1
|
Puapatanakul P, Isaranuwatchai S, Chanakul A, Surintrspanont J, Iampenkhae K, Kanjanabuch T, Suphapeetiporn K, Charu V, Suleiman HY, Praditpornsilpa K, Miner JH. Quantitative assessment of glomerular basement membrane collagen IV α chains in paraffin sections from patients with focal segmental glomerulosclerosis and Alport gene variants. Kidney Int 2024; 105:1049-1057. [PMID: 38401706 PMCID: PMC11032260 DOI: 10.1016/j.kint.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
Focal segmental glomerulosclerosis (FSGS) lesions have been linked to variants in COL4A3/A4/A5 genes, which are also mutated in Alport syndrome. Although it could be useful for diagnosis, quantitative evaluation of glomerular basement membrane (GBM) type IV collagen (colIV) networks is not widely used to assess these patients. To do so, we developed immunofluorescence imaging for collagen α5(IV) and α1/2(IV) on kidney paraffin sections with Airyscan confocal microscopy that clearly distinguishes GBM collagen α3α4α5(IV) and α1α1α2(IV) as two distinct layers, allowing quantitative assessment of both colIV networks. The ratios of collagen α5(IV):α1/2(IV) mean fluorescence intensities (α5:α1/2 intensity ratios) and thicknesses (α5:α1/2 thickness ratios) were calculated to represent the levels of collagen α3α4α5(IV) relative to α1α1α2(IV). The α5:α1/2 intensity and thickness ratios were comparable across all 11 control samples, while both ratios were significantly and markedly decreased in all patients with pathogenic or likely pathogenic Alport COL4A variants, supporting validity of this approach. Thus, with further validation of this technique, quantitative measurement of GBM colIV subtype abundance by immunofluorescence, may potentially serve to identify the subgroup of patients with FSGS lesions likely to harbor pathogenic COL4A variants who could benefit from genetic testing.
Collapse
Affiliation(s)
- Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suramath Isaranuwatchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Division of Nephrology, Department of Internal Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Ankanee Chanakul
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jerasit Surintrspanont
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Special Task Force for Activating Research, Department of Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Kroonpong Iampenkhae
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Division of Medical Genetics and Metabolism, Center of Excellence for Medical Genomics, Department of Pediatrics, Medical Genomic Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vivek Charu
- Department of Pathology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Hani Y Suleiman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
2
|
Puapatanakul P, Miner JH. Alport syndrome and Alport kidney diseases - elucidating the disease spectrum. Curr Opin Nephrol Hypertens 2024; 33:283-290. [PMID: 38477333 PMCID: PMC10990029 DOI: 10.1097/mnh.0000000000000983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW With the latest classification, variants in three collagen IV genes, COL4A3 , COL4A4 , and COL4A5 , represent the most prevalent genetic kidney disease in humans, exhibiting diverse, complex, and inconsistent clinical manifestations. This review breaks down the disease spectrum and genotype-phenotype correlations of kidney diseases linked to genetic variants in these genes and distinguishes "classic" Alport syndrome (AS) from the less severe nonsyndromic genetically related nephropathies that we suggest be called "Alport kidney diseases". RECENT FINDINGS Several research studies have focused on the genotype-phenotype correlation under the latest classification scheme of AS. The historic diagnoses of "benign familial hematuria" and "thin basement membrane nephropathy" linked to heterozygous variants in COL4A3 or COL4A4 are suggested to be obsolete, but instead classified as autosomal AS by recent expert consensus due to a significant risk of disease progression. SUMMARY The concept of Alport kidney disease extends beyond classic AS. Patients carrying pathogenic variants in any one of the COL4A3/A4/A5 genes can have variable phenotypes ranging from completely normal/clinically unrecognizable, hematuria without or with proteinuria, or progression to chronic kidney disease and kidney failure, depending on sex, genotype, and interplays of other genetic as well as environmental factors.
Collapse
Affiliation(s)
- Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Di H, Wang Q, Liang D, Zhang J, Gao E, Zheng C, Yu X, Liu Z. Genetic features and kidney morphological changes in women with X-linked Alport syndrome. J Med Genet 2023; 60:1169-1176. [PMID: 37225412 DOI: 10.1136/jmg-2023-109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND X-linked Alport syndrome (XLAS) caused by COL4A5 pathogenic variants usually has heterogeneous phenotypes in female patients. The genetic characteristics and glomerular basement membrane (GBM) morphological changes in women with XLAS need to been further investigated. METHODS A total of 83 women and 187 men with causative COL4A5 variants were enrolled for comparative analysis. RESULTS Women were more frequently carrying de novo COL4A5 variants compared with men (47% vs 8%, p=0.001). The clinical manifestations in women were variable, and no genotype-phenotype correlation was observed. Coinherited podocyte-related genes, including TRPC6, TBC1D8B, INF2 and MYH9, were identified in two women and five men, and the modifying effects of coinherited genes contributed to the heterogeneous phenotypes in these patients. X-chromosome inactivation (XCI) analysis of 16 women showed that 25% were skewed XCI. One patient preferentially expressing the mutant COL4A5 gene developed moderate proteinuria, and two patients preferentially expressing the wild-type COL4A5 gene presented with haematuria only. GBM ultrastructural evaluation demonstrated that the degree of GBM lesions was associated with the decline in kidney function for both genders, but more severe GBM changes were found in men compared with women. CONCLUSIONS The high frequency of de novo variants carried by women indicates that the lack of family history tends to make them susceptible to be underdiagnosed. Coinherited podocyte-related genes are potential contributors to the heterogeneous phenotype of some women. Furthermore, the association between the degree of GBM lesions and decline in kidney function is valuable in evaluating the prognosis for patients with XLAS.
Collapse
Affiliation(s)
- Hongling Di
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qing Wang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Department of Nephrology, General Hospital of Eastern Theater Command, Naval Medical University, Shanghai, Shanghai, China
| | - Dandan Liang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jiahui Zhang
- The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Boisson M, Arrondel C, Cagnard N, Morinière V, Arkoub ZA, Saei H, Heidet L, Kachmar J, Hummel A, Knebelmann B, Bonnet-Dupeyron MN, Isidor B, Izzedine H, Legrand E, Couarch P, Gribouval O, Bole-Feysot C, Parisot M, Nitschké P, Antignac C, Dorval G. A wave of deep intronic mutations in X-linked Alport Syndrome. Kidney Int 2023:S0085-2538(23)00376-9. [PMID: 37230224 DOI: 10.1016/j.kint.2023.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
X-linked Alport syndrome (XLAS) is an inherited kidney disease caused exclusively by pathogenic variants in the COL4A5 gene. In 10-20% of cases, DNA sequencing of COL4A5 exons or flanking regions cannot identify molecular causes. Here, our objective was to use a transcriptomic approach to identify causative events in a group of 19 patients with XLAS without identified mutation by Alport gene panel sequencing. Bulk RNAseq and/or targeted RNAseq using a capture panel of kidney genes was performed. Alternative splicing events were compared to those of 15 controls by a developed bioinformatic score. When using targeted RNAseq, COL4A5 coverage was found to be 23-fold higher than with bulk RNASeq and revealed 30 significant alternative splicing events in 17 of the 19 patients. After computational scoring, a pathogenic transcript was found in all patients. A causative variant affecting COL4A5 splicing and absent in the general population was identified in all cases. Altogether, we developed a simple and robust method for identification of aberrant transcripts due to pathogenic deep-intronic COL4A5 variants. Thus, these variants, potentially targetable by specific antisense oligonucleotide therapies, were found in a high percentage of patients with XLAS in whom pathogenic variants were missed by conventional DNA sequencing.
Collapse
Affiliation(s)
- Marie Boisson
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Christelle Arrondel
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Nicolas Cagnard
- Plateforme Bio-informatique, Inserm UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Vincent Morinière
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Zaïna Aït Arkoub
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Hassan Saei
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Laurence Heidet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France; Service de néphrologie pédiatrique Centre de Référence MARHEA, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Jessica Kachmar
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Aurélie Hummel
- Service de néphrologie adulte, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Bertrand Knebelmann
- Service de néphrologie adulte, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Bertrand Isidor
- Service de génétique médicale, CHU de Nantes, Nantes, France
| | - Hassane Izzedine
- Department of Nephrology, Peupliers Private Hospital, Ramsay Générale de Santé, Paris, France
| | - Eric Legrand
- Service de Néphrologie, Centre Hospitalier Ardèche Nord, Annonay, France
| | - Philippe Couarch
- Plateforme de Ressources Biologiques de l'hôpital Necker-Enfants Malades, Inserm UMR 1163, Institut Imagine, Université de Paris-Cité, Paris, France
| | - Olivier Gribouval
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Christine Bole-Feysot
- Plateforme de Génomique, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Mélanie Parisot
- Plateforme de Génomique, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Patrick Nitschké
- Plateforme Bio-informatique, Inserm UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Guillaume Dorval
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
5
|
Liang L, Wu H, Cai Z, Zhao J. Molecular dynamics and minigene assay of new splicing variant c.4298-20T>A of COL4A5 gene that cause Alport syndrome. Front Genet 2023; 14:1059322. [PMID: 36923787 PMCID: PMC10009158 DOI: 10.3389/fgene.2023.1059322] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Introduction: Alport syndrome (AS; OMIM#308940) is a progressive hereditary kidney disease characterized by hearing loss and ocular abnormalities. According to the mode of inheritance, AS has three subtypes: X-linked (XL; OMIM#301050), autosomal recessive (AR; OMIM#203780), and autosomal dominant (AD; OMIM#104200). XLAS is caused by a pathogenic variant in COL4A5 (OMIM*303630) gene encoding type IV collagen (Col-IV) α5 chain, while ADAS and ARAS are consequences of a variant in COL4A3 (OMIM*120070) and COL4A4 (OMIM*120131) genes that encode Col-IV α3 and α4 chains, respectively. Usually, diagnosis of AS requires hereditary or pathological examinations. Splicing variants are hard to be determined as pathogenic or non-pathogenic based on the results of gene sequencing. Methods: This study focused on a splicing variant in COL4A5 gene, termed NM_000495.5: c.4298-20T>A, and to analyzed its authenticity and damaged α5 chain. In vitro minigene splicing assay was applied to investigate the effect of splicing variant, c.4298-20T>A, on COL4A5 mRNA synthesis. Molecular dynamics method was used to predict the capability of the responsible α5(IV) to form a triple helix. Results: The intron 46 of COL4A5 mRNA retained 18 bp, resulting in insertion of six amino acids behind the amino acid at position 1,433 of α5(IV). The predicted protein effect of this variant: p. (Pro1432_Gly1433insAspTyrPheValGluIle). As a consequence, the stability of α5(IV) secondary structure was impaired, probably leading to the unusual configuration of α345(IV). Discussion: Normally, splicing variant in COL4A5 gene can lead to phenotypes of XLAS, and the effect is associated with the extent of splicing. The patient reported here carried a c.4298-20T>A splicing variant in COL4A5 gene, and AS was highly suspected based on the pathology results. However, the patient did not manifest any ocular or ear abnormalities. We therefore present the c.4298-20T>A splicing variant in COL4A5 gene as likely-pathogenic splicing variant that leads to XLAS with mild phenotypes.
Collapse
Affiliation(s)
- Lei Liang
- Center for Prenatal Diagnosis and Medical Genetics, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Haotian Wu
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Zeyu Cai
- Department of Nephrology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jianrong Zhao
- Department of Nephrology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
Savige J, Huang M, Croos Dabrera MS, Shukla K, Gibson J. Genotype-Phenotype Correlations for Pathogenic COL4A3–COL4A5 Variants in X-Linked, Autosomal Recessive, and Autosomal Dominant Alport Syndrome. Front Med (Lausanne) 2022; 9:865034. [PMID: 35602506 PMCID: PMC9120524 DOI: 10.3389/fmed.2022.865034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/24/2022] [Indexed: 12/28/2022] Open
Abstract
Alport syndrome is inherited as an X-linked (XL), autosomal recessive (AR), or autosomal dominant (AD) disease, where pathogenic COL4A3 – COL4A5 variants affect the basement membrane collagen IV α3α4α5 network. About 50% of pathogenic variants in each gene (major rearrangements and large deletions in 15%, truncating variants in 20%, splicing changes in 15%) are associated with “severe” disease with earlier onset kidney failure, and hearing loss and ocular abnormalities in males with XL inheritance and in males and females with AR disease. Severe variants are also associated with early proteinuria which is itself a risk factor for kidney failure. The other half of pathogenic variants are missense changes which are mainly Gly substitutions. These are generally associated with later onset kidney failure, hearing loss, and less often with major ocular abnormalities. Further determinants of severity for missense variants for XL disease in males, and in AD disease, include Gly versus non-Gly substitutions; increased distance from a non-collagenous interruption or terminus; and Gly substitutions with a more (Arg, Glu, Asp, Val, and Trp) or less disruptive (Ala, Ser, and Cys) residue. Understanding genotype-phenotype correlations in Alport syndrome is important because they help predict the likely age at kidney failure, and the need for early and aggressive management with renin-angiotensin system blockade and other therapies. Genotype-phenotype correlations also help standardize patients with Alport syndrome undergoing trials of clinical treatment. It is unclear whether severe variants predispose more often to kidney cysts or coincidental IgA glomerulonephritis which are recognized increasingly in COL4A3-, COL4A4 - and COL4A5-associated disease.
Collapse
|
7
|
Sato M, Manabe S, Itabashi M, Horita S, Hirose O, Kawashima M, Nishida M, Kataoka H, Taneda S, Mochizuki T, Nitta K. Slowly Progressive Male Alport Syndrome Evaluated by Serial Biopsy: Importance of Type IV Collagen Staining. Intern Med 2022; 61:1205-1209. [PMID: 34645753 PMCID: PMC9107991 DOI: 10.2169/internalmedicine.7372-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022] Open
Abstract
A slowly progressive middle-aged man initially diagnosed with thin basement membrane nephropathy based on extensive thinning of the glomerular basement membrane (GBM) was subsequently diagnosed with Alport syndrome (AS) by a serial renal biopsy eight years later. The ultrastructural analysis of the second biopsy indicated thickening and wrinkling with mild reticulation in the GBM, consistent with AS. However, a retrospective analysis of the first biopsy revealed mild attenuation of type IV collagen α5 chain staining, suggesting a potential diagnosis of AS, despite the lack of ultrastructural features of AS. We herein report the clinical usefulness of type IV collagen staining in the early diagnosis of AS.
Collapse
Affiliation(s)
- Masayo Sato
- Department of Nephrology, Tokyo Women's Medical University, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women's Medical University, Japan
| | - Mitsuyo Itabashi
- Department of Nephrology, Tokyo Women's Medical University, Japan
| | - Shigeru Horita
- Department of Clinical Laboratory Medicine, Tokyo Women's Medical University Hospital, Japan
| | - Orie Hirose
- Department of Pathology, Tokyo Women's Medical University, Japan
| | - Moe Kawashima
- Department of Nephrology, Tokyo Women's Medical University, Japan
| | - Miki Nishida
- Department of Nephrology, Tokyo Women's Medical University, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women's Medical University, Japan
- Clinical Research Division for Polycystic Kidney Disease, Department of Medicine, Kidney Center, Tokyo Women's Medical University, Japan
| | - Sekiko Taneda
- Department of Pathology, Tokyo Women's Medical University, Japan
| | - Toshio Mochizuki
- Department of Nephrology, Tokyo Women's Medical University, Japan
- Clinical Research Division for Polycystic Kidney Disease, Department of Medicine, Kidney Center, Tokyo Women's Medical University, Japan
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women's Medical University, Japan
| |
Collapse
|
8
|
Qian P, Bao Y, Huang HM, Suo L, Han Y, Li ZJ, Zhang M. A deep intronic splice variant of the COL4A5 gene in a Chinese family with X-linked Alport syndrome. Front Pediatr 2022; 10:1009188. [PMID: 36714647 PMCID: PMC9880855 DOI: 10.3389/fped.2022.1009188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND X-linked Alport syndrome (XLAS) is caused by pathogenic variants in COL4A5 and is characterized by progressive kidney disease, hearing loss, and ocular abnormalities.The aim of this study was to identify gene mutations in a Chinese family with XLAS, confirm a diagnosis, and provide an accurate genetic counseling. METHODS The proband was a 5-year-old male with microscopic hematuria and a family history of renal disease in 5 relatives.His relatives had microhematuria with or without proteinuria. His maternal uncle developed renal failure at the age of 35 years. He was evaluated by renal biopsy,whole-exome sequencing (WES) and whole-genome sequencing (WGS) for Alport syndrome. RT-PCR and cDNA Sanger sequencing were performed on RNA extracted from the skin of the proband. Then, a splicing reporter minigene assay was used to examine the effect of the variation on the splicing of the primary transcript in transfected cells. RESULTS Pathological examination of the kidney of the proband revealed diffuse thinning of the glomerular basement membrane, and immunofluorescence analysis indicated normal expression of the α5 chain in the basement membrane. No phenotype-associated candidate variant was detected in the proband via WES. A novel deep intronic COL4A5 variant (c.385-716G > A), which is segregated with disease in this family, was identified using WGS. In-vitro minigene assay and in-vivo RT-PCR analysis demonstrated that the variant could produce both normal and abnormal transcripts. The abnormal transcripts showed that the variant activated a cryptic splice site, introducing a 147 bp pseudoexon into the mRNA sequence and consequently generating a premature termination codon (p.G129Afs*38) and leading to frameshifting and truncation of the α5 (collagen IV) protein. CONCLUSION This is the first report of the novel c.385-716G > A splicing mutation in the COL4A5 gene, which illustrates the importance of performing WGS to find additional mutations in WES-negative patients with highly suspected forms of genetic diseases. The same results obtained from the in-vitro and in-vivo splicing experiments confirm the consistency between the minigene assay and RT-PCR analysis. In addition, this study highlights the importance of functional analysis in diagnosis and genetic counseling in AS.
Collapse
Affiliation(s)
- Pei Qian
- Department of Nephrology, Xi'an Children's Hospital, Xi'an, China
| | - Ying Bao
- Department of Nephrology, Xi'an Children's Hospital, Xi'an, China
| | - Hui-Mei Huang
- Department of Nephrology, Xi'an Children's Hospital, Xi'an, China
| | - Lei Suo
- Department of Nephrology, Xi'an Children's Hospital, Xi'an, China
| | - Yan Han
- Department of Nephrology, Xi'an Children's Hospital, Xi'an, China
| | - Zhi-Juan Li
- Department of Nephrology, Xi'an Children's Hospital, Xi'an, China
| | - Min Zhang
- Department of Nephrology, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
9
|
Nozu K, Takaoka Y, Kai H, Takasato M, Yabuuchi K, Yamamura T, Horinouchi T, Sakakibara N, Ninchoji T, Nagano C, Iijima K. Genetic background, recent advances in molecular biology, and development of novel therapy in Alport syndrome. Kidney Res Clin Pract 2020; 39:402-413. [PMID: 33214343 PMCID: PMC7771000 DOI: 10.23876/j.krcp.20.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Alport syndrome (AS) is a progressive inherited kidney disease characterized by hearing loss and ocular abnormalities. There are three forms of AS depending on inheritance mode: X-linked Alport syndrome (XLAS), autosomal recessive AS (ARAS), and autosomal dominant AS (ADAS). XLAS is caused by pathogenic variants in COL4A5, which encodes type IV collagen α5 chain, while ADAS and ARAS are caused by variants in COL4A3 or COL4A4, which encode type IV collagen α3 or α4 chain, respectively. In male XLAS or ARAS cases, end-stage kidney disease (ESKD) develops around a median age of 20 to 30 years old, while female XLAS or ADAS cases develop ESKD around a median age of 60 to 70 years old. The diagnosis of AS is dependent on either genetic or pathological findings. However, determining the pathogenicity of the variants detected by gene tests can be difficult. Recently, we applied the following molecular investigation tools to determine pathogenicity: 1) in silico and in vitro trimer formation assay of α345 chains to assess triple helix formation ability, 2) kidney organoids constructed from patients’ induced pluripotent stem cells to identify α5 chain expression on the glomerular basement membrane, and 3) in vitro splicing assay to detect aberrant splicing to determine the pathogenicity of variants. In this review article, we discuss the genetic background and novel assays for determining the pathogenicity of variants. We also discuss the current treatment approaches and introduce exon skipping therapy as one potential treatment option.
Collapse
Affiliation(s)
- Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Takaoka
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Minoru Takasato
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kensuke Yabuuchi
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ninchoji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
10
|
Zhang L, Sun BC, Zhao BG, Ma QS. An overview of the multi-pronged approach in the diagnosis of Alport syndrome for 22 children in Northeast China. BMC Nephrol 2020; 21:294. [PMID: 32703181 PMCID: PMC7379802 DOI: 10.1186/s12882-020-01962-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/17/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Alport syndrome (AS) is a kind of progressive hereditary nephritis induced by mutations of different genes that encode collagen IV. The affected individuals usually develop hematuria during childhood, accompanying with gradual deterioration of renal functions. In this study, the multi-pronged approach was employed to improve the diagnosis of AS. METHODS Twenty-two children were diagnosed and treated at the Department of Pediatric Nephrology of Jilin University First Hospital between January 2017 and January 2020 using the multi-pronged approach. The following information was collected from patients, including age of onset, age at diagnosis, clinical manifestations, family history, renal pathology and genotype. RESULTS All these 22 children were diagnosed with Alport syndrome according to the diagnostic criteria formulated by the Japanese Society of Nephrology (2015), among them, only 13 children met the diagnostic criteria released in 1988. All the 22 patients presented with hematuria, and proteinuria to varying degrees was observed in some patients. Three children suffered from hearing loss, but no child in the cohort had any visual problem or renal failure. Meanwhile, five patients were estimated to be at Stage 2, whereas the remaining 17 cases were at Stage 0. Renal biopsies were performed in 18 patients, including 14 showing glomerular basement membranes (GBM)-specific abnormalities. Moreover, 13 children were detected with mutations of genes encoding collagen IV. CONCLUSIONS The multi-pronged approach helps to improve the diagnosis of AS. Most patients do not have renal failure during childhood, but close assessment and monitoring are necessary. Also, the advancements in treatment are reviewed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatric Nephrology, First Hospital, Jilin University, Changchun, 130021 Jilin China
| | - Bai-chao Sun
- Department of Pediatric Nephrology, First Hospital, Jilin University, Changchun, 130021 Jilin China
| | - Bing-gang Zhao
- Department of Pediatric Nephrology, First Hospital, Jilin University, Changchun, 130021 Jilin China
| | - Qing-shan Ma
- Department of Pediatric Nephrology, First Hospital, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
11
|
Demir E, Caliskan Y. Variations of type IV collagen-encoding genes in patients with histological diagnosis of focal segmental glomerulosclerosis. Pediatr Nephrol 2020; 35:927-936. [PMID: 31254113 DOI: 10.1007/s00467-019-04282-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 05/31/2019] [Indexed: 01/07/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS), an important cause of end-stage kidney disease (ESKD), covers a spectrum of clinicopathological syndromes sharing a common glomerular lesion, based on an injury of podocytes caused by diverse insults to glomeruli. Although it is well expressed in many reports that the term FSGS is not useful and applicable to a single disease, particularly in genetic studies, FSGS continues to be used as a single clinical diagnosis. Distinguishing genetic forms of FSGS is important for the treatment and overall prognosis because secondary forms of FSGS, produced by rare pathogenic variations in podocyte genes, are not good candidates for immunosuppressive treatment. Over the past decade, several next generation sequencing (NGS) methods have been used to investigate the patients with steroid resistance nephrotic syndrome (SRNS) or FSGS. Pathogenic variants in COL4A3, COL4A4, or COL4A5 genes have been frequently identified in patients with histologic diagnosis of FSGS. The contribution of these mostly heterozygous genetic variations in FSGS pathogenesis and the clinical course of patients with these variations have not been well characterized. This review emphasizes the importance of appropriate approach in selection and diagnosis of cases and interpretation of the genetic data in these studies and suggests a detailed review of existing clinical variant databases using newly available population genetic data.
Collapse
Affiliation(s)
- Erol Demir
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Yasar Caliskan
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey.
| |
Collapse
|
12
|
Trimerization and Genotype-Phenotype Correlation of COL4A5 Mutants in Alport Syndrome. Kidney Int Rep 2020; 5:718-726. [PMID: 32405592 PMCID: PMC7210609 DOI: 10.1016/j.ekir.2020.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Alport syndrome is a hereditary glomerulonephritis that results from the disruption of collagen α345(IV) heterotrimerization caused by mutation in COL4A3, COL4A4 or COL4A5 genes. Many clinical studies have elucidated the correlation between genotype and phenotype, but there is still much ambiguity and insufficiency. Here, we focused on the α345(IV) heterotrimerization of α5(IV) missense mutant as a novel factor to further understand the pathophysiology of Alport syndrome. Methods We selected 9 α5(IV) missense mutants with typical glycine substitutions that clinically differed in disease progression. To quantify the trimerization of each mutant, split nanoluciferase-fused α3/α5 mutants and α4 were transfected into the cells, and intracellular and secreted heterotrimer were detected by luminescence using an assay that we developed previously. Results Trimer formation and secretion patterns tended to be similar to the wild type in most of the mutations that did not show proteinuria at a young age. On the other hand, trimer secretion was significantly reduced in all the mutations that showed proteinuria and early onset of renal failure. One of these mutants has low ability of intracellular trimer formation, and the others had the defect of low-level secretion. In addition, the mutant that is assumed to be nonpathogenic has similar trimer formation and secretion pattern as wild-type α5(IV). Conclusion The result of cell-based α345(IV) heterotrimer formation assay was largely correlated with clinical genotype–phenotype. These trimerization assessments provide additional phenotypic considerations and may help to distinguish between pathogenic and nonpathogenic mutations.
Collapse
|
13
|
Abstract
Alport syndrome (AS) is a progressive hereditary renal disease that is characterized by sensorineural hearing loss and ocular abnormalities. It is divided into three modes of inheritance, namely, X-linked Alport syndrome (XLAS), autosomal recessive AS (ARAS), and autosomal dominant AS (ADAS). XLAS is caused by pathogenic variants in COL4A5, while ADAS and ARAS are caused by those in COL4A3/COL4A4. Diagnosis is conventionally made pathologically, but recent advances in comprehensive genetic analysis have enabled genetic testing to be performed for the diagnosis of AS as first-line diagnosis. Because of these advances, substantial information about the genetics of AS has been obtained and the genetic background of this disease has been revealed, including genotype-phenotype correlations and mechanisms of onset in some male XLAS cases that lead to milder phenotypes of late-onset end-stage renal disease (ESRD). There is currently no radical therapy for AS and treatment is only performed to delay progression to ESRD using nephron-protective drugs. Angiotensin-converting enzyme inhibitors can remarkably delay the development of ESRD. Recently, some new drugs for this disease have entered clinical trials or been developed in laboratories. In this article, we review the diagnostic strategy, genotype-phenotype correlation, mechanisms of onset of milder phenotypes, and treatment of AS, among others.
Collapse
|
14
|
Nozu K, Nakanishi K, Abe Y, Udagawa T, Okada S, Okamoto T, Kaito H, Kanemoto K, Kobayashi A, Tanaka E, Tanaka K, Hama T, Fujimaru R, Miwa S, Yamamura T, Yamamura N, Horinouchi T, Minamikawa S, Nagata M, Iijima K. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol 2018; 23:158-168. [PMID: 30128941 PMCID: PMC6510800 DOI: 10.1007/s10157-018-1629-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/06/2018] [Indexed: 01/15/2023]
Abstract
Alport syndrome (AS) is a progressive hereditary renal disease that is characterized by sensorineural hearing loss and ocular abnormalities. It is divided into three modes of inheritance, namely, X-linked Alport syndrome (XLAS), autosomal recessive AS (ARAS), and autosomal dominant AS (ADAS). XLAS is caused by pathogenic variants in COL4A5, while ADAS and ARAS are caused by those in COL4A3/COL4A4. Diagnosis is conventionally made pathologically, but recent advances in comprehensive genetic analysis have enabled genetic testing to be performed for the diagnosis of AS as first-line diagnosis. Because of these advances, substantial information about the genetics of AS has been obtained and the genetic background of this disease has been revealed, including genotype–phenotype correlations and mechanisms of onset in some male XLAS cases that lead to milder phenotypes of late-onset end-stage renal disease (ESRD). There is currently no radical therapy for AS and treatment is only performed to delay progression to ESRD using nephron-protective drugs. Angiotensin-converting enzyme inhibitors can remarkably delay the development of ESRD. Recently, some new drugs for this disease have entered clinical trials or been developed in laboratories. In this article, we review the diagnostic strategy, genotype–phenotype correlation, mechanisms of onset of milder phenotypes, and treatment of AS, among others.
Collapse
Affiliation(s)
- Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Yoshifusa Abe
- Children Medical Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Tomohiro Udagawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Okada
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Takayuki Okamoto
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Katsuyoshi Kanemoto
- Department of Pediatrics, National Hospital Organization Chiba-East Hospital, Chiba, Japan
| | - Anna Kobayashi
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - Eriko Tanaka
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Tanaka
- Department of Nephrology, Aichi Children's Health and Medical Center, Obu, Japan
| | - Taketsugu Hama
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Rika Fujimaru
- Department of Pediatrics, Osaka City General Hospital, Izumi, Japan
| | - Saori Miwa
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Natsusmi Yamamura
- Department of Pediatric Nephrology and Metabolism, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shogo Minamikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
15
|
Horinouchi T, Nozu K, Yamamura T, Minamikawa S, Omori T, Nakanishi K, Fujimura J, Ashida A, Kitamura M, Kawano M, Shimabukuro W, Kitabayashi C, Imafuku A, Tamagaki K, Kamei K, Okamoto K, Fujinaga S, Oka M, Igarashi T, Miyazono A, Sawanobori E, Fujimaru R, Nakanishi K, Shima Y, Matsuo M, Ye MJ, Nozu Y, Morisada N, Kaito H, Iijima K. Detection of Splicing Abnormalities and Genotype-Phenotype Correlation in X-linked Alport Syndrome. J Am Soc Nephrol 2018; 29:2244-2254. [PMID: 29959198 DOI: 10.1681/asn.2018030228] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/23/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND X-linked Alport syndrome (XLAS) is a progressive hereditary nephropathy caused by mutations in the COL4A5 gene. Genotype-phenotype correlation in male XLAS is relatively well established; relative to truncating mutations, nontruncating mutations exhibit milder phenotypes. However, transcript comparison between XLAS cases with splicing abnormalities that result in a premature stop codon and those with nontruncating splicing abnormalities has not been reported, mainly because transcript analysis is not routinely conducted in patients with XLAS. METHODS We examined transcript expression for all patients with suspected splicing abnormalities who were treated at one hospital between January of 2006 and July of 2017. Additionally, we recruited 46 males from 29 families with splicing abnormalities to examine genotype-phenotype correlation in patients with truncating (n=21, from 14 families) and nontruncating (n=25, from 15 families) mutations at the transcript level. RESULTS We detected 41 XLAS families with abnormal splicing patterns and described novel XLAS atypical splicing patterns (n=14) other than exon skipping caused by point mutations in the splice consensus sequence. The median age for developing ESRD was 20 years (95% confidence interval, 14 to 23 years) among patients with truncating mutations and 29 years (95% confidence interval, 25 to 40 years) among patients with nontruncating mutations (P=0.001). CONCLUSIONS We report unpredictable atypical splicing in the COL4A5 gene in male patients with XLAS and reveal that renal prognosis differs significantly for patients with truncating versus nontruncating splicing abnormalities. Our results suggest that splicing modulation should be explored as a therapy for XLAS with truncating mutations.
Collapse
Affiliation(s)
- Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan;
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shogo Minamikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Omori
- Clinical and Translational Research Center, Kobe University Hospital, Kobe, Japan
| | - Keita Nakanishi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junya Fujimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical College, Osaka, Japan
| | - Mineaki Kitamura
- Department of Nephrology, Nagasaki University Hospital, Nagasaki, Japan
| | - Mitsuhiro Kawano
- Department of Rheumatology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Wataru Shimabukuro
- Department of Pediatrics, Japan Community Health Care Organization Kyushu Hospital, Sapporo, Hokkaido, Japan
| | - Chizuko Kitabayashi
- Department of Nephrology and Hypertension, Osaka City General Hospital, Osaka, Japan
| | - Aya Imafuku
- Department of Nephrology, Toranomon Hospital, Tokyo, Japan
| | - Keiichi Tamagaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjirou Okamoto
- Department of Urology, Ehime Prefectural Central Hospital, Ehime, Japan
| | - Shuichiro Fujinaga
- Division of Nephrology, Saitama Children's Medical Center, Saitama, Japan
| | - Masafumi Oka
- Department of Pediatrics, Faculty of Medicine Saga University, Saga, Japan
| | - Toru Igarashi
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Akinori Miyazono
- Department of Pediatrics, Faculty of Medicine Kagoshima University, Kagoshima, Japan
| | - Emi Sawanobori
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan
| | - Rika Fujimaru
- Department of Pediatrics, Osaka General Hospital, Osaka, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan; and
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Ming Juan Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshimi Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|