1
|
Väärämäki S, Hautero O, Rajala V, Nevalainen P. Successful Pedal Bypass in a Patient With Pseudoxanthoma Elasticum. Vasc Endovascular Surg 2024:15385744241290007. [PMID: 39397377 DOI: 10.1177/15385744241290007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
OBJECTIVES Pseudoxanthoma elasticum (PXE) is a rare metabolic disease, causing calcification in the arterial media layer and further peripheral artery disease (PAD). A high rate of failure has been reported after endovascular and open surgical management of PAD among patients with PXE. Critical limb ischemia (CLI) rarely develops in PXE, and there are only few reports of its treatment. METHODS We present a case report of a 57 year-old female diagnosed with pseudoxanthoma elasticum (PXE). She presented with critical limb ischemia (CLI) and was successfully treated with pedal bypass using the great saphenous vein. RESULTS Despite obtaining suboptimal outcomes through the initial approach of percutaneous transluminal angioplasty to treat critical limb ischemia, the subsequent bypass operation proved to be a success. At the first follow-up appointment at 1 month, the patient was asymptomatic and the ulceration had almost healed. The patient underwent an ultrasound examination at 3, 6, 12, and 24 months after discharge, and the surveillance was uncomplicated. CONCLUSIONS With a clear indication for surgery, limb-threatening ischemia can be successfully treated with distal bypass, if necessary, in patients with PXE similarly to atherosclerotic PADs. Appropriate diagnostic and surveillance imaging and the utilization of a multidisciplinary team are key components for effective management of PAD in patients with PXE.
Collapse
Affiliation(s)
- Suvi Väärämäki
- Centre for Vascular Surgery, Tampere University Hospital, Faculty of Medicine and Life Sciences, Tampere, Finland
| | - Olli Hautero
- Department of Vascular Surgery, Vaasa Central Hospital, Vaasa, Finland
| | - Vesa Rajala
- Department of Vascular Surgery, Vaasa Central Hospital, Vaasa, Finland
| | - Pasi Nevalainen
- Department of Internal Medicine, Tampere University Hospital, Faculty of Medicine and Life Sciences, Tampere, Finland
| |
Collapse
|
2
|
Haddad EN, Kumar P, Shearn-Nance G, Kharal GA, Dhawan A. Clinical Approach to Genetic Cerebral Arteriopathy in the Adult Patient With Ischemic Stroke. Neurol Genet 2024; 10:e200182. [PMID: 39176127 PMCID: PMC11341007 DOI: 10.1212/nxg.0000000000200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/13/2024] [Indexed: 08/24/2024]
Abstract
Genetic arteriopathies leading to stroke in adults constitute a diverse group of cerebrovascular disorders with distinct etiologies, pathophysiologic mechanisms, and clinical presentations. As imaging modalities better delineate subtle changes in cerebral vasculature and access to genetic testing increases, the detection rate for these conditions is expected to rise, particularly among young adults with idiopathic cerebral arteriopathy and stroke. Adults with stroke in the setting of a genetic cerebral arteriopathy often present with few traditional stroke risk factors and, in certain cases, have characteristic clinical features, cerebrovascular imaging findings, and often concurrent systemic vasculopathy, such as aortopathy, which are important to recognize. Given that there are over 50 recognized genetic cerebral arteriopathies that can cause ischemic and hemorrhagic stroke in young adults, it can be a significant diagnostic challenge for the practicing neurologist when faced with a genetic cerebral arteriopathy, because clinical algorithms for a systematic approach to genetic cerebral arteriopathies are lacking. In this review, we present a phenotype-driven, clinically oriented algorithm to guide the diagnostic workup when suspecting a genetic cerebral arteriopathy in an adult patient while highlighting the genetic basis of each disease, molecular mechanisms, clinical manifestations, diagnostic approaches, and emerging therapeutic strategies. Moreover, given the lack of widely available gene panels for diagnostic germline testing for genetic cerebral arteriopathies, we propose key genes to be tested and focused on in each clinical scenario, to better decipher the underlying diagnosis in these rare conditions.
Collapse
Affiliation(s)
- Eliot N Haddad
- From the Cleveland Clinic Lerner College of Medicine (E.N.H., A.D., G.A.K.); School of Medicine (P.K., G.S.-N.), Case Western Reserve University; and Neurological Institute (A.D., G.A.K.), Cleveland Clinic, OH
| | - Pranav Kumar
- From the Cleveland Clinic Lerner College of Medicine (E.N.H., A.D., G.A.K.); School of Medicine (P.K., G.S.-N.), Case Western Reserve University; and Neurological Institute (A.D., G.A.K.), Cleveland Clinic, OH
| | - Galen Shearn-Nance
- From the Cleveland Clinic Lerner College of Medicine (E.N.H., A.D., G.A.K.); School of Medicine (P.K., G.S.-N.), Case Western Reserve University; and Neurological Institute (A.D., G.A.K.), Cleveland Clinic, OH
| | - G Abbas Kharal
- From the Cleveland Clinic Lerner College of Medicine (E.N.H., A.D., G.A.K.); School of Medicine (P.K., G.S.-N.), Case Western Reserve University; and Neurological Institute (A.D., G.A.K.), Cleveland Clinic, OH
| | - Andrew Dhawan
- From the Cleveland Clinic Lerner College of Medicine (E.N.H., A.D., G.A.K.); School of Medicine (P.K., G.S.-N.), Case Western Reserve University; and Neurological Institute (A.D., G.A.K.), Cleveland Clinic, OH
| |
Collapse
|
3
|
Desai D, Maheta D, Agrawal SP, Soni Z, Frishman WH, Aronow WS. Cardiovascular Manifestations of Pseudoxanthoma Elasticum: Pathophysiology, Management, and Research. Cardiol Rev 2024:00045415-990000000-00338. [PMID: 39329489 DOI: 10.1097/crd.0000000000000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Pseudoxanthoma elasticum is a rare genetic disorder characterized by calcification of elastic fibers in the connective tissue. The abundance of elastic tissues at these sites: skin, eyes, and heart make them the most affected systems. It has multifactorial pathogenesis, meaning, it manifests due to both environmental and genetic factors, but ABCC6 gene mutation plays an important role. This gene is responsible for causing defective MRP6 protein which in return is required for cell transport in the connective tissue. The clinical features range from minor skin lesions to fatal cardiovascular complications. Thus, it is important to diagnose it early and give appropriate treatment. This article provides insight into the cardiovascular manifestations of pseudoxanthoma elasticum, its diagnosis and management plans.
Collapse
Affiliation(s)
- Dev Desai
- From the Department of Medicine, Smt. NHL Municipal Medical College, Ahmedabad, India
| | | | - Siddharth Pravin Agrawal
- Department of Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, RI
| | - Zeal Soni
- From the Department of Medicine, Smt. NHL Municipal Medical College, Ahmedabad, India
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
4
|
Harmsen IM, van den Beukel T, Kok M, Visseren FLJ, de Jong PA, Papapoulos SE, Spiering W. Cyclical Etidronate Reduces the Progression of Arterial Calcifications in Patients with Pseudoxanthoma Elasticum: A 6-Year Prospective Observational Study. J Clin Med 2024; 13:4612. [PMID: 39200754 PMCID: PMC11354836 DOI: 10.3390/jcm13164612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Pseudoxanthoma elasticum (PXE), a rare genetic disorder presenting with slowly progressing calcification of various tissues, including the arteries, is caused by mutations in the ABCC6 gene that lead to the reduction of pyrophosphate, a natural inhibitor of calcification. We showed that, compared to a placebo, the cyclical administration of etidronate, a stable pyrophosphate analog, significantly reduced arterial calcification assessed by low-dose CT scans after one year. The aim of the present prospective, single center, observational cohort study was the assessment of the efficacy and safety of cyclical etidronate in patients treated for periods longer than one year. Methods: Seventy-three patients were followed for a median of 3.6 years without etidronate and 2.8 years with etidronate, and each patient served as their own control. Results: The median absolute yearly progression of total calcification volume during the period with etidronate (388 [83-838] µL) was significantly lower than that without etidronate (761 [362-1415] µL; p < 0.001). The rates of the relative progression of arterial calcification were 11.7% (95% CI: 9.6-13.9) without etidronate compared to 5.3% (95% CI: 3.7-7.0) with etidronate, after adjustment for confounders. Conclusions: The cyclical administration of etidronate for nearly 3 years significantly reduced the progression rate of arterial calcification in patients with PXE with pre-existing calcifications without any serious adverse effects.
Collapse
Affiliation(s)
- Iris M. Harmsen
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Tim van den Beukel
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Madeleine Kok
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Radiology & Nuclear Medicine, Rijnstate, 6815 AD Arnhem, The Netherlands
| | - Frank L. J. Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Pim A. de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Socrates E. Papapoulos
- Center for Bone Quality, Department of Endocrinology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
5
|
Mitochondrial Dysfunction and Oxidative Stress in Hereditary Ectopic Calcification Diseases. Int J Mol Sci 2022; 23:ijms232315288. [PMID: 36499615 PMCID: PMC9738718 DOI: 10.3390/ijms232315288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Ectopic calcification (EC) is characterized by an abnormal deposition of calcium phosphate crystals in soft tissues such as blood vessels, skin, and brain parenchyma. EC contributes to significant morbidity and mortality and is considered a major health problem for which no effective treatments currently exist. In recent years, growing emphasis has been placed on the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of EC. Impaired mitochondrial respiration and increased levels of reactive oxygen species can be directly linked to key molecular pathways involved in EC such as adenosine triphosphate homeostasis, DNA damage signaling, and apoptosis. While EC is mainly encountered in common diseases such as diabetes mellitus and chronic kidney disease, studies in rare hereditary EC disorders such as pseudoxanthoma elasticum or Hutchinson-Gilford progeria syndrome have been instrumental in identifying the precise etiopathogenetic mechanisms leading to EC. In this narrative review, we describe the current state of the art regarding the role of mitochondrial dysfunction and oxidative stress in hereditary EC diseases. In-depth knowledge of aberrant mitochondrial metabolism and its local and systemic consequences will benefit the research into novel therapies for both rare and common EC disorders.
Collapse
|