1
|
Gharagozlou S, Wright NM, Murguila-Favela L, Eshleman J, Midgley J, Saygili S, Mathew G, Lesmana H, Makkoukdji N, Gans M, Saba JD. Sphingosine phosphate lyase insufficiency syndrome as a primary immunodeficiency state. Adv Biol Regul 2024; 94:101058. [PMID: 39454238 DOI: 10.1016/j.jbior.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a genetic disease associated with renal, endocrine, neurological, skin and immune defects. SPLIS is caused by inactivating mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). SPL catalyzes the irreversible degradation of the bioactive sphingolipid sphingosine-1-phosphate (S1P), a key regulator of lymphocyte egress. The SPL reaction represents the only exit point of sphingolipid metabolism, and SPL insufficiency causes widespread sphingolipid derangements that could additionally contribute to immunodeficiency. Herein, we review SPLIS, the sphingolipid metabolic pathway, and various roles sphingolipids play in immunity. We then explore SPLIS-related immunodeficiency by analyzing data available in the published literature supplemented by medical record reviews in ten SPLIS children. We found 93% of evaluable SPLIS patients had documented evidence of immunodeficiency. Many of the remainder of cases were unevaluable due to lack of available immunological data. Most commonly, SPLIS patients exhibited lymphopenia and T cell-specific lymphopenia, consistent with the established role of the S1P/S1P1/SPL axis in lymphocyte egress. However, low B and NK cell counts, hypogammaglobulinemia, and opportunistic infections with bacterial, viral and fungal pathogens were observed. Diminished responses to childhood vaccinations were less frequently observed. Screening blood tests quantifying recent thymic emigrants identified some lymphopenic SPLIS patients in the newborn period. Lymphopenia has been reported to improve after cofactor supplementation in some SPLIS patients, indicating upregulation of SPL activity. A variety of treatments including immunoglobulin replacement, prophylactic antimicrobials and special preparation of blood products prior to transfusion have been employed in SPLIS. The diverse immune consequences in SPLIS patients suggest that aberrant S1P signaling may not fully explain the extent of immunodeficiency. Further study will be required to fully elucidate the complex mechanisms underlying SPLIS immunodeficiency and determine the most effective prophylaxis against infection.
Collapse
Affiliation(s)
- Saber Gharagozlou
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - NicolaA M Wright
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Luis Murguila-Favela
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Juliette Eshleman
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Julian Midgley
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India.
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA.
| | - Nadia Makkoukdji
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Melissa Gans
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Julie D Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Keller N, Midgley J, Khalid E, Lesmana H, Mathew G, Mincham C, Teig N, Khan Z, Khosla I, Mehr S, Guran T, Buder K, Xu H, Alhasan K, Buyukyilmaz G, Weaver N, Saba JD. Factors influencing survival in sphingosine phosphate lyase insufficiency syndrome: a retrospective cross-sectional natural history study of 76 patients. Orphanet J Rare Dis 2024; 19:355. [PMID: 39334450 PMCID: PMC11429486 DOI: 10.1186/s13023-024-03311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a recently recognized inborn error of metabolism associated with steroid-resistant nephrotic syndrome as well as adrenal insufficiency and immunological, neurological, and skin manifestations. SPLIS is caused by inactivating mutations in SGPL1, encoding the pyridoxal 5'phosphate-dependent enzyme sphingosine-1-phosphate lyase, which catalyzes the final step of sphingolipid metabolism. Some SPLIS patients have undergone kidney transplantation, and others have been treated with vitamin B6 supplementation. In addition, targeted therapies including gene therapy are in preclinical development. In anticipation of clinical trials, it will be essential to characterize the full spectrum and natural history of SPLIS. We performed a retrospective analysis of 76 patients in whom the diagnosis of SPLIS was established in a proband with at least one suggestive finding and biallelic SGPL1 variants identified by molecular genetic testing. The main objective of the study was to identify factors influencing survival in SPLIS subjects. RESULTS Overall survival at last report was 50%. Major influences on survival included: (1) age and organ involvement at first presentation; (2) receiving a kidney transplant, and (3) SGPL1 genotype. Among 48 SPLIS patients with nephropathy who had not received a kidney transplant, two clinical subgroups were distinguished. Of children diagnosed with SPLIS nephropathy before age one (n = 30), less than 30% were alive 2 years after diagnosis, and 17% were living at last report. Among those diagnosed at or after age one (n = 18), ~ 70% were alive 2 years after diagnosis, and 72% were living at time of last report. SPLIS patients homozygous for the SPL R222Q variant survived longer compared to patients with other genotypes. Kidney transplantation significantly extended survival outcomes. CONCLUSION Our results demonstrate that SPLIS is a phenotypically heterogeneous condition. We find that patients diagnosed with SPLIS nephropathy in the first year of life and patients presenting with prenatal findings represent two high-risk subgroups, whereas patients harboring the R222Q SGPL1 variant fare better than the rest. Time to progression from onset of proteinuria to end stage kidney disease varies from less than one month to five years, and kidney transplantation may be lifesaving.
Collapse
Affiliation(s)
- Nancy Keller
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Julian Midgley
- Department of Nephrology, Alberta Children's Hospital, Calgary, AB, Canada
| | - Ehtesham Khalid
- Ochsner Clinical School, University of Queensland (Australia) and Ochsner Health, New Orleans, LA, USA
| | - Harry Lesmana
- Center for Personalized Genetic Healthcare and Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India
| | - Christine Mincham
- Department of Nephrology, Perth Children's Hospital, Perth, Australia
| | - Norbert Teig
- Department of Neonatology and Pediatric Intensive Care, Ruhr-Universität Bochum, Bochum, Germany
| | - Zubair Khan
- Department of Pediatrics, NAMO Medical Education and Research Institute, Shri Vinoba Bhave Civil Hospital, Silvassa, Dadra and Nagar Haveli, Daman and Diu, India
| | - Indu Khosla
- Department of Pediatric Pulmonology and Sleep Medicine, NH SRCC Hospital for Children, Mumbai, India
| | - Sam Mehr
- Department of Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Kathrin Buder
- Pediatric Nephrology Department, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Department of General Pediatrics and Hematology/Oncology, University Hospital Tuebingen, University Children's Hospital, Hoppe-Seyler-Strasse 1, 72076, Tuebingen, Germany
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| | - Khalid Alhasan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gonul Buyukyilmaz
- Department of Pediatric Endocrinology, Ankara City Hospital, Ankara, Turkey
| | - Nicole Weaver
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Julie D Saba
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Pournasiri Z, Madani A, Nazarpack F, Sayer JA, Chavoshzadeh Z, Nili F, Tran P, Saba JD, Jamee M. Sphingosine phosphate lyase insufficiency syndrome: a systematic review. World J Pediatr 2023; 19:425-437. [PMID: 36371483 DOI: 10.1007/s12519-022-00615-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) or nephrotic syndrome type-14 is caused by biallelic mutations in SGPL1. Here, we conducted a systematic review to delineate the characteristics of SPLIS patients. METHODS A literature search was performed in PubMed, Web of Science, and Scopus databases, and eligible studies were included. For all patients, demographic, clinical, laboratory, and molecular data were collected and analyzed. RESULTS Fifty-five SPLIS patients (54.9% male, 45.1% female) were identified in 19 articles. Parental consanguinity and positive family history were reported in 70.9% and 52.7% of patients, respectively. Most patients (54.9%) primarily manifested within the first year of life, nearly half of whom survived, while all patients with a prenatal diagnosis of SPLIS (27.5%) died at a median [interquartile (IQR)] age of 2 (1.4-5.3) months (P = 0.003). The most prevalent clinical feature was endocrinopathies, including primary adrenal insufficiency (PAI) (71.2%) and hypothyroidism (32.7%). Kidney disorders (42, 80.8%) were mainly in the form of steroid-resistant nephrotic syndrome (SRNS) and progressed to end-stage kidney disease (ESKD) in 19 (36.5%) patients at a median (IQR) age of 6 (1.4-42.6) months. Among 30 different mutations in SGPL1, the most common was c.665G > A (p.Arg222Gln) in 11 (20%) patients. Twenty-six (49.1%) patients with available outcome were deceased at a median (IQR) age of 5 (1.5-30.5) months, mostly following ESKD (23%) or sepsis/septic shock (23%). CONCLUSION In patients with PAI and/or SRNS, SGPL1 should be added to diagnostic genetic panels, which can provide an earlier diagnosis of SPLIS and prevention of ESKD and other life-threatening complications.
Collapse
Affiliation(s)
- Zahra Pournasiri
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Madani
- Department of Pediatric Nephrology, Children's Medical Center, Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nazarpack
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, NE45PL, Tyne and Wear, UK
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15514-15468, Iran
| | - Fatemeh Nili
- Department of Pathology, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paulina Tran
- Allergy Immunology Division, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Julie D Saba
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15514-15468, Iran.
| |
Collapse
|
4
|
Wieczorek I, Strosznajder RP. Recent Insight into the Role of Sphingosine-1-Phosphate Lyase in Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076180. [PMID: 37047151 PMCID: PMC10093903 DOI: 10.3390/ijms24076180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Sphingosine-1-phosphate lyase (SPL) is a pyridoxal 5'-phosphate-dependent enzyme involved in the irreversible degradation of sphingosine-1-phosphate (S1P)-a bioactive sphingolipid that modulates a broad range of biological processes (cell proliferation, migration, differentiation and survival; mitochondrial functioning; and gene expression). Although SPL activity leads to a decrease in the available pool of S1P in the cell, at the same time, hexadecenal and phosphoethanolamine, compounds with potential biological activity, are generated. The increased expression and/or activity of SPL, and hence the imbalance between S1P and the end products of its cleavage, were demonstrated in several pathological states. On the other hand, loss-of-function mutations in the SPL encoding gene are a cause of severe developmental impairments. Recently, special attention has been paid to neurodegenerative diseases as the most common pathologies of the nervous system. This review summarizes the current findings concerning the role of SPL in the nervous system with an emphasis on neurodegeneration. Moreover, it briefly discusses pharmacological compounds directed to inhibit its activity.
Collapse
Affiliation(s)
- Iga Wieczorek
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Robert Piotr Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Tastemel Ozturk T, Canpolat N, Saygili S, Bayrakci US, Soylemezoglu O, Ozaltin F, Topaloglu R. A rare cause of nephrotic syndrome-sphingosine-1-phosphate lyase (SGPL1) deficiency: 6 cases and a review of the literature. Pediatr Nephrol 2023; 38:711-719. [PMID: 35748945 DOI: 10.1007/s00467-022-05656-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recently, recessive mutations in SGPL1 (sphingosine-1-phosphate lyase), which encodes the final enzyme of sphingolipid metabolism, have been reported to cause steroid-resistant nephrotic syndrome, adrenal insufficiency, and many other organ/system involvements. We aimed to determine the clinical and genetic characteristics, and outcomes in patients with SGPL1 mutations. METHODS The study included 6 patients with bi-allelic SGPL1 mutation. Clinical, genetic, and laboratory characteristics, and outcomes of the patients were evaluated retrospectively. We also reviewed previously reported patients with SGPL1 mutations and compared them to the presented patients. RESULTS The median age at kidney presentation was 5 months. Four patients (67%) were diagnosed before age 1 year. Kidney biopsy showed focal segmental glomerulosclerosis in 2 patients and diffuse mesangial sclerosis in one patient. Steroids were given to 3 patients, but they did not respond. All 6 patients progressed to chronic kidney disease; 5 required kidney replacement therapy (KRT) at a median age of 6 months. Deceased kidney transplantation was performed in one patient. All 6 patients had adrenal insufficiency, of which 5 were diagnosed at age < 6 months. Three patients had hypothyroidism, 2 had ichthyosis, 4 had immunodeficiency, 5 had neurological findings, and 2 had genitourinary system anomalies. Four patients died at a median age of 30.5 months. Two patients are being followed up with KRT. One patient had a novel mutation. CONCLUSIONS Patients with SGPL1 mutations have a poor prognosis, and many types of extrarenal organ/system involvement beyond adrenal insufficiency can be seen. Genetic diagnosis of such patients is important for treatment, genetic counseling, and screening for comorbid conditions. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Tugba Tastemel Ozturk
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
| | - Nur Canpolat
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Seha Saygili
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Umut Selda Bayrakci
- Department of Pediatric Nephrology, Faculty of Medicine, Ankara City Hospital, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Oguz Soylemezoglu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Fatih Ozaltin
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
6
|
Yang S, He Y, Zhou J, Yuan H, Qiu L. Steroid-resistant nephrotic syndrome associated with certain SGPL1 variants in a family: Case report and literature review. Front Pediatr 2023; 11:1079758. [PMID: 36873630 PMCID: PMC9978203 DOI: 10.3389/fped.2023.1079758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVES Steroid-resistant nephrotic syndrome (SRNS) is a clinical syndrome characterized by the lack of response to standard steroid therapy, usually progressing to end-stage renal disease. We reported two cases of female identical twins with SRNS caused by SGPL1 variants in one family, reviewed the relevant literature, and summarized their clinical phenotypes, pathological types, and genotypic characteristics. METHODS Two cases of nephrotic syndrome caused by SGPL1 variants were admitted to Tongji Hospital, affiliated with Tongji Medical College of Huazhong University of Science and Technology. Their clinical data were retrospectively collected, and the peripheral blood genomic DNA was captured and sequenced by whole exome sequencing. Related literature published in PubMed, CNKI, and Wan fang databases was reviewed. RESULTS We described two Chinese identical twin girls with isolated SRNS due to compound heterozygous variants in the SGPL1 (intron4 c.261 + 1G > A and intron12 c.1298 + 6T > C). The patients were followed up for 60.0 months and 53.0 months, respectively, having no extra-renal manifestations. They all died due to renal failure. A total of 31 children with SGPL1 variants causing nephrotic syndrome (including the reported two cases) were identified through a literature review. CONCLUSIONS These two female identical twins were the first reported cases of isolated SRNS caused by SGPL1 variants. Almost all homozygous and compound heterozygous variants of SGPL1 had extra-renal manifestations, but compound heterozygous variants in the intron of SGPL1 may have no obvious extra-renal manifestations. Additionally, a negative genetic testing result does not completely rule out genetic SRNS because the Human Gene Mutation Database or ClinVar is constantly being updated.
Collapse
Affiliation(s)
- Siying Yang
- The Nephrology Division of Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghua He
- The Nephrology Division of Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Zhou
- The Nephrology Division of Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqing Yuan
- The Nephrology Division of Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liru Qiu
- The Nephrology Division of Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Maharaj A, Kwong R, Williams J, Smith C, Storr H, Krone R, Braslavsky D, Clemente M, Ram N, Banerjee I, Çetinkaya S, Buonocore F, Güran T, Achermann JC, Metherell L, Prasad R. A retrospective analysis of endocrine disease in sphingosine-1-phosphate lyase insufficiency: case series and literature review. Endocr Connect 2022; 11:e220250. [PMID: 35904228 PMCID: PMC9346324 DOI: 10.1530/ec-22-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022]
Abstract
Sphingosine-1-phosphate lyase (SGPL1) insufficiency syndrome (SPLIS) is an autosomal recessive multi-system disorder, which mainly incorporates steroid-resistant nephrotic syndrome and primary adrenal insufficiency. Other variable endocrine manifestations are described. In this study, we aimed to comprehensively annotate the endocrinopathies associated with pathogenic SGPL1 variants and assess for genotype-phenotype correlations by retrospectively reviewing the reports of endocrine disease within our patient cohort and all published cases in the wider literature up to February 2022. Glucocorticoid insufficiency in early childhood is the most common endocrine manifestation affecting 64% of the 50 patients reported with SPLIS, and a third of these individuals have additional mineralocorticoid deficiency. While most individuals also have nephrotic syndrome, SGPL1 variants also account for isolated adrenal insufficiency at presentation. Primary gonadal insufficiency, manifesting with microphallus and cryptorchidism, is reported in less than one-third of affected boys, all with concomitant adrenal disease. Mild primary hypothyroidism affects approximately a third of patients. There is paucity of data on the impact of SGPL1 deficiency on growth, and pubertal development, limited by the early and high mortality rate (approximately 50%). There is no clear genotype-phenotype correlation overall in the syndrome, with variable disease penetrance within individual kindreds. However, with regards to endocrine phenotype, the most prevalent disease variant p.R222Q (affecting 22%) is most consistently associated with isolated glucocorticoid deficiency. To conclude, SPLIS is associated with significant multiple endocrine disorders. While endocrinopathy in the syndrome generally presents in infancy, late-onset disease also occurs. Screening for these is therefore warranted both at diagnosis and through follow-up.
Collapse
Affiliation(s)
- Avinaash Maharaj
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Ruth Kwong
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Jack Williams
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Christopher Smith
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Helen Storr
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Ruth Krone
- Birmingham Children’s Hospital, Birmingham, UK
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas ‘Dr. Cesar Bergadá’ (CEDIE) – CONICET – FEI – División de Endocrinología, Hospital de Niños ‘Ricardo Gutiérrez’, Buenos Aires, Argentina
| | - Maria Clemente
- Paediatric Endocrinology, Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Hospital Vall d’Hebron, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nanik Ram
- Department of Endocrinology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Semra Çetinkaya
- Health Sciences University, Dr. Sami Ulus Obstetrics and Gynaecology, Children’s Health and Disease Education and Research Hospital, Ankara, Turkey
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tülay Güran
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - John C Achermann
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Louise Metherell
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Rathi Prasad
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Yang W, Zhou B, Liu Q, Liu T, Wang H, Zhang P, Lu L, Zhang L, Zhang F, Huang R, Zhou J, Chao T, Gu Y, Lee S, Wang H, Liang Y, He L. A Murine Point Mutation of Sgpl1 Skin Is Enriched With Vγ6 IL17-Producing Cell and Revealed With Hyperpigmentation After Imiquimod Treatment. Front Immunol 2022; 13:728455. [PMID: 35769463 PMCID: PMC9234551 DOI: 10.3389/fimmu.2022.728455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingosine-1-phosphate lyase is encoded by the Sgpl1 gene, degrades S1P, and is crucial for S1P homeostasis in animal models and humans. S1P lyase deficient patients suffer from adrenal insufficiency, severe lymphopenia, and skin disorders. In this study, we used random mutagenesis screening to identify a mouse line carrying a missense mutation of Sgpl1 (M467K). This mutation caused similar pathologies as Sgpl1 knock-out mice in multiple organs, but greatly preserved its lifespan, which M467K mutation mice look normal under SPF conditions for over 40 weeks, in contrast, the knock-out mice live no more than 6 weeks. When treated with Imiquimod, Sgpl1M467K mice experienced exacerbated skin inflammation, as revealed by aggravated acanthosis and orthokeratotic hyperkeratosis. We also demonstrated that the IL17a producing Vγ6+ cell was enriched in Sgpl1M467K skin and caused severe pathology after imiquimod treatment. Interestingly, hyperchromic plaque occurred in the mutant mice one month after Imiquimod treatment but not in the controls, which resembled the skin disorder found in Sgpl1 deficient patients. Therefore, our results demonstrate that Sgpl1M467K point mutation mice successfully modeled a human disease after being treated with Imiquimod. We also revealed a major subset of γδT cells in the skin, IL17 secreting Vγ6 T cells were augmented by Sgpl1 deficiency and led to skin pathology. Therefore, we have, for the first time, linked the IL17a and γδT cells to SPL insufficiency.
Collapse
Affiliation(s)
- Wenyi Yang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Binhui Zhou
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qi Liu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Taozhen Liu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Huijie Wang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Pei Zhang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liaoxun Lu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Fanghui Zhang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- CeleScreen SAS, Paris, France
| | - Rong Huang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jitong Zhou
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Tianzhu Chao
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yanrong Gu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | | | - Hui Wang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang, ; Yinming Liang, ; Le He,
| | - Yinming Liang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang, ; Yinming Liang, ; Le He,
| | - Le He
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang, ; Yinming Liang, ; Le He,
| |
Collapse
|
9
|
Maharaj A, Güran T, Buonocore F, Achermann JC, Metherell L, Prasad R, Çetinkaya S. Insights From Long-term Follow-up of a Girl With Adrenal Insufficiency and Sphingosine-1-Phosphate Lyase Deficiency. J Endocr Soc 2022; 6:bvac020. [PMID: 35308304 PMCID: PMC8926068 DOI: 10.1210/jendso/bvac020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction Sphingosine-1-phosphate lyase (SGPL1) insufficiency syndrome (SPLIS) is a multisystemic disorder which, in the main, incorporates steroid-resistant nephrotic syndrome and primary adrenal insufficiency (PAI). Case Presentation We present a young girl with a novel homozygous variant in SGPL1, p.D350G, with PAI in the absence of nephrotic syndrome. In the course of 15 years of follow-up she has further developed primary hypothyroidism and while she has progressed through puberty appropriately, ovarian calcifications were noted on imaging. The p.D350G variant results in reduced protein expression of SGPL1. We demonstrate that CRISPR engineered knockout of SGPL1 in human adrenocortical (H295R) cells abrogates cortisol production. Furthermore, while wild-type SGPL1 is able to rescue cortisol production in this in vitro model of adrenal disease, this is not observed with the p.D350G mutant. Conclusion SGPL1 deficiency should be considered in the differential diagnosis of PAI with close attention paid to evolving disease on follow-up.
Collapse
Affiliation(s)
- Avinaash Maharaj
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Tülay Güran
- Marmara University, School of Medicine, Department of Paediatric Endocrinology and Diabetes, Istanbul, Turkey
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - John C Achermann
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Louise Metherell
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Rathi Prasad
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Semra Çetinkaya
- Health Sciences University, Dr. Sami Ulus Obstetrics and Gynecology, Children’s Health and Disease Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Mathew G, Yasmeen MS, Deepthi RV, Swain M, Vattam A, Shah MA, Agarwal I. Infantile nephrotic syndrome, immunodeficiency and adrenal insufficiency-a rare cause: Answers. Pediatr Nephrol 2022; 37:817-819. [PMID: 34999987 DOI: 10.1007/s00467-021-05377-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India.
| | - M S Yasmeen
- Little Star Children's Hospital, Hyderabad, India
| | - R V Deepthi
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India
| | - Meenakshi Swain
- Department of Histopathology, Apollo Health City, Hyderabad, India
| | | | - Mehul A Shah
- Little Star Children's Hospital, Hyderabad, India
| | - Indira Agarwal
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India
| |
Collapse
|
11
|
Li G, Kidd J, Gehr TWB, Li PL. Podocyte Sphingolipid Signaling in Nephrotic Syndrome. Cell Physiol Biochem 2021; 55:13-34. [PMID: 33861526 PMCID: PMC8193717 DOI: 10.33594/000000356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Podocytes play a vital role in the pathogenesis of nephrotic syndrome (NS), which is clinically characterized by heavy proteinuria, hypoalbuminemia, hyperlipidemia, and peripheral edema. The pathogenesis of NS has evolved through several hypotheses ranging from immune dysregulation theory and increased glomerular permeability theory to the current concept of podocytopathy. Podocytopathy is characterized by dysfunction or depletion of podocytes, which may be caused by unknown permeability factor, genetic disorders, drugs, infections, systemic disorders, and hyperfiltration. Over the last two decades, numerous studies have been done to explore the molecular mechanisms of podocyte injuries or NS and to develop the novel therapeutic strategies targeting podocytopathy for treatment of NS. Recent studies have shown that normal sphingolipid metabolism is essential for structural and functional integrity of podocytes. As a basic component of the plasma membrane, sphingolipids not only support the assembly of signaling molecules and interaction of receptors and effectors, but also mediate various cellular activities, such as apoptosis, proliferation, stress responses, necrosis, inflammation, autophagy, senescence, and differentiation. This review briefly summarizes current evidence demonstrating the regulation of sphingolipid metabolism in podocytes and the canonical or noncanonical roles of podocyte sphingolipid signaling in the pathogenesis of NS and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,
| |
Collapse
|
12
|
Li J, Zhao Y, Qin Y, Shi H. Influence of microbiota and metabolites on the quality of tobacco during fermentation. BMC Microbiol 2020; 20:356. [PMID: 33213368 PMCID: PMC7678276 DOI: 10.1186/s12866-020-02035-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To explore the optimum fermentation conditions for tobacco leaves and also screen the microbiota and metabolites that are beneficial for fermentation. METHODS Tobacco leaves were fermented at 25 °C, 35 °C, and 45 °C for 2, 4, and 6 weeks, respectively. For identification of the best fermentation temperature, physicochemical properties and sensory quality of fermented tobacco were investigated. Subsequently, based on the appropriate temperature, 16 s rRNA sequencing and metabolomics analysis of tobacco were performed to monitor the change of microbes and metabolites during fermentation process (from 2 to 6 weeks). RESULTS Sensory quality analysis indicated that fermentation at 45 °C for 6 weeks represented the optimum condition. Metabolomics analysis showed that a total of 415 metabolites were annotated. The increase of fermentation period led to significant changes of metabolites. Results revealed an increase in concentration of L-phenylalanine and sphingosine as well as decreased concentration of betaine and phytosphingosine with the prolongation of fermentation period (2 to 6 weeks). Distinct changes in the microbiota were also observed with prolongation of the fermentation time. Results revealed that Pseudomonas, Pantoea, and Burkholderia were dominant bacteria in fermentation at 45 °C for 6 weeks. With the extension of the fermentation time, the abundance of Pseudomonas increased, while that of Sphingomonas and Methylobacterium decreased. Furthermore, microbiota profiles were tightly relevant to the altered metabolites, especially compounds involved in the sphingolipid metabolism. CONCLUSION Suitable fermentation conditions were 45 °C for 6 weeks; phytosphingosine and sphingosine might affect tobacco fermentation via the sphingolipid metabolism pathway. This study provides a theoretical basis for guiding tobacco fermentation and gives insights into reducing harmful substances during tobacco fermentation.
Collapse
Affiliation(s)
- Jingjing Li
- College of Tobacco Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Yuanyuan Zhao
- College of Tobacco Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Yanqing Qin
- Sichuan Tobacco Company, Chengdu, Sichuan, China
| | - Hongzhi Shi
- College of Tobacco Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China.
| |
Collapse
|
13
|
Maharaj A, Williams J, Bradshaw T, Güran T, Braslavsky D, Casas J, Chan LF, Metherell LA, Prasad R. Sphingosine-1-phosphate lyase (SGPL1) deficiency is associated with mitochondrial dysfunction. J Steroid Biochem Mol Biol 2020; 202:105730. [PMID: 32682944 PMCID: PMC7482430 DOI: 10.1016/j.jsbmb.2020.105730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023]
Abstract
Deficiency in Sphingosine-1-phosphate lyase (S1P lyase) is associated with a multi-systemic disorder incorporating primary adrenal insufficiency (PAI), steroid resistant nephrotic syndrome and neurological dysfunction. Accumulation of sphingolipid intermediates, as seen with loss of function mutations in SGPL1, has been implicated in mitochondrial dysregulation, including alterations in mitochondrial membrane potentials and initiation of mitochondrial apoptosis. For the first time, we investigate the impact of S1P lyase deficiency on mitochondrial morphology and function using patient-derived human dermal fibroblasts and CRISPR engineered SGPL1-knockout HeLa cells. Reduced cortisol output in response to progesterone stimulation was observed in two patient dermal fibroblast cell lines. Mass spectrometric analysis of patient dermal fibroblasts revealed significantly elevated levels of sphingosine-1-phosphate, sphingosine, ceramide species and sphingomyelin when compared to control. Total mitochondrial volume was reduced in both S1P lyase deficient patient and HeLa cell lines. Mitochondrial dynamics and parameters of oxidative phosphorylation were altered when compared to matched controls, though differentially across the cell lines. Mitochondrial dysfunction may represent a major event in the pathogenesis of this disease, associated with severity of phenotype.
Collapse
Affiliation(s)
- A Maharaj
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - J Williams
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - T Bradshaw
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - T Güran
- Marmara University, School of Medicine, Department of Paediatric Endocrinology and Diabetes, Istanbul, Turkey
| | - D Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergadá" (CEDIE) - CONICET - FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - J Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, IQAC-CSIC, Jordi Girona 18-26, Barcelona, Spain
| | - L F Chan
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - L A Metherell
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - R Prasad
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|
14
|
Banerjee P, Carmelo VAO, Kadarmideen HN. Integrative Analysis of Metabolomic and Transcriptomic Profiles Uncovers Biological Pathways of Feed Efficiency in Pigs. Metabolites 2020; 10:E275. [PMID: 32640603 PMCID: PMC7408121 DOI: 10.3390/metabo10070275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022] Open
Abstract
Feed efficiency (FE) is an economically important trait. Thus, reliable predictors would help to reduce the production cost and provide sustainability to the pig industry. We carried out metabolome-transcriptome integration analysis on 40 purebred Duroc and Landrace uncastrated male pigs to identify potential gene-metabolite interactions and explore the molecular mechanisms underlying FE. To this end, we applied untargeted metabolomics and RNA-seq approaches to the same animals. After data quality control, we used a linear model approach to integrate the data and find significant differently correlated gene-metabolite pairs separately for the breeds (Duroc and Landrace) and FE groups (low and high FE) followed by a pathway over-representation analysis. We identified 21 and 12 significant gene-metabolite pairs for each group. The valine-leucine-isoleucine biosynthesis/degradation and arginine-proline metabolism pathways were associated with unique metabolites. The unique genes obtained from significant metabolite-gene pairs were associated with sphingolipid catabolism, multicellular organismal process, cGMP, and purine metabolic processes. While some of the genes and metabolites identified were known for their association with FE, others are novel and provide new avenues for further research. Further validation of genes, metabolites, and gene-metabolite interactions in larger cohorts will elucidate the regulatory mechanisms and pathways underlying FE.
Collapse
Affiliation(s)
| | | | - Haja N. Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (P.B.); (V.A.O.C.)
| |
Collapse
|
15
|
Maharaj A, Theodorou D, Banerjee I(I, Metherell LA, Prasad R, Wallace D. A Sphingosine-1-Phosphate Lyase Mutation Associated With Congenital Nephrotic Syndrome and Multiple Endocrinopathy. Front Pediatr 2020; 8:151. [PMID: 32322566 PMCID: PMC7156639 DOI: 10.3389/fped.2020.00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/18/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Loss of function mutations in SGPL1 are associated with Sphingosine-1-phosphate lyase insufficiency syndrome, comprising steroid resistant nephrotic syndrome, and primary adrenal insufficiency (PAI) in the majority of cases. SGPL1 encodes sphingosine-1-phosphate lyase (SGPL1) which is a major modulator of sphingolipid signaling. Case Presentation: A Pakistani male infant presented at 5 months of age with failure to thrive, nephrotic syndrome, primary adrenal insufficiency, hypothyroidism, and hypogonadism. Other systemic manifestations included persistent lymphopenia, ichthyosis, and motor developmental delay. Aged 9 months, he progressed rapidly into end stage oligo-anuric renal failure and subsequently died. Sanger sequencing of the entire coding region of SGPL1 revealed the novel association of a rare homozygous mutation (chr10:72619152, c.511A>G, p.N171D; MAF-1.701e-05) with the condition. Protein expression of the p.N171D mutant was markedly reduced compared to SGPL1 wild type when overexpressed in an SGPL1 knockout cell line, and associated with a severe clinical phenotype. Conclusions: The case further highlights the emerging phenotype of patients with loss-of-function SGPL1 mutations. Whilst nephrotic syndrome is a recognized feature of other disorders of sphingolipid metabolism, sphingosine-1-phosphate lyase insufficiency syndrome is unique amongst the sphingolipidoses in presenting with multiple endocrinopathies. Given the multi-systemic and progressive nature of this form of PAI/ nephrotic syndrome, a genetic diagnosis is crucial for optimal management and appropriate screening for comorbidities in these patients.
Collapse
Affiliation(s)
- Avinaash Maharaj
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Demetria Theodorou
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Indraneel (Indi) Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Louise A. Metherell
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rathi Prasad
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Dean Wallace
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| |
Collapse
|