1
|
Łanocha-Arendarczyk N, Kot K, Baranowska-Bosiacka I, Kupnicka P, Przydalska D, Łanocha A, Chlubek D, Wojciechowska-Koszko I, Kosik-Bogacka DI. Macroelement and Microelement Levels in the Urine in Experimental Acanthamoebiasis. Pathogens 2023; 12:1039. [PMID: 37623999 PMCID: PMC10458488 DOI: 10.3390/pathogens12081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Free-living amoebas can impact the excretion of macroelements and microelements in urine. The aim of the present study was to examine the concentrations of macroelements, including calcium (Ca), phosphorus (P), sodium (Na), potassium (K), and magnesium (Mg), as well as microelements such as manganese (Mn), zinc (Zn), copper (Cu), iron (Fe), and chromium (Cr), in the urine during acanthamoebiasis while considering the host's immunological status. This is the first study to show an increase in urinary excretion of Ca, Mn, Cu, Fe, Na, and Cr, along with a decreased excretion of K, in immunocompetent mice 16 days post Acanthamoeba sp. infection. In the final phase of infection (24 dpi), there was a further decrease in urinary K excretion and a lower level of P in Acanthamoeba sp. infected immunocompetent hosts. During acanthamoebiasis in immunosuppressed hosts, increased excretion of Zn, Fe, and Cr was observed at the beginning of the infection, and increased Na excretion only at 16 days post Acanthamoeba sp. infection. Additionally, host immunosuppression affected the concentration of Fe, Cr, Zn, Cu, Mn, and Ca in urine.
Collapse
Affiliation(s)
- Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Dagmara Przydalska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Aleksandra Łanocha
- Department of Haematology and Transplantology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Iwona Wojciechowska-Koszko
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Danuta Izabela Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| |
Collapse
|
2
|
Yepes-Calderón M, Kremer D, Post A, Sotomayor CG, Seidel U, Huebbe P, Knobbe TJ, Lüersen K, Eisenga MF, Corpeleijn E, de Borst MH, Navis GJ, Rimbach G, Bakker SJ. Urinary Copper Excretion Is Associated with Long-Term Graft Failure in Kidney Transplant Recipients. Am J Nephrol 2023; 54:425-433. [PMID: 37231776 PMCID: PMC10687917 DOI: 10.1159/000531147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION In chronic kidney disease, proteinuria increases urinary copper excretion, inducing oxidative tubular damage and worsening kidney function. We investigated whether this phenomenon occurred in kidney transplant recipients (KTRs). In addition, we studied the associations of urinary copper excretion with the biomarker of oxidative tubular damage urinary liver-type fatty-acid binding protein (u-LFABP) and death-censored graft failure. METHODS This prospective cohort study was performed in the Netherlands between 2008 and 2017, including outpatient KTR with a functioning graft for longer than 1 year, who were extensively phenotyped at baseline. Twenty-four-hour urinary copper excretion was measured by inductively coupled plasma mass spectrometry. Multivariable linear and Cox regression analyses were performed. RESULTS In 693 KTR (57% men, 53 ± 13 years, estimated glomerular filtration rate [eGFR] 52 ± 20 mL/min/1.73 m2), baseline median urinary copper excretion was 23.6 (interquartile range 11.3-15.9) µg/24 h. Urinary protein excretion was positively associated with urinary copper excretion (standardized β = 0.39, p < 0.001), and urinary copper excretion was positively associated with u-LFABP (standardized β = 0.29, p < 0.001). During a median follow-up of 8 years, 109 (16%) KTR developed graft failure. KTR with relatively high copper excretion were at higher risk of long-term graft failure (hazard ratio [HR]: 1.57, 95% confidence interval [CI]: 1.32-1.86 per log2, p < 0.001), independent of multiple potential confounders like eGFR, urinary protein excretion, and time after transplantation. A dose-response relationship was observed over increasing tertiles of copper excretion (HR: 5.03, 95% CI: 2.75-9.19, tertile 3 vs. 1, p < 0.001). u-LFABP was a significant mediator of this association (74% of indirect effect, p < 0.001). CONCLUSION In KTR, urinary protein excretion is positively correlated with urinary copper excretion. In turn, higher urinary copper excretion is associated with an independent increased risk of kidney graft failure, with a substantial mediating effect through oxidative tubular damage. Further studies are warranted to investigate whether copper excretion-targeted interventions could improve kidney graft survival.
Collapse
Affiliation(s)
- Manuela Yepes-Calderón
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Camilo G. Sotomayor
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
- Clinical Hospital University of Chile, Independencia, Chile
| | - Ulrike Seidel
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Tim J. Knobbe
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Michele F. Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin H. de Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerjan J. Navis
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Stephan J.L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Kurlak LO, Scaife PJ, Briggs LV, Broughton Pipkin F, Gardner DS, Mistry HD. Alterations in Antioxidant Micronutrient Concentrations in Placental Tissue, Maternal Blood and Urine and the Fetal Circulation in Pre-eclampsia. Int J Mol Sci 2023; 24:3579. [PMID: 36834991 PMCID: PMC9958563 DOI: 10.3390/ijms24043579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Trace elements such as selenium and zinc are vital components of many enzymes, including endogenous antioxidants, and can interact with each other. Women with pre-eclampsia, the hypertensive disease of pregnancy, have been reported as having changes in some individual antioxidant trace elements during pregnancy, which are related to maternal and fetal mortality and morbidity. We hypothesised that examination of the three compartments of (a) maternal plasma and urine, (b) placental tissue and (c) fetal plasma in normotensive and hypertensive pregnant women would allow identification of biologically significant changes and interactions in selenium, zinc, manganese and copper. Furthermore, these would be related to changes in the angiogenic markers, placental growth factor (PlGF) and Soluble Fms-Like Tyrosine Kinase-1 (sFlt-1) concentrations. Venous plasma and urine were collected from healthy non-pregnant women (n = 30), normotensive pregnant controls (n = 60) and women with pre-eclampsia (n = 50) in the third trimester. Where possible, matched placental tissue samples and umbilical venous (fetal) plasma were also collected. Antioxidant micronutrient concentrations were measured by inductively coupled plasma mass-spectrometry. Urinary levels were normalised to creatinine concentration. Plasma active PlGF and sFlt-1 concentrations were measured by ELISA. Maternal plasma selenium, zinc and manganese were all lower in women with pre-eclampsia (p < 0.05), as were fetal plasma selenium and manganese (p < 0.05 for all); maternal urinary concentrations were lower for selenium and zinc (p < 0.05). Conversely, maternal and fetal plasma and urinary copper concentrations were higher in women with pre-eclampsia (p < 0.05). Differences in placental concentrations varied, with lower overall levels of selenium and zinc (p < 0.05) in women with pre-eclampsia. Maternal and fetal PlGF were lower and sFlt-1 higher in women with pre-eclampsia; maternal plasma zinc was positively correlated with maternal plasma sFlt-1 (p < 0.05). Because of perceptions that early- and late-onset pre-eclampsia have differing aetiologies, we subdivided maternal and fetal data accordingly. No major differences were observed, but fetal sample sizes were small following early-onset. Disruption in these antioxidant micronutrients may be responsible for some of the manifestations of pre-eclampsia, including contributing to an antiangiogenic state. The potential benefits of mineral supplementation, in women with deficient intakes, during pregnancy to reduce pre-eclampsia remain an important area for experimental and clinical research.
Collapse
Affiliation(s)
- Lesia O. Kurlak
- School of Medicine (Stroke Research), University of Nottingham, Nottingham NG7 2UH, UK
| | - Paula J. Scaife
- Clinical, Metabolic and Molecular Physiology Research Group, University of Nottingham, Derby DE22 3DT, UK
| | - Louise V. Briggs
- School of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Fiona Broughton Pipkin
- Department of Obstetrics & Gynaecology, University of Nottingham, Nottingham NG5 1PB, UK
| | - David S. Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK
| | - Hiten D. Mistry
- Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London SE1 1UL, UK
| |
Collapse
|
4
|
Menchikov LG, Shestov AA, Popov AV. Warburg Effect Revisited: Embodiment of Classical Biochemistry and Organic Chemistry. Current State and Prospects. BIOCHEMISTRY (MOSCOW) 2023; 88:S1-S20. [PMID: 37069111 DOI: 10.1134/s0006297923140018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The Nobel Prize Winner (1931) Dr. Otto H. Warburg had established that the primary energy source of the cancer cell is aerobic glycolysis (the Warburg effect). He also postulated the hypothesis about "the prime cause of cancer", which is a matter of debate nowadays. Contrary to the hypothesis, his discovery was recognized entirely. However, the discovery had almost vanished in the heat of battle about the hypothesis. The prime cause of cancer is essential for the prevention and diagnosis, yet the effects that influence tumor growth are more important for cancer treatment. Due to the Warburg effect, a large amount of data has been accumulated on biochemical changes in the cell and the organism as a whole. Due to the Warburg effect, the recovery of normal biochemistry and oxygen respiration and the restoration of the work of mitochondria of cancer cells can inhibit tumor growth and lead to remission. Here, we review the current knowledge on the inhibition of abnormal glycolysis, neutralization of its consequences, and normalization of biochemical parameters, as well as recovery of oxygen respiration of a cancer cell and mitochondrial function from the point of view of classical biochemistry and organic chemistry.
Collapse
Affiliation(s)
- Leonid G Menchikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander A Shestov
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman Center for Advanced Medicine, Philadelphia, PA 19104, USA
| | - Anatoliy V Popov
- University of Pennsylvania, Department of Radiology, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Beenken A. Trace Metaluria as a Biomarker of Acute Kidney Injury. Kidney Int Rep 2022; 7:1461-1462. [PMID: 35812289 PMCID: PMC9263401 DOI: 10.1016/j.ekir.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|