expressed genes (DEGs) and performed enrichment analysis. Weighted gene co-expression network analysis (WGCNA) was used to determine the most relevant module associated with atherosclerotic plaque stability. Intersecting candidate genes were evaluated by generating receiver operating characteristic (ROC) curves and molecular docking. Then, immune cell types were identified using CIBERSOFT and single-sample gene set enrichment analysis (ssGSEA), the relationship between candidate genes and immune cell infiltration was evaluated. Finally, a network-based approach to explore the candidate genes relationship with microRNAs (miRNAs) and Transcription factors (TFs). Results MMP9 and MMP12 were been selected as candidate genes from 64 Sal B-related genes, 81 DEGs and turquoise module with 220 genes. ROC curve results showed that MMP9 (AUC = 0.815, P<0.001) and MMP12 (AUC = 0.763, P<0.001) were positively associated with advanced atherosclerotic plaques. The results of immune infiltration showed that B cells naive, B cells memory, Plasma cells, T cells CD8, T cells CD4 memory resting, T cells CD4 memory activated, T cells regulatory (Tregs), T cells gamma delta, NK cells activated, Monocytes, and Macrophages M0 may be involved in development of AS, and the candidate genes MMP9 and MMP12 were associated with these immune cells to different degrees. What’ s more, miR-34a-5p and FOXC1, JUN maybe the most important miRNA and TFs. Conclusion The anti-AS effects of Sal B may be related to MMP9 and MMP12 and associated with immune cell infiltration, which is expected to be used in the early intervention of AS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03670-6.
Collapse
|
4
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
5
|
Cao X, Zhang M, Li H, Chen K, Wang Y, Yang J. Histone Deacetylase9 Represents the Epigenetic Promotion of M1 Macrophage Polarization and Inflammatory Response via TLR4 Regulation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7408136. [PMID: 35941971 PMCID: PMC9356872 DOI: 10.1155/2022/7408136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022]
Abstract
Atherosclerosis is a chronic inflammatory response mediated by various factors, where epigenetic regulation involving histone deacetylation is envisaged to modulate the expression of related proteins by regulating the binding of transcription factors to DNA, thereby influencing the development of atherosclerosis. The mechanism of atherosclerosis by histone deacetylation is partly known; hence, this project aimed at investigating the role of histone deacetylase 9 (HDAC9) in atherosclerosis. For this purpose, serum was separated from blood samples following clotting and centrifugation from atherosclerotic and healthy patients (n = 40 each), and then, various tests were performed. The results indicated that toll-like receptor 4 (TLR4) was not only positively correlated to the HDAC9 gene, but was also upregulated in atherosclerosis, where it was also significantly upregulated in the atherosclerosis cell model of oxidized low-density lipoprotein-induced macrophages. Conversely, the TLR4 was significantly downregulated in instances of loss of HDAC9 function, cementing the bridging relationship between HDAC9 and macrophage polarization, where the HDAC9 was found to upregulate M1 macrophage polarization which translated into the release of higher content of proinflammatory cytokines such as interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α), which tend to significantly decrease following the deletion of TLR4. Hence, this study reports novel relation between epigenetic control and atherosclerosis, which could partly be explained by histone deacetylation.
Collapse
Affiliation(s)
- Xi Cao
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Man Zhang
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Hui Li
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Kaiming Chen
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Wang
- Central Laboratory of Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning, China
| | - Jia Yang
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Yang H, Sun Y, Li Q, Jin F, Dai Y. Diverse Epigenetic Regulations of Macrophages in Atherosclerosis. Front Cardiovasc Med 2022; 9:868788. [PMID: 35425818 PMCID: PMC9001883 DOI: 10.3389/fcvm.2022.868788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Emerging research on epigenetics has resulted in many novel discoveries in atherosclerosis (AS), an inflammaging-associated disease characterized by chronic inflammation primarily driven by macrophages. The bulk of evidence has demonstrated the central role of epigenetic machinery in macrophage polarization to pro- (M1-like) or anti-inflammatory (M2-like) phenotype. An increasing number of epigenetic alterations and their modifiers involved in reprogramming macrophages by regulating DNA methylation or histone modifications (e.g., methylation, acetylation, and recently lactylation) have been identified. They may act to determine or skew the direction of macrophage polarization in AS lesions, thereby representing a promising target. Here we describe the current understanding of the epigenetic machinery involving macrophage polarization, to shed light on chronic inflammation-driving onset and progression of inflammaging-associated diseases, using AS as a prototypic example, and discuss the challenge for developing effective therapies targeting the epigenetic modifiers against these diseases, particularly highlighting a potential strategy based on epigenetically-governed repolarization from M1-like to M2-like phenotype.
Collapse
Affiliation(s)
- Hongmei Yang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qingchao Li
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Lin Z, Ding Q, Li X, Feng Y, He H, Huang C, Zhu Y. Targeting Epigenetic Mechanisms in Vascular Aging. Front Cardiovasc Med 2022; 8:806988. [PMID: 35059451 PMCID: PMC8764463 DOI: 10.3389/fcvm.2021.806988] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Environment, diseases, lack of exercise, and aged tendency of population have becoming crucial factors that induce vascular aging. Vascular aging is unmodifiable risk factor for diseases like diabetes, hypertension, atherosclerosis, and hyperlipidemia. Effective interventions to combat this vascular function decline is becoming increasingly urgent as the rising hospitalization rate caused by vascular aging-related diseases. Fortunately, recent transformative omics approaches have enabled us to examine vascular aging mechanisms at unprecedented levels and precision, which make our understanding of slowing down or reversing vascular aging become possible. Epigenetic viz. DNA methylation, histone modifications, and non-coding RNA-based mechanisms, is a hallmark of vascular aging, its deregulation leads to aberrant transcription changes in tissues. Epigenetics mechanisms by mediating covalent modifications to DNA and histone proteins, consequently, influence the sensitivity and activities of signaling pathways in cells and tissues. A growing body of evidence supports correlations between epigenetic changes and vascular aging. In this article, we will provide a comprehensive overview of epigenetic changes associated with vascular aging based on the recent findings with a focus on molecular mechanisms of action, strategies to reverse epigenetic changes, and future perspectives.
Collapse
Affiliation(s)
- Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Xinzhi Li
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Chuoji Huang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - YiZhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Ge G, Jiang H, Xiong J, Zhang W, Shi Y, Tao C, Wang H. Progress of the Art of Macrophage Polarization and Different Subtypes in Mycobacterial Infection. Front Immunol 2021; 12:752657. [PMID: 34899703 PMCID: PMC8660122 DOI: 10.3389/fimmu.2021.752657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacteriosis, mostly resulting from Mycobacterium tuberculosis (MTb), nontuberculous mycobacteria (NTM), and Mycobacterium leprae (M. leprae), is the long-standing granulomatous disease that ravages several organs including skin, lung, and peripheral nerves, and it has a spectrum of clinical-pathologic features based on the interaction of bacilli and host immune response. Histiocytes in infectious granulomas mainly consist of infected and uninfected macrophages (Mφs), multinucleated giant cells (MGCs), epithelioid cells (ECs), and foam cells (FCs), which are commonly discovered in lesions in patients with mycobacteriosis. Granuloma Mφ polarization or reprogramming is the crucial appearance of the host immune response to pathogen aggression, which gets a command of endocellular microbe persistence. Herein, we recapitulate the current gaps and challenges during Mφ polarization and the different subpopulations of mycobacteriosis.
Collapse
Affiliation(s)
- Gai Ge
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Haiqin Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jingshu Xiong
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wenyue Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ying Shi
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chenyue Tao
- Imperial College London, London, United Kingdom
| | - Hongsheng Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,National Center for Sexually Transmitted Disease and Leprosy Control, China Centers for Disease Control and Prevention, Nanjing, China.,Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Jin F, Li J, Guo J, Doeppner TR, Hermann DM, Yao G, Dai Y. Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis. EUROPEAN HEART JOURNAL OPEN 2021; 1:oeab022. [PMID: 35919269 PMCID: PMC9241575 DOI: 10.1093/ehjopen/oeab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/28/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022]
Abstract
Epigenomic and epigenetic research has been providing several new insights into a variety of diseases caused by non-resolving inflammation, including cardiovascular diseases. Atherosclerosis (AS) has long been recognized as a chronic inflammatory disease of the arterial walls, characterized by local persistent and stepwise accelerating inflammation without resolution, also known as uncontrolled inflammation. The pathogenesis of AS is driven primarily by highly plastic macrophages via their polarization to pro- or anti-inflammatory phenotypes as well as other novel subtypes recently identified by single-cell sequencing. Although emerging evidence has indicated the key role of the epigenetic machinery in the regulation of macrophage plasticity, the investigation of epigenetic alterations and modifiers in AS and related inflammation is still in its infancy. An increasing number of the epigenetic modifiers (e.g. TET2, DNMT3A, HDAC3, HDAC9, JMJD3, KDM4A) have been identified in epigenetic remodelling of macrophages through DNA methylation or histone modifications (e.g. methylation, acetylation, and recently lactylation) in inflammation. These or many unexplored modifiers function to determine or switch the direction of macrophage polarization via transcriptional reprogramming of gene expression and intracellular metabolic rewiring upon microenvironmental cues, thereby representing a promising target for anti-inflammatory therapy in AS. Here, we review up-to-date findings involving the epigenetic regulation of macrophages to shed light on the mechanism of uncontrolled inflammation during AS onset and progression. We also discuss current challenges for developing an effective and safe anti-AS therapy that targets the epigenetic modifiers and propose a potential anti-inflammatory strategy that repolarizes macrophages from pro- to anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130012, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 1 Dong Dan Dahua Road, Dong Cheng District, Beijing 100730, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, 1163 Xinmin Street, Changchun 130021, Jilin, China
| | - Thorsten R Doeppner
- Department of Neurology, University of Göttingen Medical School, Robert-Koch-Str. 40 37075, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Gang Yao
- Department of Neurology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130041, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, Institute of Translational Medicine, The First Hospital of Jilin University, 519 Dong Min Zhu Street, Changchun, Jilin 130061, China
| |
Collapse
|
10
|
Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M, Napoli C. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 2020; 210:107514. [PMID: 32105674 DOI: 10.1016/j.pharmthera.2020.107514] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex pathobiology underlying cardiovascular diseases (CVDs) has yet to be explained. Aberrant epigenetic changes may result from alterations in enzymatic activities, which are responsible for putting in and/or out the covalent groups, altering the epigenome and then modulating gene expression. The identification of novel individual epigenetic-sensitive trajectories at single cell level might provide additional opportunities to establish predictive, diagnostic and prognostic biomarkers as well as drug targets in CVDs. To date, most of studies investigated DNA methylation mechanism and miRNA regulation as epigenetics marks. During atherogenesis, big epigenetic changes in DNA methylation and different ncRNAs, such as miR-93, miR-340, miR-433, miR-765, CHROME, were identified into endothelial cells, smooth muscle cells, and macrophages. During man development, lipid metabolism, inflammation and homocysteine homeostasis, alter vascular transcriptional mechanism of fundamental genes such as ABCA1, SREBP2, NOS, HIF1. At histone level, increased HDAC9 was associated with matrix metalloproteinase 1 (MMP1) and MMP2 expression in pro-inflammatory macrophages of human carotid plaque other than to have a positive effect on toll like receptor signaling and innate immunity. HDAC9 deficiency promoted inflammation resolution and reverse cholesterol transport, which might block atherosclerosis progression and promote lesion regression. Here, we describe main human epigenetic mechanisms involved in atherosclerosis, coronary heart disease, ischemic stroke, peripheral artery disease; cardiomyopathy and heart failure. Different epigenetics mechanisms are activated, such as regulation by circular RNAs, as MICRA, and epitranscriptomics at RNA level. Moreover, in order to open new frontiers for precision medicine and personalized therapy, we offer a panoramic view on the most innovative bioinformatic tools designed to identify putative genes and molecular networks underlying CVDs in man.
Collapse
Affiliation(s)
- Concetta Schiano
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | | | | | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
11
|
Rizzacasa B, Amati F, Romeo F, Novelli G, Mehta JL. Epigenetic Modification in Coronary Atherosclerosis. J Am Coll Cardiol 2019; 74:1352-1365. [DOI: 10.1016/j.jacc.2019.07.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
|
12
|
de Sousa JR, Da Costa Vasconcelos PF, Quaresma JAS. Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases. Infect Drug Resist 2019; 12:2589-2611. [PMID: 31686866 PMCID: PMC6709804 DOI: 10.2147/idr.s208576] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are a functionally heterogeneous group of cells with specialized functions depending not only on their subgroup but also on the function of the organ or tissue in which the cells are located. The concept of macrophage phenotypic heterogeneity has been investigated since the 1980s, and more recent studies have identified a diverse spectrum of phenotypic subpopulations. Several types of macrophages play a central role in the response to infectious agents and, along with other components of the immune system, determine the clinical outcome of major infectious diseases. Here, we review the functions of various macrophage phenotypic subpopulations, the concept of macrophage polarization, and the influence of these cells on the evolution of infections. In addition, we emphasize their role in the immune response in vivo and in situ, as well as the molecular effectors and signaling mechanisms used by these cells. Furthermore, we highlight the mechanisms of immune evasion triggered by infectious agents to counter the actions of macrophages and their consequences. Our aim here is to provide an overview of the role of macrophages in the pathogenesis of critical transmissible diseases and discuss how elucidation of this relationship could enhance our understanding of the host-pathogen association in organ-specific immune responses.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Pedro Fernando Da Costa Vasconcelos
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
| | - Juarez Antonio Simões Quaresma
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Mantione ME, Lombardi M, Baccellieri D, Ferrara D, Castellano R, Chiesa R, Alfieri O, Foglieni C. IL-1β/MMP9 activation in primary human vascular smooth muscle-like cells: Exploring the role of TNFα and P2X7. Int J Cardiol 2018; 278:202-209. [PMID: 30583923 DOI: 10.1016/j.ijcard.2018.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vascular smooth muscle cells exhibit phenotypic plasticity in response to microenvironmental stimuli and contribute to vascular remodelling through mechanisms only partially understood. In atherosclerosis, P2X-purinoceptor7 (P2X7) has been related to interleukin-1β (IL-1β) and metalloproteinase 9 (MMP9). The hypoxia-inducible factor-1alpha (HIF1α) was associated to remodelling. Here the activation of IL-1β and MMP9 was studied in relationship to P2X7 and HIF1α in cells exploited from human carotid plaque and internal mammary artery. METHODS AND RESULTS Migrating cells expressed HIF1α-regulated canopy FGF-signalling regulator 2 and CD117, and led to primary cells with SMC-like phenotype (VSMC), P2X7+. We investigated in VSMC the effects of hypoxia, of treatment with tumour necrosis factor-α (TNFα) and/or with P2X7 antagonist, A740003. Quantitative RT-PCR showed that hypoxia unaffected IL-1β and down-regulated MMP9 mRNAs, without activating HIF1α. TNFα increased IL-1β mRNA via NLR Family Pyrin Domain-Containing 3, with production of proIL-1β but no rise of mature IL-1β. Zymography demonstrated that A740003 triggered MMP9 secretion from VSMC. Combination of A740003 with TNFα abrogated this effect. Combination was ineffective on IL-1β activation elicited by TNFα, but down-regulated HIF1α mRNA. A740003 induced the intracellular P2X7 aggregation and differently perturbed lysosome and mitochondria network compared to TNFα. CONCLUSIONS Cells migration from human arteries leads to partially differentiated VSMC analogous to neointimal cells within atherosclerotic lesions. Down-regulated HIF1α in stimulated VSMC translates in resilience in atherosclerotic lesions. P2X7-independent partial activation of IL-1β elicited by TNFα underlines complexity of the cytokine secretion. Data also supported P2X7 as modulator of MMP9 secretion, important for atherosclerosis progression.
Collapse
Affiliation(s)
- Maria Elena Mantione
- Cardiovascular Research Area, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Lombardi
- Cardiovascular Research Area, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Domenico Baccellieri
- Cardio-thoracic-vascular Department, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - David Ferrara
- Cardio-thoracic-vascular Department, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Renata Castellano
- Cardio-thoracic-vascular Department, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Roberto Chiesa
- Cardio-thoracic-vascular Department, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ottavio Alfieri
- Cardio-thoracic-vascular Department, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Foglieni
- Cardiovascular Research Area, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
14
|
de Sousa JR, Lucena Neto FD, Sotto MN, Quaresma JAS. Immunohistochemical characterization of the M4 macrophage population in leprosy skin lesions. BMC Infect Dis 2018; 18:576. [PMID: 30442123 PMCID: PMC6238386 DOI: 10.1186/s12879-018-3478-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background Since macrophages are one of the major cell types involved in the Mycobacterium leprae immune response, roles of the M1 and M2 macrophage subpopulations have been well defined. However, the role of M4 macrophages in leprosy or other infectious diseases caused by mycobacteria has not yet been clearly characterized. This study aimed to investigate the presence and potential role of M4 macrophages in the immunopathology of leprosy. Methods We analyzed the presence of M4 macrophage markers (CD68, MRP8, MMP7, IL-6, and TNF-α) in 33 leprosy skin lesion samples from 18 patients with tuberculoid leprosy and 15 with lepromatous leprosy by immunohistochemistry. Results The M4 phenotype was more strongly expressed in patients with the lepromatous form of the disease, indicating that this subpopulation is less effective in the elimination of the bacillus and consequently is associated with the evolution to one of the multibacillary clinical forms of infection. Conclusion M4 macrophages are one of the cell types involved in the microbial response to M. leprae and probably are less effective in controlling bacillus replication, contributing to the evolution to the lepromatous form of the disease.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, PA, Brazil.,Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Mirian Nacagami Sotto
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.,Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juarez Antonio Simões Quaresma
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, PA, Brazil. .,Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brazil. .,Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, PA, Brazil. .,Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, Brazil. .,Núcleo de Medicina Tropical, UFPA, Av. Generalíssimo Deodoro 92, Umarizal, Belém, Pará, 66055-190, Brazil.
| |
Collapse
|
15
|
Jiang W, Agrawal DK, Boosani CS. Cell‑specific histone modifications in atherosclerosis (Review). Mol Med Rep 2018; 18:1215-1224. [PMID: 29901135 PMCID: PMC6072136 DOI: 10.3892/mmr.2018.9142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Histone modifications are the key epigenetic mechanisms that have been identified to regulate gene expression in many human diseases. However, in the early developmental stages, such as in utero and the postnatal stages, histone modifications are essential for gene regulation and cell growth. Atherosclerosis represents a classical example of the involvement of different cell types, and their cumulative effects in the development of atheroma and the progression of the disease. Post translational modifications on proteins either induces their functional activity or renders them inactive. Post translational modifications such as methylation or acetylation on histones have been well characterized, and their role in enhancing or inhibiting specific gene expression was clearly elucidated. In the present review article, the critical roles of different histone modifications that occur in atherosclerosis have been summarized. Different histone proteins have been identified to serve a critical role in the development of atherosclerosis. Specifically, histone methylation and histone acetylation in monocytes, macrophages, vascular smooth muscle cells and in endothelial cells during the progression of atherosclerosis, have been well reported. In recent years, different target molecules and genes that regulate histone modifications have been examined for their effects in the treatment of atherosclerosis in animal models and in clinical trials. An increasing body of evidence suggests that these epigenetic changes resulting from DNA methylation and non-coding RNA may also be associated with histone modifications, thereby indicating that novel therapeutic strategies can be developed by targeting these post translational modifications, which may in turn aid in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wanlin Jiang
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Chandra S Boosani
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
16
|
Kwa FA, Jackson DE. Manipulating the epigenome for the treatment of disorders with thrombotic complications. Drug Discov Today 2018; 23:719-726. [DOI: 10.1016/j.drudis.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/11/2017] [Accepted: 01/04/2018] [Indexed: 11/25/2022]
|