1
|
Torun Bayram M, Kavukcu S. Renal glucosuria in children. World J Clin Pediatr 2025; 14:91622. [DOI: 10.5409/wjcp.v14.i1.91622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
The kidneys play a critical role in maintaining glucose homeostasis. Under normal renal tubular function, most of the glucose filtered from the glomeruli is reabsorbed in the proximal tubules, leaving only trace amounts in the urine. Glycosuria can occur as a symptom of generalized proximal tubular dysfunction or when the reabsorption threshold is exceeded or the glucose threshold is reduced, as seen in familial renal glycosuria (FRG). FRG is characterized by persistent glycosuria despite normal blood glucose levels and tubular function and is primarily associated with mutations in the sodium/glucose cotransporter 5A2 gene, which encodes the sodium-glucose cotransporter (SGLT) 2. Inhibiting SGLTs has been proposed as a novel treatment strategy for diabetes, and since FRG is often considered an asymptomatic and benign condition, it has inspired preclinical and clinical studies using SGLT2 inhibitors in type 2 diabetes. However, patients with FRG may exhibit clinical features such as lower body weight or height, altered systemic blood pressure, diaper dermatitis, aminoaciduria, decreased serum uric acid levels, and hypercalciuria. Further research is needed to fully understand the pathophysiology, molecular genetics, and clinical manifestations of renal glucosuria.
Collapse
Affiliation(s)
- Meral Torun Bayram
- Division of Nephrology, Department of Pediatrics, Dokuz Eylül University, School of Medicine, Inciralti-Balcova 35340, Izmir, Türkiye
| | - Salih Kavukcu
- Division of Nephrology, Department of Pediatrics, Dokuz Eylül University, School of Medicine, Inciralti-Balcova 35340, Izmir, Türkiye
| |
Collapse
|
2
|
Liu X, Zhou Y, Lu Z, Yang F, Wang Y, Zhang S, Zhang J, Zou H, Lin M. Network Pharmacology and Metabolomics Reveal Anti-Ferroptotic Effects of Curcumin in Acute Kidney Injury. Drug Des Devel Ther 2024; 18:6223-6241. [PMID: 39722679 PMCID: PMC11669278 DOI: 10.2147/dddt.s486286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Acute kidney injury (AKI) is linked to high rates of mortality and morbidity worldwide thereby posing a major public health problem. Evidences suggest that ferroptosis is the primary cause of AKI, while inhibition of monoamine oxidase A(MAOA) and 5-hydroxytryptamine were recognized as the defender of ferroptosis. Curcumin (Cur) is a natural polyphenol and the main bioactive compound of Curcuma longa, which has been found nephroprotection in AKI. However, the potential mechanism of Cur in alleviating AKI ferroptosis remains unknown. Objective This study aims to investigate the effects of Cur on AKI ferroptosis. Methods Folic acid (FA)-induced AKI mouse model and erastin/(rsl-3)-induced HK-2 model were constructed to assess the renoprotection of Cur. The nuclear magnetic resonance (NMR)-based metabolomics coupled network pharmacology approach was used to explore the metabolic regulation and potential targets of Cur. Molecular docking and enzyme activity assay was carried out to evaluate the effects of Cur on MAOA. Results Our results showed that in vivo Cur preserved renal functions in AKI mice by lowering levels of serum creatinine, blood urea nitrogen, while in vitro ameliorated the cell viability of HK-2 cells damaged by ferroptosis. Mechanistic studies indicated that Cur protected AKI against ferroptosis via inhibition of MAOA thereby regulating 5-hydroxy-L-tryptophan metabolism. Conclusion Our study for the first time clarified that Cur might acts as a MAOA inhibitor and alleviates ferroptosis in AKI mice, laying a scientific foundation for new insights of clinical therapy on AKI.
Collapse
Affiliation(s)
- Xi Liu
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Yu Zhou
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ziyi Lu
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| | - Fenglin Yang
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| | - Yizhi Wang
- School of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211169, People’s Republic of China
| | - Sijin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People’s Republic of China
| | - Jinwen Zhang
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| | - Hong Zou
- Physical Education Department, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Min Lin
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| |
Collapse
|
3
|
Bayoumi AA, Ahmad EA, Ibrahim IAAEH, Mahmoud MF, Elbatreek MH. Inhibition of both NOX and TNF-α exerts substantial renoprotective effects in renal ischemia reperfusion injury rat model. Eur J Pharmacol 2024; 970:176507. [PMID: 38492877 DOI: 10.1016/j.ejphar.2024.176507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND AIMS Acute kidney injury (AKI) due to renal ischemia-reperfusion injury (RIRI) is associated with high morbidity and mortality, with no renoprotective drug available. Previous research focused on single drug targets, yet this approach has not reached translational success. Given the complexity of this condition, we aimed to identify a disease module and apply a multitarget network pharmacology approach. METHODS Identification of a disease module with potential drug targets was performed utilizing Disease Module Detection algorithm using NADPH oxidases (NOXs) as seeds. We then assessed the protective effect of a multitarget network pharmacology targeting the identified module in a rat model of RIRI. Rats were divided into five groups; sham, RIRI, and RIRI treated with setanaxib (NOX inhibitor, 10 mg/kg), etanercept (TNF-α inhibitor, 10 mg/kg), and setanaxib and etanercept (5 mg/kg each). Kidney functions, histopathological changes and oxidative stress markers (MDA and reduced GSH) were assessed. Immunohistochemistry of inflammatory (TNF-α, NF-κB) apoptotic (cCasp-3, Bax/Bcl 2), fibrotic (α-SMA) and proteolysis (MMP-9) markers was performed. RESULTS Our in-silico analysis yielded a disease module with TNF receptor 1 (TNFR1A) as the closest target to both NOX1 and NOX2. Targeting this module by a low-dose combination of setanaxib, and etanercept, resulted in a synergistic effect and ameliorated ischemic AKI in rats. This was evidenced by improved kidney function and reduced expression of inflammatory, apoptotic, proteolytic and fibrotic markers. CONCLUSIONS Our findings show that applying a multitarget network pharmacology approach allows synergistic renoprotective effect in ischemic AKI and might pave the way towards translational success.
Collapse
Affiliation(s)
- Amina A Bayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Enssaf Ahmad Ahmad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
4
|
Moyal A, Nazemian R, Colon EP, Zhu L, Benzar R, Palmer NR, Craycroft M, Hausladen A, Premont RT, Stamler JS, Klick J, Reynolds JD. Renal dysfunction in adults following cardiopulmonary bypass is linked to declines in S-nitroso hemoglobin: a case series. Ann Med Surg (Lond) 2024; 86:2425-2431. [PMID: 38694342 PMCID: PMC11060257 DOI: 10.1097/ms9.0000000000001880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 05/04/2024] Open
Abstract
Background Impaired kidney function is frequently observed in patients following cardiopulmonary bypass (CPB). Our group has previously linked blood transfusion to acute declines in S-nitroso haemoglobin (SNO-Hb; the main regulator of tissue oxygen delivery), reductions in intraoperative renal blood flow, and postoperative kidney dysfunction. While not all CPB patients receive blood, kidney injury is still common. We hypothesized that the CPB procedure itself may negatively impact SNO-Hb levels leading to renal dysfunction. Materials and methods After obtaining written informed consent, blood samples were procured immediately before and after CPB, and on postoperative day (POD) 1. SNO-Hb levels, renal function (estimated glomerular filtration rate; eGFR), and plasma erythropoietin (EPO) concentrations were quantified. Additional outcome data were extracted from the patients' medical records. Results Twenty-seven patients were enroled, three withdrew consent, and one was excluded after developing bacteremia. SNO-Hb levels declined after surgery and were directly correlated with declines in eGFR (R=0.48). Conversely, plasma EPO concentrations were elevated and inversely correlated with SNO-Hb (R=-0.53) and eGFR (R=-0.55). Finally, ICU stay negatively correlated with SNO-Hb concentration (R=-0.32). Conclusion SNO-Hb levels are reduced following CPB in the absence of allogenic blood transfusion and are predictive of decreased renal function and prolonged ICU stay. Thus, therapies directed at maintaining or increasing SNO-Hb levels may improve outcomes in adult patients undergoing cardiac surgery.
Collapse
Affiliation(s)
| | - Ryan Nazemian
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Edwin Pacheco Colon
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Lin Zhu
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Ruth Benzar
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | | | | | - Alfred Hausladen
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Richard T. Premont
- Institute for Transformative Molecular Medicine
- Cardiology, School of Medicine Case Western Reserve University
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine
- Cardiology, School of Medicine Case Western Reserve University
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| | - John Klick
- Departments ofAnesthesiology & Perioperative Medicine
| | - James D. Reynolds
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
5
|
Wang J, Luo C, Luo M, Zhou S, Kuang G. Targets and Mechanisms of Xuebijing in the Treatment of Acute Kidney Injury Associated with Sepsis: A Network Pharmacology-based Study. Curr Comput Aided Drug Des 2024; 20:752-763. [PMID: 37211841 DOI: 10.2174/1573409919666230519121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/05/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Sepsis is a state of the systemic inflammatory response of the host induced by infection, frequently affecting numerous organs and producing varied degrees of damage. The most typical consequence of sepsis is sepsis-associated acute kidney injury(SA-AKI). Xuebijing is developed based on XueFuZhuYu Decoction. Five Chinese herbal extracts, including Carthami Flos, Radix Paeoniae Rubra, Chuanxiong Rhizoma, Radix Salviae, and Angelicae Sinensis Radix, make up the majority of the mixture. It has properties that are anti-inflammatory and anti-oxidative stress. Xuebijing is an effective medication for the treatment of SA-AKI, according to clinical research. But its pharmacological mechanism is still not completely understood. METHODS First, the composition and target information of Carthami Flos, Radix Paeoniae Rubra, Chuanxiong Rhizoma, Radix Salviae, and Angelicae Sinensis Radix were collected from the TCMSP database, while the therapeutic targets of SA-AKI were exported from the gene card database. To do a GO and KEGG enrichment analysis, we first screened the key targets using a Venn diagram and Cytoscape 3.9.1. To assess the binding activity between the active component and the target, we lastly used molecular docking. RESULTS For Xuebijing, a total of 59 active components and 267 corresponding targets were discovered, while for SA-AKI, a total of 1,276 targets were connected. There were 117 targets in all that was shared by goals for active ingredients and objectives for diseases. The TNF signaling pathway and the AGE-RAGE pathway were later found to be significant pathways for the therapeutic effects of Xuebijing by GO analysis and KEGG pathway analysis. Quercetin, luteolin, and kaempferol were shown to target and modulate CXCL8, CASP3, and TNF, respectively, according to molecular docking results. CONCLUSION This study predicts the mechanism of action of the active ingredients of Xuebijing in the treatment of SA-AKI, which provides a basis for future applications of Xuebijing and studies targeting the mechanism.
Collapse
Affiliation(s)
- Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chengyu Luo
- Department of Clinical Medicine, Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Mengling Luo
- Department of Clinical Medicine, Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Siwen Zhou
- Department of Clinical Medicine, Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Guicheng Kuang
- Department of Clinical Medicine, Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Zhai J, Chen Z, Zhu Q, Guo Z, Wang N, Zhang C, Deng H, Wang S, Yang G. The Protective Effects of Curcumin against Renal Toxicity. Curr Med Chem 2024; 31:5661-5669. [PMID: 38549536 DOI: 10.2174/0109298673271161231121061148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 09/25/2024]
Abstract
Curcumin is a naturally polyphenolic compound used for hepatoprotective, thrombosuppressive, neuroprotective, cardioprotective, antineoplastic, antiproliferative, hypoglycemic, and antiarthritic effects. Kidney disease is a major public health problem associated with severe clinical complications worldwide. The protective effects of curcumin against nephrotoxicity have been evaluated in several experimental models. In this review, we discussed how curcumin exerts its protective effect against renal toxicity and also illustrated the mechanisms of action such as anti-inflammatory, antioxidant, regulating cell death, and anti-fibrotic. This provides new perspectives and directions for the clinical guidance and molecular mechanisms for the treatment of renal diseases by curcumin.
Collapse
Affiliation(s)
- Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| |
Collapse
|
7
|
Kamt SF, Liu J, Yan LJ. Renal-Protective Roles of Lipoic Acid in Kidney Disease. Nutrients 2023; 15:nu15071732. [PMID: 37049574 PMCID: PMC10097220 DOI: 10.3390/nu15071732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The kidney is a crucial organ that eliminates metabolic waste and reabsorbs nutritious elements. It also participates in the regulation of blood pressure, maintenance of electrolyte balance and blood pH homeostasis, as well as erythropoiesis and vitamin D maturation. Due to such a heavy workload, the kidney is an energy-demanding organ and is constantly exposed to endogenous and exogenous insults, leading to the development of either acute kidney injury (AKI) or chronic kidney disease (CKD). Nevertheless, there are no therapeutic managements to treat AKI or CKD effectively. Therefore, novel therapeutic approaches for fighting kidney injury are urgently needed. This review article discusses the role of α-lipoic acid (ALA) in preventing and treating kidney diseases. We focus on various animal models of kidney injury by which the underlying renoprotective mechanisms of ALA have been unraveled. The animal models covered include diabetic nephropathy, sepsis-induced kidney injury, renal ischemic injury, unilateral ureteral obstruction, and kidney injuries induced by folic acid and metals such as cisplatin, cadmium, and iron. We highlight the common mechanisms of ALA’s renal protective actions that include decreasing oxidative damage, increasing antioxidant capacities, counteracting inflammation, mitigating renal fibrosis, and attenuating nephron cell death. It is by these mechanisms that ALA achieves its biological function of alleviating kidney injury and improving kidney function. Nevertheless, we also point out that more comprehensive, preclinical, and clinical studies will be needed to make ALA a better therapeutic agent for targeting kidney disorders.
Collapse
Affiliation(s)
- Sulin F. Kamt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
8
|
Wang Y, Jiang H, Zhang L, Yao P, Wang S, Yang Q. Nanosystems for oxidative stress regulation in the anti-inflammatory therapy of acute kidney injury. Front Bioeng Biotechnol 2023; 11:1120148. [PMID: 36845189 PMCID: PMC9949729 DOI: 10.3389/fbioe.2023.1120148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome that results from a rapid decline in renal structure or renal functional impairment with the main pathological feature of sublethal and lethal damage to renal tubular cells. However, many potential therapeutic agents cannot achieve the desired therapeutic effect because of their poor pharmacokinetics and short retention time in the kidneys. With the recent emergence and progress of nanotechnology, nanodrugs with unique physicochemical properties could prolong circulation time, enhance efficient targeted delivery, and elevate the accumulation of therapeutics that can cross the glomerular filtration barrier and indicate comprehensive application prospects in the prevention and treatment of AKI. In this review, various types of nanosystems (such as liposomes, polymeric nanosystems, inorganic nanoparticles and cell-derived extracellular vesicles) are designed and applied to improve the pharmacokinetics of drug formation, which could further relieve the burden on the kidneys caused by the final cumulative dose of drugs in conventional treatments. Moreover, the passive or active targeting effect of nanosystems can also reduce the total therapeutic dose and off-target adverse effects on other organs. Nanodelivery systems for treating AKI that alleviate oxidative stress-induced renal cell damage and regulate the inflammatory kidney microenvironment are summarized.
Collapse
Affiliation(s)
- Yue Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hong Jiang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Longyao Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peng Yao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Shaoqing Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| | - Qian Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| |
Collapse
|
9
|
Abstract
An increased intraabdominal pressure, particularly when occurring during periods of hemodynamic instability or fluid overload, is regarded as a major contributor to acute kidney injury (AKI) in intensive care units. During abdominal laparoscopic procedures, intraoperative insufflation pressures up to 15 mmHg are applied, to enable visualization and surgical manipulation but with the potential to compromise net renal perfusion. Despite the widely acknowledged renal arterial autoregulation, net arterial perfusion pressure is known to be narrow, and the effective renal medullary perfusion is disproportionately impacted by venous and lymphatic congestion. At present, the potential risk factors, mitigators and risk-stratification of AKI during surgical pneumoperitoneum formation received relatively limited attention among nephrologists and represent an opportunity to look beyond mere blood pressure and intake-output balances. Careful charting and reporting duration and extent of surgical pneumoperitoneum represents an opportunity for anesthesia teams to better communicate intraoperative factors affecting renal outcomes for the postoperative clinical teams. In this current article, the authors are integrating preclinical data and clinical experience to provide a better understanding to optimize renal perfusion during surgeries. Future studies should carefully consider intrabdominal insufflation pressure as a key variable when assessing outcomes and blood pressure goals in these settings.
Collapse
|
10
|
Hoseini azad SA, Moshiri M, Roohbakhsh A, Shakeri A, Fatemi Shandiz A, Etemad L. Efficacy of orally administered montmorillonite in myoglobinuric acute renal failure model in male rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:753-759. [PMID: 37396944 PMCID: PMC10311980 DOI: 10.22038/ijbms.2023.67985.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/20/2023] [Indexed: 07/04/2023]
Abstract
Objectives Acute kidney injury can be associated with serious consequences and therefore early treatment is critical to decreasing mortality and morbidity rate. We evaluated the effect of montmorillonite, the clay with strong cation exchange capacity, on the AKI model in rats. Materials and Methods Glycerol (50% solution, 10 ml/kg) was injected in the rat hind limbs to induce AKI. 24 hr after induction of acute kidney injury, the rats received oral doses of montmorillonite (0.5 g/kg or 1 g/kg), or sodium polystyrene sulfonate (1 g/kg) for three consecutive days. Results Glycine induced acute kidney injury in rats with high levels of urea (336.60± 28.19 mg/dl), creatinine (4.10± 0.21 mg/dl), potassium (6.15 ± 0.28 mEq/L), and calcium (11.52 ± 0.19 mg/dl). Both doses of montmorillonite (0.5 and 1 g/kg) improved the serum urea (222.66± 10.02 and 170.20±8.06, P<0.05), creatinine (1.86±0.1, 2.05± 0.11, P<0.05), potassium (4.68 ± 0.4, 4.73 ± 0.34, P<0.001) and calcium (11.15 ± 0.17, 10.75 ± 0.25, P<0.01) levels. Treatment with montmorillonite especially at a high dose reduced the kidney pathological findings including, tubular necrosis, amorphous protein aggregation, and cell shedding into the distal and proximal tubule lumen. However, administration of SPS could not significantly decrease the severity of damages. Conclusion According to the results of this study, as well as the physicochemical properties of montmorillonite, such as high ion exchange capacity and low side effects, montmorillonite can be a low-cost and effective treatment option to reduce and improve the complications of acute kidney injury. However, the efficacy of this compound in human and clinical studies needs to be investigated.
Collapse
Affiliation(s)
| | - Mohammad Moshiri
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Chen Z, Qi F, Qiu W, Wu C, Zong M, Ge M, Xu D, You Y, Zhu Y, Zhang Z, Lin H, Shi J. Hydrogenated Germanene Nanosheets as an Antioxidative Defense Agent for Acute Kidney Injury Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202933. [PMID: 36202760 PMCID: PMC9685437 DOI: 10.1002/advs.202202933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Acute kidney injury (AKI) is a sudden kidney dysfunction caused by aberrant reactive oxygen species (ROS) metabolism that results in high clinical mortality. The rapid development of ROS scavengers provides new opportunities for AKI treatment. Herein, the use of hydrogen-terminated germanene (H-germanene) nanosheets is reported as an antioxidative defense nanoplatform against AKI in mice. The simulation results show that 2D H-germanene can effectively scavenge ROS through free radical adsorption and subsequent redox reactions. In particular, the H-germanene exhibits high accumulation in injured kidneys, thereby offering a favorable opportunity for treating renal diseases. In the glycerol-induced murine AKI model, H-germanene delivers robust antioxidative protection against ROS attack to maintain normal kidney function indicators without negative influence in vivo. This positive in vivo antioxidative defense in living animals demonstrates that the present H-germanene nanoplatform is a powerful antioxidant against AKI and various anti-inflammatory diseases.
Collapse
Affiliation(s)
- Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ming Zong
- Department of Clinical LaboratoryShanghai East HospitalTongji University School of MedicineShanghai200120P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ya‐Xuan Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| | - Zhimin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| |
Collapse
|
12
|
Chen Z, Qi F, Qiu W, Wu C, Zong M, Ge M, Xu D, You Y, Zhu Y, Zhang Z, Lin H, Shi J. Hydrogenated Germanene Nanosheets as an Antioxidative Defense Agent for Acute Kidney Injury Treatment. ADVANCED SCIENCE 2022; 9. [DOI: doi.org/10.1002/advs.202202933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 09/08/2023]
Abstract
AbstractAcute kidney injury (AKI) is a sudden kidney dysfunction caused by aberrant reactive oxygen species (ROS) metabolism that results in high clinical mortality. The rapid development of ROS scavengers provides new opportunities for AKI treatment. Herein, the use of hydrogen‐terminated germanene (H‐germanene) nanosheets is reported as an antioxidative defense nanoplatform against AKI in mice. The simulation results show that 2D H‐germanene can effectively scavenge ROS through free radical adsorption and subsequent redox reactions. In particular, the H‐germanene exhibits high accumulation in injured kidneys, thereby offering a favorable opportunity for treating renal diseases. In the glycerol‐induced murine AKI model, H‐germanene delivers robust antioxidative protection against ROS attack to maintain normal kidney function indicators without negative influence in vivo. This positive in vivo antioxidative defense in living animals demonstrates that the present H‐germanene nanoplatform is a powerful antioxidant against AKI and various anti‐inflammatory diseases.
Collapse
Affiliation(s)
- Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
| | - Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ming Zong
- Department of Clinical Laboratory Shanghai East Hospital Tongji University School of Medicine Shanghai 200120 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ya‐Xuan Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| | - Zhimin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| |
Collapse
|
13
|
Hinze C, Kocks C, Leiz J, Karaiskos N, Boltengagen A, Cao S, Skopnik CM, Klocke J, Hardenberg JH, Stockmann H, Gotthardt I, Obermayer B, Haghverdi L, Wyler E, Landthaler M, Bachmann S, Hocke AC, Corman V, Busch J, Schneider W, Himmerkus N, Bleich M, Eckardt KU, Enghard P, Rajewsky N, Schmidt-Ott KM. Single-cell transcriptomics reveals common epithelial response patterns in human acute kidney injury. Genome Med 2022; 14:103. [PMID: 36085050 PMCID: PMC9462075 DOI: 10.1186/s13073-022-01108-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/12/2022] [Indexed: 01/07/2023] Open
Abstract
Background Acute kidney injury (AKI) occurs frequently in critically ill patients and is associated with adverse outcomes. Cellular mechanisms underlying AKI and kidney cell responses to injury remain incompletely understood. Methods We performed single-nuclei transcriptomics, bulk transcriptomics, molecular imaging studies, and conventional histology on kidney tissues from 8 individuals with severe AKI (stage 2 or 3 according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria). Specimens were obtained within 1–2 h after individuals had succumbed to critical illness associated with respiratory infections, with 4 of 8 individuals diagnosed with COVID-19. Control kidney tissues were obtained post-mortem or after nephrectomy from individuals without AKI. Results High-depth single cell-resolved gene expression data of human kidneys affected by AKI revealed enrichment of novel injury-associated cell states within the major cell types of the tubular epithelium, in particular in proximal tubules, thick ascending limbs, and distal convoluted tubules. Four distinct, hierarchically interconnected injured cell states were distinguishable and characterized by transcriptome patterns associated with oxidative stress, hypoxia, interferon response, and epithelial-to-mesenchymal transition, respectively. Transcriptome differences between individuals with AKI were driven primarily by the cell type-specific abundance of these four injury subtypes rather than by private molecular responses. AKI-associated changes in gene expression between individuals with and without COVID-19 were similar. Conclusions The study provides an extensive resource of the cell type-specific transcriptomic responses associated with critical illness-associated AKI in humans, highlighting recurrent disease-associated signatures and inter-individual heterogeneity. Personalized molecular disease assessment in human AKI may foster the development of tailored therapies.
Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01108-9.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christine Kocks
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Janna Leiz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nikos Karaiskos
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Anastasiya Boltengagen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Shuang Cao
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christopher Mark Skopnik
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Jan-Hendrik Hardenberg
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Helena Stockmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Inka Gotthardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | | | - Laleh Haghverdi
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Sebastian Bachmann
- Institute for Functional Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Berlin Institute of Health, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Jonas Busch
- Department of Urology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Wolfgang Schneider
- Department of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany. .,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany. .,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
14
|
Ruas AFL, Lébeis GM, de Castro NB, Palmeira VA, Costa LB, Lanza K, Simões E Silva AC. Acute kidney injury in pediatrics: an overview focusing on pathophysiology. Pediatr Nephrol 2022; 37:2037-2052. [PMID: 34845510 DOI: 10.1007/s00467-021-05346-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/12/2023]
Abstract
Acute kidney injury (AKI) is defined as an abrupt decline in glomerular filtration rate, with increased serum creatinine and nitrogenous waste products due to several possible etiologies. Incidence in the pediatric population is estimated to be 3.9 per 1,000 hospitalizations, and prevalence among children admitted to intensive care units is 26.9%. Despite being a condition with important incidence and morbimortality, further evidence on pathophysiology and management among the pediatric population is still lacking. This narrative review aimed to summarize and discuss current data on AKI pathophysiology in the pediatric population, considering all the physiological particularities of this age range and common etiologies. Additionally, we reported current diagnostic tools, novel biomarkers, and newly proposed medications that have been studied with the aim of early diagnosis and appropriate treatment of AKI in the future.
Collapse
Affiliation(s)
- Ana Flávia Lima Ruas
- Interdisciplinary Laboratory of Medical Investigation, Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Alfredo Balena Avenue, Number 190, 2nd floor, Room #281, Belo Horizonte, MG, 30130100, Brazil
| | - Gabriel Malheiros Lébeis
- Interdisciplinary Laboratory of Medical Investigation, Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Alfredo Balena Avenue, Number 190, 2nd floor, Room #281, Belo Horizonte, MG, 30130100, Brazil
| | - Nicholas Bianco de Castro
- Interdisciplinary Laboratory of Medical Investigation, Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Alfredo Balena Avenue, Number 190, 2nd floor, Room #281, Belo Horizonte, MG, 30130100, Brazil
| | - Vitória Andrade Palmeira
- Interdisciplinary Laboratory of Medical Investigation, Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Alfredo Balena Avenue, Number 190, 2nd floor, Room #281, Belo Horizonte, MG, 30130100, Brazil
| | - Larissa Braga Costa
- Interdisciplinary Laboratory of Medical Investigation, Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Alfredo Balena Avenue, Number 190, 2nd floor, Room #281, Belo Horizonte, MG, 30130100, Brazil
| | - Katharina Lanza
- Interdisciplinary Laboratory of Medical Investigation, Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Alfredo Balena Avenue, Number 190, 2nd floor, Room #281, Belo Horizonte, MG, 30130100, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Alfredo Balena Avenue, Number 190, 2nd floor, Room #281, Belo Horizonte, MG, 30130100, Brazil.
| |
Collapse
|
15
|
Cai Y, Huang C, Zhou M, Xu S, Xie Y, Gao S, Yang Y, Deng Z, Zhang L, Shu J, Yan T, Wan CC. Role of curcumin in the treatment of acute kidney injury: research challenges and opportunities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154306. [PMID: 35809376 DOI: 10.1016/j.phymed.2022.154306] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication in clinical inpatients, and it continues a high morbidity and mortality rate despite many clinical treatment measures. AKI is triggered by infections, surgery, heavy metal exposure and drug side effects, but current chemical drugs often fall short of expectations for AKI treatment and have toxic side effects. Therefore, finding new interventions and treatments, especially of natural origin, is of remarkable clinical significance and application. The herbal monomer curcumin is a natural phenolic compound extracted from the plant Curcuma longa and showed various biological activities, including AKI. Furthermore, recent studies have shown that curcumin restores renal function by modulating the immune system and the release of inflammatory mediators, scavenging oxygen free radicals, reducing apoptosis and improving mitochondrial dynamics. However, curcumin has a low bioavailability, which limits its clinical application. For this reason, it is essential to investigate the therapeutic effects and molecular mechanisms of curcumin in AKI, as well as to improve its bioavailability for curcumin formulation development and clinical application. PURPOSE This review summarizes the sources, pharmacokinetics, and limitations in the clinical application of curcumin and explores methods to optimize its bioavailability using nanotechnology. In particular, the therapeutic effects and molecular mechanisms of curcumin on AKI are highlighted to provide a theoretical basis for AKI treatment in clinical practices. METHODS This review was specifically searched by means of a search of three databases (Web of Science, PubMed and Science Direct), till December 2021. Search terms were "Curcumin", "Acute kidney injury", "AKI", " Pharmacokinetics", "Mitochondria" and "Nano formulations". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review) RESULTS: Studies have shown that curcumin responded to AKI-induced renal injury and restored renal tubular epithelial cell function by affecting multiple signaling pathways in AKI models induced by factors such as cisplatin, lipopolysaccharide, ischemia/reperfusion, gentamicin and potassium dichromate. Curcumin was able to affect NF-κB signaling pathway and reduce the expression of IL-1β, IL-6, IL-8 and TNF-α, thus preventing renal inflammatory injury. In the prevention of renal tubular oxidative damage, curcumin reduced ROS production by activating the activity of Nrf2, HO-1 and PGC-1α. In addition, curcumin restored mitochondrial homeostasis by upregulating OPA1 and downregulating DRP1 expression, while reducing apoptosis by inhibiting the caspase-3 apoptotic pathway. In addition, due to the low bioavailability and poor absorption of curcumin in vivo, curcumin nanoformulations including nanoparticles, liposomes, and polymeric micelles are formulated to improve the bioavailability. CONCLUSION This review provides new ideas for the use of curcumin in the prevention and treatment of AKI by modulating the molecular targets of several different cellular signaling pathways.
Collapse
Affiliation(s)
- Yi Cai
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chaoming Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengyu Zhou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shiqi Xu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongwan Xie
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yantianyu Yang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zirong Deng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Libei Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Chunpeng Craig Wan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
16
|
Chevalier B, Neylon A. Acute Kidney Injury after "Zero Contrast" Tricuspid Edge-to-Edge Repair: More than a Procedural Complication? JACC Cardiovasc Interv 2022; 15:1946-1947. [PMID: 35997307 DOI: 10.1016/j.jcin.2022.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
17
|
Amarasiri SS, Attanayake AP, Mudduwa LKB, Jayatilaka KAPW. Nephroprotective mechanisms of Ambrette (Abelmoschus moschatus Medik.) leaf extracts in adriamycin mediated acute kidney injury model of Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115221. [PMID: 35339624 DOI: 10.1016/j.jep.2022.115221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ambrette (Abelmoschus moschatus Medik., Family: Malvaceae) is a common Ayurvedic herbal medicine used in the treatment of kidney-related diseases, in the forms of tea, medicated oil, medicated wine, etc., however, its nephroprotective mechanisms remain unexploited. AIM OF THE STUDY To investigate the mechanisms by which the hexane (A-HE), ethyl acetate (A-EE), butanol (A-BE), and aqueous (A-WE) leaf extracts of Ambrette protect against the adriamycin-mediated acute kidney injury in Wistar rats. MATERIALS AND METHODS A-HE, A-EE, A-BE, A-WE, and fosinopril sodium were administered at therapeutically effective doses (55, 75, 60, 140, 0.09 mg/kg) to adriamycin-induced (5 mg/kg, ip) Wistar rats for 28 consecutive days. RESULTS Oral administration of the selected extracts of A. moschatus resulted in amelioration of kidney injury as observed by the significant changes of biomarkers of kidney function in serum and in urine, biochemical parameters of oxidative stress, and inflammation in kidney homogenates (p < 0.05). Furthermore, the administration of plant extracts caused a significant reduction in total kidney injury scores in H and E stained kidney sections (p < 0.05). The immunohistochemical expression of the inflammatory marker, COX-2, and the pro-apoptotic marker, Bax, were attenuated and the expression of the anti-apoptotic marker, BCL-2, was increased. A-HE exerted superior nephroprotective effects over the other three extracts and the drug reference standard. CONCLUSIONS The findings revealed that Ambrette exerts promising protective effects against adriamycin-mediated acute kidney injury through antioxidant, anti-inflammatory, and anti-apoptosis pathways. A-HE might serve as a potential candidate for the development of therapeutic drug leads that will be beneficial in the treatment of acute kidney injury.
Collapse
Affiliation(s)
- Sachinthi S Amarasiri
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka.
| | - Anoja P Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| | - Lakmini K B Mudduwa
- Department of Pathology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| | | |
Collapse
|
18
|
Satalkar V, Swamy KV. Pathophysiology of acute kidney injury on a molecular level: A brief review. MGM JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4103/mgmj.mgmj_161_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
19
|
Assessment of the diagnostic ability of rifle classification and neutrophil gelatinase-associated lipocalin biomarker in detecting acute kidney injury in newborns at the intensive care unit. SRP ARK CELOK LEK 2022. [DOI: 10.2298/sarh210223032n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction/Objective. This study was designed to demonstrate the
association of the RIFLE classification and neutrophil gelatinase-associated
lipocalin (NGAL) in predicting of newborns with AKI. Methods. This was a
prospective study. We included 100 newborns suspected of having a kidney
injury. These newborns were admitted to the Intensive Care Unit (ICU) at the
University Clinic of Pediatrics from the period of two years. The severity
of the disease was determined by RIFLE classification. The biochemical
marker NGAL was included in this study because it is an early biomarker of
AKI in newborns. The statistical processing of the material was by methods
of descriptive statistics. Results. The prevalence rate of AKI was 6.25%,
but according to the RIFLE classification the prevalence was 8.7%. According
to RIFLE classification, we reported "risk" in 36%, "injury? in 50% and
?failure" in 14% of newborns with AKI. In newborns with perinatal asphyxia,
kidney injury was seen in 34% and 30%, making perinatal asphyxia the most
common predisposing factor. The difference in average value from the SNAPPE
2 result in newborns with AKI and the control group without AKI was
confirmed to be significant (p < 0.001). Also, there was a significant
difference p<0.001 between serum creatinine and urinary NGAL values NGAL, on
the day they were admitted to the ICU. Conclusion. In newborns hospitalized
in the ICU, acute renal injury is a serious condition. We could identify
kidney injury and follow up the progression of the disease by using RIFLE
classification. The need for early diagnosis of kidney injury, in a period
when the disease is not clinically manifest, in the first hours of its
occurrence, is provided by NGAL.
Collapse
|
20
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
21
|
Vargas I, Stephenson DJ, Baldwin M, Gaut JP, Chalfant CE, Pan H, Wickline SA. Sustained local inhibition of thrombin preserves renal microarchitecture and function after onset of acute kidney injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 38:102449. [PMID: 34303838 PMCID: PMC8541929 DOI: 10.1016/j.nano.2021.102449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 11/24/2022]
Abstract
Acute kidney injury (AKI) management remains mainly supportive as no specific therapeutic agents directed at singular signaling pathways have succeeded in clinical trials. Here, we report that inhibition of thrombin-driven clotting and inflammatory signaling with use of locally-acting thrombin-targeted perfluorocarbon nanoparticles (PFC NP) protects renal vasculature and broadly modulates diverse inflammatory processes that cause renal ischemia reperfusion injury. Each PFC NP was complexed with ~13,650 copies of the direct thrombin inhibitor, PPACK (proline-phenylalanine-arginine-chloromethyl-ketone). Mice treated after the onset of AKI with PPACK PFC NP exhibited downregulated VCAM-1, ICAM-1, PGD2 prostanoid, M-CSF, IL-6, and mast cell infiltrates. Microvascular architecture, tubular basement membranes, and brush border components were better preserved. Non-reperfusion was reduced as indicated by reduced red blood cell trapping and non-heme iron. Kidney function and tubular necrosis improved at 24 hours versus the untreated control group, suggesting a benefit for dual inhibition of thrombosis and inflammation by PPACK PFC NP.
Collapse
Affiliation(s)
- Ian Vargas
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Daniel J Stephenson
- Department of Cell biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Margaret Baldwin
- Department of Comparative Medicine, University of South Florida, Tampa, FL, USA
| | - Joseph P Gaut
- Washington University in St. Louis, Department of Pathology and Immunology and Department of Medicine, St Louis, MO, USA
| | - Charles E Chalfant
- Department of Cell biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA; The Moffitt Cancer Center, Tampa, FL; Research Service, James A. Haley Veterans Hospital, Tampa, FL
| | - Hua Pan
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Samuel A Wickline
- The USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
22
|
Yu H, Liu D, Shu G, Jin F, Du Y. Recent advances in nanotherapeutics for the treatment and prevention of acute kidney injury. Asian J Pharm Sci 2021; 16:432-443. [PMID: 34703493 PMCID: PMC8520043 DOI: 10.1016/j.ajps.2020.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/07/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a serious kidney disease without specific medications currently except for expensive dialysis treatment. Some potential drugs are limited due to their high hydrophobicity, poor in vivo stability, low bioavailability and possible adverse effects. Besides, kidney-targeted drugs are not common and small molecules are cleared too quickly to achieve effective drug concentrations in injured kidneys. These problems limit the development of pharmacological therapy for AKI. Nanotherapeutics based on nanotechnology have been proved to be an emerging and promising treatment strategy for AKI, which may solve the pharmacological therapy dilemma. More and more nanotherapeutics with different physicochemical properties are developed to efficiently deliver drugs, increase accumulation and control release of drugs in injury kidneys and also directly as effective antioxidants. Here, we discuss the recent nanotherapeutics applied in the treatment and prevention of AKI with improved effectiveness and few side effects.
Collapse
Affiliation(s)
- Hui Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gaofeng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Bustamante-Munguira J, Coca A. Commentary: Renal replacement therapy in cardiac surgery patients: An urgent need for consensus. JTCVS OPEN 2021; 6:200-201. [PMID: 36003572 PMCID: PMC9390248 DOI: 10.1016/j.xjon.2021.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022]
Affiliation(s)
| | - Armando Coca
- Department of Nephrology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
24
|
Impact of Venoarterial Extracorporeal Membrane Oxygenation on Alkaline Phosphatase Metabolism after Cardiac Surgery. Biomolecules 2021; 11:biom11050748. [PMID: 34067880 PMCID: PMC8156119 DOI: 10.3390/biom11050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Alkaline phosphatase (AP) is consumed during cardiopulmonary bypass (CPB). A high AP depletion leads to an impaired outcome after cardiac surgery. However, data is scarce on the postoperative course of AP under venoarterial ECMO (VA-ECMO) support. (2) A total of 239 patients with VA-ECMO support between 2000 and 2019 at the Department of Cardiac Surgery (Vienna General Hospital, Austria) were included in this retrospective analysis. Blood samples were collected at several timepoints (baseline, postoperative day (POD) 1-7, POD 14 and 30). Patients were categorized according to the relative AP drop (<60% vs. ≥60%) and ECMO duration (<5 days vs. ≥5 days). (3) Overall, 44.4% reached the baseline AP values within 5 days-this was only the case for 28.6% with a higher AP drop (compared to 62.7% with a lower drop; p = 0.000). A greater AP drop was associated with a significantly higher need for renal replacement therapy (40.9% vs. 61.9%; p = 0.002) and an impaired 1-year survival (51.4% vs. 66.0%; p = 0.031). (4) CPB exceeds the negative impact of VA-ECMO; still, ECMO seems to delay alkaline phosphatase recovery. A greater initial AP drop bears the risk of higher morbidity and mortality.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To describe recent advances in the development of therapeutic agents for acute kidney injury (AKI). RECENT FINDINGS Traditional care for AKI is mostly supportive. At present, no specific therapy has been developed to prevent or treat AKI. However, based on a better understanding of the pathophysiology of AKI, various potential compounds have been recently identified and tested. A variety of pathways has been targeted, including oxidative and mitochondrial stress, cellular metabolism and repair, inflammation, apoptosis and hemodynamics. Many of these potential agents are currently ongoing early-phase clinical trials, and the purpose of this review is to provide a summary of those with the most potential. SUMMARY Despite the lack of therapies specifically approved for AKI, many interesting potential agents are entering clinical trials, with the potential to transform the care of patients with AKI.
Collapse
|
26
|
Protective Effects of Traditional Polyherbs on Cisplatin-Induced Acute Kidney Injury Cell Model by Inhibiting Oxidative Stress and MAPK Signaling Pathway. Molecules 2020; 25:molecules25235641. [PMID: 33266089 PMCID: PMC7730198 DOI: 10.3390/molecules25235641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a disease caused by sudden renal dysfunction, which is an important risk factor for chronic renal failure. However, there is no effective treatment for renal impairment. Although some traditional polyherbs are commercially available for renal diseases, their effectiveness has not been reported. Therefore, we examined the nephroprotective effects of polyherbs and their relevant mechanisms in a cisplatin-induced cell injury model. Rat NRK-52E and human HK-2 subjected to cisplatin-induced AKI were treated with four polyherbs, Injinhotang (IJ), Ucha-Shinki-Hwan (US), Yukmijihwang-tang (YJ), and UrofenTM (Uro) similar with Yondansagan-tang, for three days. All polyherbs showed strong free radical scavenging activities, and the treatments prevented cisplatin-induced cell death in both models, especially at 1.2 mg/mL. The protective effects involved antioxidant effects by reducing reactive oxygen species and increasing the activities of superoxide dismutase and catalase. The polyherbs also reduced the number of annexin V-positive apoptotic cells and the expression of cleaved caspase-3, along with inhibited expression of mitogen-activated protein kinase-related proteins. These findings provide evidence for promoting the development of herbal formulas as an alternative therapy for treating AKI.
Collapse
|
27
|
Borawski B, Malyszko J. Iron, ferroptosis, and new insights for prevention in acute kidney injury. Adv Med Sci 2020; 65:361-370. [PMID: 32592957 DOI: 10.1016/j.advms.2020.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 06/14/2020] [Indexed: 01/01/2023]
Abstract
Acute kidney injury (AKI) is a very common condition with high morbidity and mortality, which can be seen in 5-7% of all hospitalized patients and in up to 57% of all intensive care unit admissions. Despite recent advances in clinical care, the prevalence of AKI has been shown to increase with virtually no change in mortality. AKI is a complex syndrome occurring in a variety of clinical settings. Early detection is crucial to prevent irreversible loss of renal function. The pathogenesis of AKI is highly multifactorial and complex, including vasoconstriction, reactive oxygen species formation, cell death, abnormal immune modulators and growth factors. Emerging evidence from both human and animal studies suggests that dysregulation of iron metabolism may play a potentially important role in AKI. Therefore, targeting the iron homeostasis may provide a new therapeutic intervention for AKI. New therapeutic strategies including iron chelation therapy, targeting iron metabolism related proteins and direct inhibitors of ferroptosis are imperative to improve the outcomes of patients. Taking into consideration the complexity of AKI, one intervention may not be enough for therapeutic success. Future preclinical studies in animal disease models followed by well-designed clinical trials should be conducted to extend findings from animal AKI models to humans.
Collapse
|
28
|
Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch 2020; 472:1345-1370. [PMID: 32144488 PMCID: PMC7483786 DOI: 10.1007/s00424-020-02361-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The kidneys filter large amounts of glucose. To prevent the loss of this valuable fuel, the tubular system of the kidney, particularly the proximal tubule, has been programmed to reabsorb all filtered glucose. The machinery involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane and the facilitative glucose transporter GLUT2 on the basolateral membrane. The proximal tubule also generates new glucose, particularly in the post-absorptive phase but also to enhance bicarbonate formation and maintain acid-base balance. The glucose reabsorbed or formed by the proximal tubule is primarily taken up into peritubular capillaries and returned to the systemic circulation or provided as an energy source to further distal tubular segments that take up glucose by basolateral GLUT1. Recent studies provided insights on the coordination of renal glucose reabsorption, formation, and usage. Moreover, a better understanding of renal glucose transport in disease states is emerging. This includes the kidney in diabetes mellitus, when renal glucose retention becomes maladaptive and contributes to hyperglycemia. Furthermore, enhanced glucose reabsorption is coupled to sodium retention through the sodium-glucose cotransporter SGLT2, which induces secondary deleterious effects. As a consequence, SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing. Recent studies discovered unique roles for SGLT1 with implications in acute kidney injury and glucose sensing at the macula densa. This review discusses established and emerging concepts of renal glucose transport, and outlines the need for a better understanding of renal glucose handling in health and disease.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
29
|
Lee JH, Ha DH, Go HK, Youn J, Kim HK, Jin RC, Miller RB, Kim DH, Cho BS, Yi YW. Reproducible Large-Scale Isolation of Exosomes from Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Application in Acute Kidney Injury. Int J Mol Sci 2020; 21:E4774. [PMID: 32635660 PMCID: PMC7370182 DOI: 10.3390/ijms21134774] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is a fatal medical episode caused by sudden kidney damage or failure, leading to the death of patients within a few hours or days. Previous studies demonstrated that exosomes derived from various mesenchymal stem/stromal cells (MSC-exosomes) have positive effects on renal injuries in multiple experimental animal models of kidney diseases including AKI. However, the mass production of exosomes is a challenge not only in preclinical studies with large animals but also for successful clinical applications. In this respect, tangential flow filtration (TFF) is suitable for good manufacturing practice (GMP)-compliant large-scale production of high-quality exosomes. Until now, no studies have been reported on the use of TFF, but rather ultracentrifugation has been almost exclusively used, to isolate exosomes for AKI therapeutic application in preclinical studies. Here, we demonstrated the reproducible large-scale production of exosomes derived from adipose tissue-derived MSC (ASC-exosomes) using TFF and the lifesaving effect of the ASC-exosomes in a lethal model of cisplatin-induced rat AKI. Our results suggest the possibility of large-scale stable production of ASC-exosomes without loss of function and their successful application in life-threatening diseases.
Collapse
Affiliation(s)
- Jun Ho Lee
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | - Dae Hyun Ha
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | | | - Jinkwon Youn
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | - Hyun-keun Kim
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | | | | | | | - Byong Seung Cho
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| | - Yong Weon Yi
- ExoCoBio Exosome Institue (EEI), ExoCoBio Inc., Seoul 08594, Korea; (J.H.L.); (D.H.H.); (J.Y.); (H.-k.K.)
| |
Collapse
|
30
|
Abarca Rozas B, Mestas Rodríguez M, Widerström Isea J, Lobos Pareja B, Vargas Urra J. A current view on the early diagnosis and treatment of acute kidney failure. Medwave 2020; 20:e7928. [DOI: 10.5867/medwave.2020.05.7928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/18/2020] [Indexed: 11/27/2022] Open
|
31
|
Shan H, Zhang X, Lin ZM, Wang XZ, Mi ZX, Wang YP, Tang ZR, Zhang XD. Effects of mild hypothermia on serum HMGB1 of brain-dead donors and its impact on kidney transplantation recipients. Medicine (Baltimore) 2020; 99:e20425. [PMID: 32481442 DOI: 10.1097/md.0000000000020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Investigate the effect of mild hypothermia on serum inflammatory factor HMGB1 of brain-dead donors, and its significance for renal transplantation recipients.In our hospital between January 2018 and January 2019 up to the standard of brain death donor (aged 18 to 65 years old) prospective cohort study, brain death donor were randomly divided into mild hypothermia group and the non-mild hypothermia group. Serum were collected from donor at different periods, and enzyme-linked immunoassay (ELISA) was used to determine the serum HMGB1 concentration to compare the difference between the 2 donor groups. The early recovery of renal function after renal transplantation was followed up, and the incidence of delayed graft function (DGF) and early recovery of renal function were compared between the 2 groups. The correlation between donor HMGB1 and recipient DGF was analyzed.Between 17 donors in the mild hypothermia group and 17 in the non-mild hypothermia group, there were no statistically significant differences in the age, perioperative urine volume and ICU stay between the 2 groups. After mild hypothermia treatment, serum HMGB1 levels of brain death donors were significantly decreased. While in non-mild hypothermia brain death donor group without treatment, serum HMGB1 was significantly increased. There were no statistically significant differences in age and preoperative creatinine between the 2 recipient groups, including 33 patients in the mild hypothermia group and 34 patients in the non-mild hypothermia group. DGF incidence was lower in mild hypothermia group comparing with non-mild hypothermia group with statistical significance. The levels of HMGB1 from donor before procurement is correlated with the occurrence of DGF of the recipient.Mild hypothermia therapy can reduce the levels of serum HMGB1, improve the function of donor organs. The levels of HMGB1 before donor procurement can be used to predict the occurrence of DGF in kidney transplant recipients. Our study shows that HMGB1 can be potentially used as therapeutic target of early intervention for brain death donors. Furthermore, mild hypothermia therapy can be applied in the maintenance of brain death donors for kidney transplant recipient to improve the successful rate of transplantation.
Collapse
Affiliation(s)
- Hui Shan
- Department of Urology
- Office of Organ Donation and Transplantation Management
| | | | | | - Xue-Zhu Wang
- Office of Organ Donation and Transplantation Management
| | - Zi-Xin Mi
- Office of Organ Donation and Transplantation Management
| | - Ya-Ping Wang
- Office of Organ Donation and Transplantation Management
| | - Zi-Ren Tang
- Department of Emergency, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
32
|
Uddin MJ, Dorotea D, Pak ES, Ha H. Fyn Kinase: A Potential Therapeutic Target in Acute Kidney Injury. Biomol Ther (Seoul) 2020; 28:213-221. [PMID: 32336052 PMCID: PMC7216742 DOI: 10.4062/biomolther.2019.214] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/29/2023] Open
Abstract
Acute kidney injury (AKI) is a common disease with a complex pathophysiology which significantly contributes to the development of chronic kidney disease and end stage kidney failure. Preventing AKI can consequently reduce mortality, morbidity, and healthcare burden. However, there are no effective drugs in use for either prevention or treatment of AKI. Developing therapeutic agents with pleiotropic effects covering multiple pathophysiological pathways are likely to be more effective in attenuating AKI. Fyn, a non-receptor tyrosine kinase, has been acknowledged to integrate multiple injurious stimuli in the kidney. Limited studies have shown increased Fyn transcription level and activation under experimental AKI. Activated Fyn kinase propagates various downstream signaling pathways associated to the progression of AKI, such as oxidative stress, inflammation, endoplasmic reticulum stress, as well as autophagy dysfunction. The versatility of Fyn kinase in mediating various pathophysiological pathways suggests that its inhibition can be a potential strategy in attenuating AKI.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
33
|
Nespoux J, Patel R, Zhang H, Huang W, Freeman B, Sanders PW, Kim YC, Vallon V. Gene knockout of the Na +-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol 2020; 318:F1100-F1112. [PMID: 32116018 DOI: 10.1152/ajprenal.00607.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the early proximal tubule, Na+-glucose cotransporter 2 (SGLT2) mediates the bulk of renal glucose reabsorption. Gene deletion in mice (Sglt2-/-) was used to determine the role of SGLT2 in acute kidney injury induced by bilateral ischemia-reperfusion (IR). In Sglt2-/- and littermate wild-type mice, plasma creatinine increased similarly on day 1 after IR. This was associated with an equal increase in both genotypes in the urinary kidney injury molecule-1-to-creatinine ratio, a tubular injury marker, and similarly reduced urine osmolality and increased plasma osmolality, indicating impaired urine concentration. In both IR groups, FITC-sinistrin glomerular filtration rate was equally reduced on day 14, and plasma creatinine was similarly and incompletely restored on day 23. In Sglt2-/- mice subjected to IR, fractional urinary glucose excretion was increased on day 1 but reduced and associated with normal renal Na+-glucose cotransporter 1 (Sglt1) mRNA expression on day 23, suggesting temporary SGLT1 suppression. In wild-type mice subjected to IR, renal Sglt1 mRNA was likewise normal on day 23, whereas Sglt2 mRNA was reduced by 57%. In both genotypes, IR equally reduced urine osmolality and renal mRNA expression of the Na+-K+-2Cl- cotransporter and renin on day 23, suggesting thick ascending limb dysfunction, and similarly increased renal mRNA expression of markers of injury, inflammation, oxidative stress, and fibrosis (kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, transforming growth factor-β1, NADPH oxidase-2, and collagen type 1). This was associated with equal increases in kidney histological damage scores and similar degree of capillary loss in both genotypes. The data indicate that genetic deletion of SGLT2 did not protect the kidneys in the initial injury phase or the subsequent recovery phase in a mouse model of IR-induced acute kidney injury.
Collapse
Affiliation(s)
- Josselin Nespoux
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Haiyan Zhang
- Department of Pathology, University of California, San Diego, California
| | - Winnie Huang
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Paul W Sanders
- Departments of Medicine, Cell, and Developmental and Integrative Biology, University of Alabama at Birmingham, and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Young Chul Kim
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Volker Vallon
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.,Department of Pharmacology, University of California, San Diego, California
| |
Collapse
|
34
|
Elbaz-Greener G, Strauss BH. Acute kidney injury - A clinical alert for diabetic patients requiring multi-vessel revascularization. Int J Cardiol 2020; 301:62-64. [DOI: 10.1016/j.ijcard.2019.11.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/20/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
|
35
|
Grisk O. The sympathetic nervous system in acute kidney injury. Acta Physiol (Oxf) 2020; 228:e13404. [PMID: 31610091 DOI: 10.1111/apha.13404] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/23/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is frequently accompanied by activation of the sympathetic nervous system (SNS). This may result from pre-exisiting chronic diseases associated with sympathetic activation prior to AKI or it may be induced by stressors that ultimately lead to AKI such as endotoxins and arterial hypotension in circulatory shock. Conversely, sympathetic activation may also result from acute renal injury. Focusing on studies in experimental renal ischaemia and reperfusion (IR), this review summarizes the current knowledge on how the SNS is activated in IR-induced AKI and on the consequences of sympathetic activation for the development of acute renal damage. Experimental studies show beneficial effects of sympathoinhibitory interventions on renal structure and function in response to IR. However, few clinical trials obtained in scenarios that correspond to experimental IR, namely major elective surgery, showed that peri-operative treatment with centrally acting sympatholytics reduced the incidence of AKI. Apparently, discrepant findings on how sympathetic activation influences renal responses to acute IR-induced injury are discussed and future areas of research in this field are identified.
Collapse
Affiliation(s)
- Olaf Grisk
- Institute of Physiology University of Greifswald Greifswald Germany
| |
Collapse
|
36
|
Alsaadoun S, Rustom F, Hassan HA, Alkhurais H, Aloufi M, Alzahrani S, Bakhsh S, Dalbhi SA. Aminophylline for improving acute kidney injury in pediatric patients: A systematic review and meta-analysis. Int J Health Sci (Qassim) 2020; 14:44-51. [PMID: 33192231 PMCID: PMC7644458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Acute kidney injury (AKI) is a major cause of morbidity and mortality. Whether aminophylline administration can prevent or treat AKI among pediatric patients are not clear. This meta-analysis aimed to assess the efficacy and effectiveness of aminophylline for pediatric AKI. METHODS We carried out a systematic search of six databases: PubMed, EMBASE/Excerpta Medica, Scopus, Cochrane library, and Google Scholar from January 1995 up till May 2019. Summary measures of risk ratios and standard mean difference were calculated using the random effects model. RESULTS We identified seven papers containing data on aminophylline use in children with AKI. Meta-analysis of single-arm studies indicated no statistically significant difference in mean rate of serum creatinine clearance (-0.39 [-0.80-1.58], P = 0.52), mean urine output (1.99 [-1.43-5.42]; P = 0.25), or mean blood urea nitrogen levels (0.83 [-1.86-3.03], P = 0.54) before and after aminophylline administration. However, among double-arm studies, aminophylline administration in the intervention arm significantly reduced the serum creatinine level as compared to control arm (mean diff = -34 [-55.18--12.83]; P = 0.002). Mean urine output (-112.68 [-27.43-48.9], P = 0.17), incidence of AKI (RR = 1.05 [0.80-1.37], P = 0.72), and mortality rates (RR = 0.79 [0.42-1.47], P = 0.45) were found to be statistically insignificant. CONCLUSIONS Aminophylline administration in children with AKI reduces serum creatinine level without significant adverse effects or effect on the incidence of AKI, urine output, or mortality. Further, large-scale well-planned randomized controlled trials are needed to evaluate its use and its potential long-term effects.
Collapse
Affiliation(s)
- Saad Alsaadoun
- Department of Pediatric, Division of Pediatric Nephrology, Security Forces Hospital, Riyadh 13225, Saudi Arabia
| | - Faisal Rustom
- College of Medicine, AlFaisal University, Riyadh 11421, Saudi Arabia
| | - Hanan Abu Hassan
- Department of Pediatric Intensive Care, Prince Sultan Cardiac Center, PSMMC, Riyadh 11159, Saudi Arabia
| | - Hassan Alkhurais
- Department of Pediatrics, Security Forces Hospital, Riyadh 11481, Saudia Arabia
| | - Majed Aloufi
- Department of Pediatric Nephrology, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Saeed Alzahrani
- Department of Pediatric Nephrology, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Shireen Bakhsh
- Department of Pediatric Nephrology, Security Forces Hospital, Riyadh 13314, Saudi Arabia
| | - Sultan Al Dalbhi
- Department of Adult Nephrology, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia,
Address for correspondence: Sultan Al Dalbhi, Department of Adult Nephrology, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia. E-mail:
| |
Collapse
|
37
|
Sun T, Jiang D, Rosenkrans ZT, Ehlerding EB, Ni D, Qi C, Kutyreff CJ, Barnhart TE, Engle JW, Huang P, Cai W. A Melanin-Based Natural Antioxidant Defense Nanosystem for Theranostic Application in Acute Kidney Injury. ADVANCED FUNCTIONAL MATERIALS 2019; 29:10.1002/adfm.201904833. [PMID: 32055240 PMCID: PMC7017599 DOI: 10.1002/adfm.201904833] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 05/05/2023]
Abstract
Acute kidney injury (AKI) is frequently associated with oxidative stress and causes high mortality annually in clinics. Nanotechnology-mediated antioxidative therapy is emerging as a novel strategy for the treatment of AKI. Herein, a novel biomedical use of the endogenous biopolymer melanin as a theranostic natural antioxidant defense nanoplatform for AKI is reported. In this study, ultrasmall Mn2+-chelated melanin (MMP) nanoparticles are easily prepared via a simple coordination and self-assembly strategy, and further incorporated with polyethylene glycol (MMPP). In vitro experiments reveal the ability of MMPP nanoparticles to scavenge multiple toxic reactive oxygen species (ROS) and suppress ROS-induced oxidative stress. Additionally, in vivo results from a murine AKI model demonstrate preferential renal uptake of MMPP nanoparticles and a subsequent robust antioxidative response with negligible side effects according to positron emission tomography/magnetic resonance (PET/MR) bimodal imaging and treatment assessment. These results indicate that the effectiveness of MMPP nanoparticles for treating AKI suggests the potential efficacy of melanin as a natural theranostic antioxidant nanoplatform for AKI, as well as other ROS-related diseases.
Collapse
Affiliation(s)
- Tuanwei Sun
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, P. R. China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Dawei Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, P. R. China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Emily B Ehlerding
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Chao Qi
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, P. R. China
| | - Christopher J Kutyreff
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, P. R. China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
38
|
Bulacio RP, Torres AM. Caveolin-2 in urine as a novel biomarker of renal recovery after cisplatin induced nephrotoxicity in rats. Toxicol Lett 2019; 313:169-177. [DOI: 10.1016/j.toxlet.2019.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 02/05/2023]
|
39
|
Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit Care Med 2019; 46:949-957. [PMID: 29509568 PMCID: PMC5959265 DOI: 10.1097/ccm.0000000000003092] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Acute kidney injury requiring renal replacement therapy in severe vasodilatory shock is associated with an unfavorable prognosis. Angiotensin II treatment may help these patients by potentially restoring renal function without decreasing intrarenal oxygenation. We analyzed the impact of angiotensin II on the outcomes of acute kidney injury requiring renal replacement therapy. Design: Post hoc analysis of the Angiotensin II for the Treatment of High-Output Shock 3 trial. Setting: ICUs. Patients: Patients with acute kidney injury treated with renal replacement therapy at initiation of angiotensin II or placebo (n = 45 and n = 60, respectively). Interventions: IV angiotensin II or placebo. Measurements and Main Results: Primary end point: survival through day 28; secondary outcomes included renal recovery through day 7 and increase in mean arterial pressure from baseline of ≥ 10 mm Hg or increase to ≥ 75 mm Hg at hour 3. Survival rates through day 28 were 53% (95% CI, 38%–67%) and 30% (95% CI, 19%–41%) in patients treated with angiotensin II and placebo (p = 0.012), respectively. By day 7, 38% (95% CI, 25%–54%) of angiotensin II patients discontinued RRT versus 15% (95% CI, 8%–27%) placebo (p = 0.007). Mean arterial pressure response was achieved in 53% (95% CI, 38%–68%) and 22% (95% CI, 12%–34%) of patients treated with angiotensin II and placebo (p = 0.001), respectively. Conclusions: In patients with acute kidney injury requiring renal replacement therapy at study drug initiation, 28-day survival and mean arterial pressure response were higher, and rate of renal replacement therapy liberation was greater in the angiotensin II group versus the placebo group. These findings suggest that patients with vasodilatory shock and acute kidney injury requiring renal replacement therapy may preferentially benefit from angiotensin II.
Collapse
|
40
|
Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96:1083-1099. [PMID: 31443997 DOI: 10.1016/j.kint.2019.05.026] [Citation(s) in RCA: 818] [Impact Index Per Article: 136.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a frequent complication of the critically ill patient and is associated with unacceptable morbidity and mortality. Prevention of S-AKI is difficult because by the time patients seek medical attention, most have already developed acute kidney injury. Thus, early recognition is crucial to provide supportive treatment and limit further insults. Current diagnostic criteria for acute kidney injury has limited early detection; however, novel biomarkers of kidney stress and damage have been recently validated for risk prediction and early diagnosis of acute kidney injury in the setting of sepsis. Recent evidence shows that microvascular dysfunction, inflammation, and metabolic reprogramming are 3 fundamental mechanisms that may play a role in the development of S-AKI. However, more mechanistic studies are needed to better understand the convoluted pathophysiology of S-AKI and to translate these findings into potential treatment strategies and add to the promising pharmacologic approaches being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Sadudee Peerapornratana
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Excellence Center for Critical Care Nephrology, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Laboratory Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Carlos L Manrique-Caballero
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hernando Gómez
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
41
|
Nespoux J, Patel R, Hudkins KL, Huang W, Freeman B, Kim YC, Koepsell H, Alpers CE, Vallon V. Gene deletion of the Na +-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol 2019; 316:F1201-F1210. [PMID: 30995111 PMCID: PMC6620597 DOI: 10.1152/ajprenal.00111.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Renal Na+-glucose cotransporter SGLT1 mediates glucose reabsorption in the late proximal tubule, a hypoxia-sensitive tubular segment that enters the outer medulla. Gene deletion in mice (Sglt1-/-) was used to determine the role of the cotransporter in acute kidney injury induced by ischemia-reperfusion (IR), including the initial injury and subsequent recovery phase. On days 1 and 16 after IR, absolute and fractional urinary glucose excretion remained greater in Sglt1-/- mice versus wild-type (WT) littermates, consistent with a sustained contribution of SGLT1 to tubular glucose reabsorption in WT mice. Absence of SGLT1 did not affect the initial kidney impairment versus WT mice, as indicated by similar increases on day 1 in plasma concentrations of creatinine and urinary excretion of the tubular injury marker kidney injury molecule-1 as well as a similar rise in plasma osmolality and fall in urine osmolality as indicators of impaired urine concentration. Recovery of kidney function on days 14/16, however, was improved in Sglt1-/- versus WT mice, as indicated by lower plasma creatinine, higher glomerula filtration rate (by FITC-sinistrin in awake mice), and more completely restored urine and plasma osmolality. This was associated with a reduced tubular injury score in the cortex and outer medulla, better preserved renal mRNA expression of tubular transporters (Sglt2 and Na+-K+-2Cl- cotransporter Nkcc2), and a lesser rise in renal mRNA expression of markers of injury, inflammation, and fibrosis [kidney injury molecule-1, chemokine (C-C motif) ligand 2, fibronectin 1, and collagen type I-α1] in Sglt1-/- versus WT mice. These results suggest that SGLT1 activity in the late proximal tubule may have deleterious effects during recovery of IR-induced acute kidney injury and identify SGLT1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Josselin Nespoux
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Kelly L Hudkins
- Department of Pathology, University of Washington , Seattle, Washington
| | - Winnie Huang
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Hermann Koepsell
- Department of Molecular Plant Physiology, University Würzburg , Würzburg , Germany
| | - Charles E Alpers
- Department of Pathology, University of Washington , Seattle, Washington
| | - Volker Vallon
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Pharmacology, University of California , San Diego, California
| |
Collapse
|
42
|
Pang X, Feng G, Shang W, Liu L, Li J, Feng Y, Xie H, Wang J. Inhibition of lncRNA MEG3 protects renal tubular from hypoxia‐induced kidney injury in acute renal allografts by regulating miR‐181b/TNF‐α signaling pathway. J Cell Biochem 2019; 120:12822-12831. [PMID: 30860638 DOI: 10.1002/jcb.28553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Xinlu Pang
- Department of Kidney Transplantation First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Guiwen Feng
- Department of Kidney Transplantation First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Wenjun Shang
- Department of Kidney Transplantation First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Lei Liu
- Department of Kidney Transplantation First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Jingfeng Li
- Department of Kidney Transplantation First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yonghua Feng
- Department of Kidney Transplantation First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Hongchang Xie
- Department of Kidney Transplantation First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Junxiang Wang
- Department of Kidney Transplantation First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
43
|
Klein J, Schanstra JP. Implementation of Proteomics Biomarkers in Nephrology: From Animal Models to Human Application? Proteomics Clin Appl 2018; 13:e1800089. [PMID: 30334380 DOI: 10.1002/prca.201800089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Preclinical animal models are extensively used in nephrology. In this review, the utility of performing proteome analysis of kidney tissue or urine in such models and transfer of the results to human application has been assessed. Analysis of the literature identified 68 relevant publications. Pathway analysis of the reported proteins clearly indicated links with known biological processes in kidney disease providing validation of the observed changes in the preclinical models. However, although most studies focused on the identification of early markers of kidney disease or prediction of its progression, none of the identified makers has made it to substantial validation in the clinic or at least in human samples. Especially in renal disease where urine is an abundant source of biomarkers of diseases of the kidney and the urinary tract, it therefore appears that the focus should be on human material based discovery studies. In contrast, the most valid information of proteome analysis of preclinical models in nephrology for translation in human disease resides in studies focusing on drug evaluation, both efficacy for translation to the clinic and for mechanistic insight.
Collapse
Affiliation(s)
- Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
44
|
Tucker BM, Perazella MA. Pink Urine Syndrome: A Combination of Insulin Resistance and Propofol. Kidney Int Rep 2018; 4:30-39. [PMID: 30596166 PMCID: PMC6308841 DOI: 10.1016/j.ekir.2018.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/08/2018] [Indexed: 01/20/2023] Open
Abstract
Pink urine syndrome is mostly seen in patients treated with propofol anesthesia. The pink color is attributed to the presence of large concentrations of uric acid (and pigment), which is excreted in large amounts when propofol is given. We describe a case of propofol-induced pink urine syndrome and perform a comprehensive, evidence-based review. We discuss prior case studies already published in the literature as we speculate on the pathophysiology and how it translates to a clinically relevant entity.
Collapse
Affiliation(s)
- Bryan M. Tucker
- Wake Forest School of Medicine, Department of Internal Medicine, Section of Nephrology, Winston-Salem, North Carolina, USA
- Correspondence: Bryan M. Tucker, Wake Forest Baptist Medical Center, Section of Nephrology, Medical Center Boulevard, Winston-Salem, North Carolina 27157–0001, USA.
| | - Mark A. Perazella
- Yale University School of Medicine, Section of Nephrology, New Haven, Connecticut, USA
| |
Collapse
|
45
|
Antonelli A, Allinovi M, Cocci A, Russo GI, Schiavina R, Rocco B, Giovannalberto P, Celia A, Galfano A, Varca V, Bozzini G, Ceruti C, Greco F, Verze P, Pastore AL, Porreca A, Minervini A. The Predictive Role of Biomarkers for the Detection of Acute Kidney Injury After Partial or Radical Nephrectomy: A Systematic Review of the Literature. Eur Urol Focus 2018; 6:344-353. [PMID: 30309817 DOI: 10.1016/j.euf.2018.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/04/2018] [Accepted: 09/27/2018] [Indexed: 11/28/2022]
Abstract
CONTEXT Postoperative acute kidney injury (AKI) is a serious complication after kidney surgery, associated with prolonged hospital stay, high morbidity, and mortality. Biomarkers represent a tool of increasing importance to identify renal impairment after partial nephrectomy (PN) or radical nephrectomy (RN) in order to optimize and anticipate the diagnosis of AKI. OBJECTIVE The goal of this systematic review is to investigate current insights on the role of biomarkers in predicting renal impairment in patients undergoing PN or RN. EVIDENCE ACQUISITION A systematic review was conducted up to November 30, 2017 through PubMed, Scopus, and Embase databases, to identify eligible studies evaluating the role of biomarkers for the prediction of AKI after PN or RN. The Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) criteria were applied to select articles. EVIDENCE SYNTHESIS According to the study selection criteria, 10 publications were included with a total number of 728 patients. Incidence of AKI was 26.7% (range: 9-58%). Based on the evidence reviewed, serum cystatin C and urinary neutrophil gelatinase-associated lipocalin (NGAL) showed a significant correlation with serum creatinine rise postoperatively, emerging as potential noninvasive and early biomarkers of AKI in patients undergoing renal surgery. In this setting, serum cystatin C and urinary NGAL have preceded the rise in serum creatinine peak from 3 up to 24h, even in case of mild renal damage. CONCLUSIONS The literature underlines the potential usefulness of biomarkers such as cystatin C and NGAL as promising and early tools to predict AKI after PN or RN. However, no strong evidence in support of their use is available to date and further investigations are awaited. PATIENT SUMMARY We looked at the role of biomarkers in predicting renal injury in patients undergoing partial or radical nephrectomy. Serum cystatin C and urinary neutrophil gelatinase-associated lipocalin have emerged as promising noninvasive, accurate, and early biomarkers.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Urology, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Marco Allinovi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Andrea Cocci
- Department of Urology, University of Florence, Careggi Hospital, Florence, Italy.
| | | | | | - Bernardo Rocco
- Department of Urology, University of Milan, Milan, Italy
| | | | - Antonio Celia
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Virginia Varca
- Department of Urology, G. Salvini Hospital, Milan, Italy
| | | | - Carlo Ceruti
- Urology Clinic, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Francesco Greco
- Casa di Cura Dottor Pederzoli, Urology and Minimal Invasive Surgery, Peschiera del Garda, Italy
| | - Paolo Verze
- Department of Urology, University of Naples, Naples, Italy
| | | | - Angelo Porreca
- Department of Urology, Abano Terme Hospital, Padua, Italy
| | - Andrea Minervini
- Department of Urology, University of Florence, Careggi Hospital, Florence, Italy
| | | |
Collapse
|
46
|
|
47
|
Abstract
Angiotensin II (Ang II), part of the renin-angiotensin-aldosterone system (RAS), is a potent vasoconstrictor and has been recently approved for use by the US Food and Drug Administration in high-output shock. Though not a new drug, the recently published Angiotensin II for the Treatment of High Output Shock (ATHOS-3) trial, as well as a number of retrospective analyses have sparked renewed interest in the use of Ang II, which may have a role in treating refractory shock. We describe refractory shock, the unique mechanism of action of Ang II, RAS dysregulation in shock, and the evidence supporting the use of Ang II to restore blood pressure. Evidence suggests that Ang II may preferentially be of benefit in acute kidney injury and acute respiratory distress syndrome, where the RAS is known to be disrupted. Additionally, there may be a role for Ang II in cardiogenic shock, angiotensin converting enzyme inhibitor overdose, cardiac arrest, liver failure, and in settings of extracorporeal circulation.
Collapse
Affiliation(s)
- Rachel L Bussard
- Critical Care Pharmacy Specialist, Department of Pharmacy, Emory St Joseph's Hospital, Atlanta, GA, USA
| | - Laurence W Busse
- Department of Critical Care, Emory St Joseph's Hospital, Atlanta, GA, USA,
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA,
| |
Collapse
|