1
|
Erdbrügger U, Hoorn EJ, Le TH, Blijdorp CJ, Burger D. Extracellular Vesicles in Kidney Diseases: Moving Forward. KIDNEY360 2023; 4:245-257. [PMID: 36821616 PMCID: PMC10103258 DOI: 10.34067/kid.0001892022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are evolving as novel cell mediators, biomarkers, and therapeutic targets in kidney health and disease. They are naturally derived from cells both within and outside the kidney and carry cargo which mirrors the state of the parent cell. Thus, they are potentially more sensitive and disease-specific as biomarkers and messengers in various kidney diseases. Beside their role as novel communicators within the nephron, they likely communicate between different organs affected by various kidney diseases. Study of urinary EVs (uEVs) can help to fill current knowledge gaps in kidney diseases. However, separation and characterization are challenged by their heterogeneity in size, shape, and cargo. Fortunately, more sensitive and direct EV measuring tools are in development. Many clinical syndromes in nephrology from acute to chronic kidney and glomerular to tubular diseases have been studied. Yet, validation of biomarkers in larger cohorts is warranted and simpler tools are needed. Translation from in vitro to in vivo studies is also urgently needed. The therapeutic role of uEVs in kidney diseases has been studied extensively in rodent models of AKI. On the basis of the current exponential growth of EV research, the field of EV diagnostics and therapeutics is moving forward.
Collapse
Affiliation(s)
- Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thu H. Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Charles J. Blijdorp
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Rudolphi CF, Blijdorp CJ, van Willigenburg H, Salih M, Hoorn EJ. Urinary extracellular vesicles and tubular transport. Nephrol Dial Transplant 2022:6659197. [PMID: 35945648 DOI: 10.1093/ndt/gfac235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tubular transport is a key function of the kidney to maintain electrolyte and acid-base homeostasis. Urinary extracellular vesicles (uEVs) harbor water, electrolyte, and acid-base transporters expressed at the apical plasma membrane of tubular epithelial cells. Within the uEV proteome, the correlations between kidney and uEV protein abundances are strongest for tubular transporters. Therefore, uEVs offer a non-invasive approach to probe tubular transport in health and disease. Here, we will review how kidney tubular physiology is reflected in uEVs and, conversely, how uEVs may modify tubular transport. Clinically, uEV tubular transporter profiling has been applied to rare diseases such as inherited tubulopathies, but also to more common conditions such as hypertension and kidney disease. Although uEVs hold the promise to advance the diagnosis of kidney disease to the molecular level, several biological and technical complexities still need to be addressed. The future will tell if uEV analysis will mainly be a powerful tool to study tubular physiology in humans or if it will move forward to become a diagnostic bedside test.
Collapse
Affiliation(s)
- Crissy F Rudolphi
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Charles J Blijdorp
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hester van Willigenburg
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mahdi Salih
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Bassi V, Fattoruso O. The Combined Use of Fractional Urate and Potassium Excretion in the Diagnosis of Diuretic-Induced Hyponatremia. Cureus 2021; 13:e15308. [PMID: 34221761 PMCID: PMC8238019 DOI: 10.7759/cureus.15308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction Thiazide and loop-diuretics are among the most widely used drugs in the therapy of hypertension and chronic heart failure. Furthermore, hyponatremia is the most prevalent electrolyte imbalance affecting up to 25-30% of hospitalized patients while syndrome of inappropriate antidiuresis (SIAD) is involving approximately 35% of hyponatraemic inpatients. Clinical and laboratoristic algorithms support the differential diagnosis of hypotonic hyponatremia in actual guidelines of SIAD, but a potential bias is represented by the misleading clinical assessment of the extracellular volume status in diuretic-treated patients where the necessity of withdrawal of the therapy is mandatory. We investigated the role of fractional uric acid and potassium excretion (FEUA and FEK) in the differential diagnosis of hypotonic hyponatremia in SIAD and diuretic-treated patients. Methods Thirty-six SIAD, 30 thiazide-induced hyponatremia (TIH), and 32 diuretic-induced hyponatremia (DIH) patients were investigated calculating FEUA and FEK values in receiver operating characteristic (ROC) curve analysis to improve the diagnostic approach of hypotonic hyponatremia. Results The combination of the two investigated markers showed different significative results generating patterns useful to discriminate among the three different hyponatremic groups. Conclusion The fractional uric acid and potassium excretion could be considered as new markers in the diagnostic approach of hyponatremic diuretic-treated patients where classical algorithms could fail.
Collapse
Affiliation(s)
- Vincenzo Bassi
- Unità Operativa Complessa (UOC) di Medicina Generale e Lungodegenza, San Giovanni Bosco Hospital, Azienda Sanitaria Locale (ASL) Napoli 1 Centro, Naples, ITA
| | - Olimpia Fattoruso
- Unità Operativa Complessa (UOC) di Patologia Generale, San Giovanni Bosco Hospital, Azienda Sanitaria Locale (ASL) Napoli 1 Centro, Naples, ITA
| |
Collapse
|
4
|
Bassi V, Fattoruso O. The Role of Fractional Excretion of Uric Acid in the Differential Diagnosis of Hypotonic Hyponatraemia in Patients with Diuretic Therapy. Cureus 2020; 12:e7762. [PMID: 32455079 PMCID: PMC7243088 DOI: 10.7759/cureus.7762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hyponatraemia is the most common electrolyte imbalance found in hospital population and worldwide thiazide and loop-diuretics are among the most widely used drugs. Syndrome of inappropriate antidiuresis diagnosis (SIAD) is complicated in the presence of diuretic therapy due to the misleading clinical assessment of the extracellular volume status, and in order to make SIAD diagnosis it is often necessary to withdraw diuretic therapy. Our study aimed to investigate the diagnostic role of these alternative markers of volume status, serum uric acid (sUA) and fractional excretion of uric acid (FEUA), in hyponatraemic patients treated with different diuretic drugs. Eighty-nine patients were enrolled with the diagnosis of SIAD, diuretic-induced hyponatremia (DIH, treated with furosemide and potassium canrenoate) or thiazide-induced hyponatremia (TIH, treated with hydrochlorothiazide, metolazone or indapamide) and investigated with receiver operating characteristic analysis and a sensitivity test. Our results show that FEUA discriminated better than sUA between SIAD and DIH patients (area under curve 0.96, <0.001 vs. 0.88, <0.001) while it was a poor marker to discriminate between SIAD and TIH (0.65, NS vs. 0.67, NS). In conclusions, FEUA is an excellent marker to discriminate SIAD vs. sodium depleted patients treated with furosemide and/or potassium canrenoate while the diuretic withdrawal, beyond obtaining a serum Na normalization, is still mandatory for differential diagnosis of sodium depleted patients affected by thiazide-induced hyponatraemia.
Collapse
Affiliation(s)
- Vincenzo Bassi
- Internal Medicine, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, ITA
| | - Olimpia Fattoruso
- Pathology, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, ITA
| |
Collapse
|
5
|
Rapoport RM, Soleimani M. Mechanism of Thiazide Diuretic Arterial Pressure Reduction: The Search Continues. Front Pharmacol 2019; 10:815. [PMID: 31543812 PMCID: PMC6730501 DOI: 10.3389/fphar.2019.00815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Thiazide diuretic (TZD)-mediated chronic reduction of arterial pressure is thought to occur through decreased total peripheral vascular resistance. Further, the decreased peripheral vascular resistance is accomplished through TZD activation of an extrarenal target, resulting in inhibition of vascular constriction. However, despite greater than five decades of investigation, little progress has been made into the identification of the TZD extrarenal target. Proposed mechanisms range from direct inhibition of constrictor and activation of relaxant signaling pathways in the vascular smooth muscle to indirect inhibition through decreased neurogenic and hormonal regulatory pathways. Surprisingly, particularly in view of this lack of progress, comprehensive reviews of the subject are absent. Moreover, even though it is well recognized that 1) several types of hypertension are insensitive to TZD reduction of arterial pressure and, further, TZD fail to reduce arterial pressure in normotensive subjects and animals, and 2) different mechanisms underlie acute and chronic TZD, findings derived from these models and parameters remain largely undifferentiated. This review 1) comprehensively describes findings associated with TZD reduction of arterial pressure; 2) differentiates between observations in TZD-sensitive and TZD-insensitive hypertension, normotensive subjects/animals, and acute and chronic effects of TZD; 3) critically evaluates proposed TZD extrarenal targets; 4) proposes guiding parameters for relevant investigations into extrarenal TZD target identification; and 5) proposes a working model for TZD chronic reduction of arterial pressure through vascular dilation.
Collapse
Affiliation(s)
- Robert M Rapoport
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Manoocher Soleimani
- Research Service, Veterans Affairs Medical Center, Cincinnati, OH, United States.,Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
6
|
Freundlich M, Cuervo C, Abitbol CL. Fibroblast growth factor 23 and tubular sodium handling in young patients with incipient chronic kidney disease. Clin Kidney J 2019; 13:389-396. [PMID: 32699619 PMCID: PMC7367134 DOI: 10.1093/ckj/sfz081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
AbstractBackgroundExperimental studies have shown fibroblast growth factor 23 (FGF23)-mediated upregulation of the distal tubule sodium/chloride (Na+Cl−) co-transporter leading to increased Na reabsorption, volume expansion and hypertension. However, data on the associations of FGF23 with renal Na regulation and blood pressure (BP) are lacking in young CKD patients.MethodsFGF23 and other determinants of mineral metabolism, plasma renin activity (PRA), fractional excretion of Na (FENa) and BP, were analyzed at a single center in 60 patients aged 5–22 years with CKD Stages 1 (n = 33) and Stages 2–3 (n = 27) defined by cystatin C- and creatinine-based estimating equations (estimated glomerular filtration rate, eGFR). Associations between FGF23 and renal Na handling were explored by regression analysis.ResultsMedian FGF23 levels were higher in CKD Stages 2–3 versus CKD 1 (119 versus 79 RU/mL; P < 0.05), with hyperparathyroidism [parathyroid hormone (PTH) >69 pg/mL] in only few subjects with CKD Stages 2–3. Median FENa was comparable in both subgroups, but with proportionally more values above the reference mean (0.55%) in CKD Stages 2–3 and 3-fold higher (1.6%) in CKD Stage 3. PRA was higher in CKD Stages 2–3 (P < 0.05). Meanwhile in CKD Stage 1, FGF23 did not associate with FENa, and in CKD Stages 2–3 FGF23 associated positively with FENa (r = 0.4; P < 0.05) and PTH (r = 0.45; P < 0.05), and FENa associated with FE of phosphate (r = 0.6; P < 0.005). Neither FGF23 nor FENa was associated with systolic or diastolic BP in either subgroup. The negative association of eGFR by cystatin with FENa remained the strongest predictor of FENa by multivariable linear regression in CKD Stages 2–3.ConclusionsThe elevated FGF23, FENa and PRA and the positive association of FGF23 with FENa do not suggest FGF23-mediated increased tubular Na reabsorption and volume expansion as causing hypertension in young patients with incipient CKD.
Collapse
Affiliation(s)
- Michael Freundlich
- Division of Pediatric Nephrology, Jackson Memorial-Holtz Children’s Hospital, University of Miami, Miami, FL, USA
| | - Carlos Cuervo
- Division of Pediatric Nephrology, Jackson Memorial-Holtz Children’s Hospital, University of Miami, Miami, FL, USA
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, Jackson Memorial-Holtz Children’s Hospital, University of Miami, Miami, FL, USA
| |
Collapse
|