1
|
Ren X, Zhao L, Hao Y, Huang X, Lv G, Zhou X. Copper-instigated modulatory cell mortality mechanisms and progress in kidney diseases. Ren Fail 2025; 47:2431142. [PMID: 39805816 PMCID: PMC11734396 DOI: 10.1080/0886022x.2024.2431142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/23/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper. In addition, we discuss the mechanism by which copper induces various programmed cell deaths. Finally, this review examines copper's involvement in prevalent kidney diseases such as acute kidney injury and chronic kidney disease. The findings indicate that the use of copper chelators or plant extracts can mitigate kidney damage by reducing copper accumulation, offering novel insights into the pathogenesis and treatment strategies for kidney diseases.
Collapse
Affiliation(s)
- Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu Huang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guangna Lv
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Guilpin A, Magnin M, Aigle A, Ayoub J, Schuhler T, Lac R, Marchal T, Brichart T, Hammed A, Louzier V. Temporary bilateral clamping of renal arteries induces ischemia-reperfusion: A new pig model of acute kidney injury using total intravenous anesthesia. Physiol Rep 2025; 13:e70203. [PMID: 39895016 PMCID: PMC11788332 DOI: 10.14814/phy2.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Ischemia-reperfusion (IR) is a leading cause of acute kidney injury (AKI), and pigs are commonly used in preclinical AKI models. However, existing models often vary in the methods used to induce ischemia, and the resulting AKI tends to be mild-to-moderate. Moreover, follow-up is often performed under volatile anesthesia, which, in contrast to total intravenous anesthesia (TIVA), can induce malignant hyperthermia and cause hemodynamic instability. Here we present a novel surgical model of IR-induced AKI using bilateral renal artery clamping under TIVA. Anesthesia was induced via TIVA with diazepam, ketamine, and morphine. After retroperitoneal exposure, the renal arteries were isolated and clamped with a plastic tube for 90 min, followed by 8 h of reperfusion. The IR group (n = 6) was compared with a Sham group (n = 5) that underwent the same procedure without IR. The IR group developed moderate-to-severe AKI as evidenced by reduced glomerular filtration, a 158% increase in plasma creatinine versus 21% in the Sham group, and elevated neutrophil gelatinase-associated lipocalin levels (+280% in IR vs. 0% in Sham), indicating tubular injury. Histopathology confirmed these findings. Thus, this preclinical model successfully induced moderate-to-severe AKI in pigs. The TIVA anesthetic protocol offered several advantages compared to halogenated gas anesthesia.
Collapse
Affiliation(s)
- Axel Guilpin
- MexBrainVilleurbanneFrance
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
| | - Mathieu Magnin
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
- Université de Lyon, VetAgro Sup, Unité de Physiologie, Pharmacodynamie et ThérapeutiqueMarcy l'EtoileFrance
| | | | - Jean‐Yves Ayoub
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
| | - Timothée Schuhler
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
| | - Romain Lac
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
| | - Thierry Marchal
- Université de Lyon, VetAgro Sup, Pole de Pathologie VétérinaireMarcy l'EtoileFrance
| | | | - Abdessalem Hammed
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
| | - Vanessa Louzier
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
- Université de Lyon, VetAgro Sup, Unité de Physiologie, Pharmacodynamie et ThérapeutiqueMarcy l'EtoileFrance
| |
Collapse
|
3
|
Xu C, Deng Y, Gong X, Wang H, Man J, Wang H, Cheng K, Gui H, Fu S, Wei S, Zheng X, Che T, Ding L, Yang L. Exploring Cuproptosis-Related Genes and Diagnostic Models in Renal Ischemia-Reperfusion Injury Using Bioinformatics, Machine Learning, and Experimental Validation. J Inflamm Res 2024; 17:8997-9020. [PMID: 39583859 PMCID: PMC11583769 DOI: 10.2147/jir.s490357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Background Renal ischemia-reperfusion injury (RIRI) is a significant cause of acute kidney injury, complicating clinical interventions such as kidney transplants and partial nephrectomy. Recent research has indicated the role of cuproptosis, a copper-dependent cell death pathway, in various pathologies, but its specific involvement in RIRI remains insufficiently understood. This study aims to investigate the role of cuproptosis-related genes in RIRI and establish robust diagnostic models. Methods We analyzed transcriptomic data from 203 RIRI and 188 control samples using bioinformatics tools to identify cuproptosis-related differentially expressed genes (CRDEGs). The relationship between CRDEGs and immune cells was explored using immune infiltration analysis and correlation analysis. Gene Set Enrichment Analysis (GSEA) was conducted to identify pathways associated with CRDEGs. Machine learning models, including Least Absolute Shrinkage and Selection Operator(LASSO) logistic regression, Support Vector Machine Recursive Feature Elimination (SVM-RFE), Clustering analysis, and weighted gene co-expression network analysis (WGCNA), were used to construct diagnostic gene models. The models were validated using independent datasets. Experimental validation was conducted in vivo using a mouse bilateral RIRI model and in vitro using an HK-2 cell hypoxia-reoxygenation (HR) model with copper chelation intervention. HE, PAS, and TUNEL staining, along with plasma creatinine and blood urea nitrogen (BUN) measurements, were used to evaluate the protective effect of the copper chelator D-Penicillamine (D-PCA) on RIRI in mice. JC-1 and TUNEL staining were employed to assess apoptosis in HK-2 cells under hypoxia-reoxygenation conditions. Immunofluorescence and Western blot (WB) techniques were used to verify the expression levels of the SDHB and NDUFB6 genes. Results A total of 18 CRDEGs were identified, many of which were significantly correlated with immune cell infiltration. GSEA revealed that these genes were involved in pathways related to oxidative phosphorylation and immune response regulation. Four key cuproptosis marker genes (LIPA, LIPT1, SDHB, and NDUFB6) were incorporated into a Cuproptosis Marker Gene Model(CMGM), achieving an area under the curve (AUC) of 0.741-0.834 in validation datasets. In addition, a five-hub-gene SVM model (MOAP1, PPP2CA, SYL2, ZZZ3, and SFRS2) was developed, demonstrating promising diagnostic performance. Clustering analysis revealed two RIRI subtypes (C1 and C2) with distinct molecular profiles and pathway activities, particularly in oxidative phosphorylation and immune responses. Experimental results showed that copper chelation alleviated renal damage and cuproptosis in both in vivo and in vitro models. Conclusion Our study reveals that cuproptosis-related genes are significantly involved in RIRI, particularly influencing mitochondrial dysfunction and immune responses. The diagnostic models developed showed promising predictive performance across independent datasets. Copper chelation demonstrated potential therapeutic effects, suggesting that cuproptosis regulation may be a viable therapeutic strategy for RIRI. This work provides a foundation for further exploration of copper metabolism in renal injury contexts.
Collapse
Affiliation(s)
- Changhong Xu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Yun Deng
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Xinyi Gong
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Huabin Wang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Jiangwei Man
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Hailong Wang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Kun Cheng
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Huiming Gui
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Shengjun Fu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Shenghu Wei
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Xiaoling Zheng
- Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, People’s Republic of China
| | - Tuanjie Che
- Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, People’s Republic of China
| | - Liyun Ding
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| |
Collapse
|
4
|
Łanocha-Arendarczyk N, Kot K, Baranowska-Bosiacka I, Kupnicka P, Przydalska D, Łanocha A, Chlubek D, Wojciechowska-Koszko I, Kosik-Bogacka DI. Macroelement and Microelement Levels in the Urine in Experimental Acanthamoebiasis. Pathogens 2023; 12:1039. [PMID: 37623999 PMCID: PMC10458488 DOI: 10.3390/pathogens12081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Free-living amoebas can impact the excretion of macroelements and microelements in urine. The aim of the present study was to examine the concentrations of macroelements, including calcium (Ca), phosphorus (P), sodium (Na), potassium (K), and magnesium (Mg), as well as microelements such as manganese (Mn), zinc (Zn), copper (Cu), iron (Fe), and chromium (Cr), in the urine during acanthamoebiasis while considering the host's immunological status. This is the first study to show an increase in urinary excretion of Ca, Mn, Cu, Fe, Na, and Cr, along with a decreased excretion of K, in immunocompetent mice 16 days post Acanthamoeba sp. infection. In the final phase of infection (24 dpi), there was a further decrease in urinary K excretion and a lower level of P in Acanthamoeba sp. infected immunocompetent hosts. During acanthamoebiasis in immunosuppressed hosts, increased excretion of Zn, Fe, and Cr was observed at the beginning of the infection, and increased Na excretion only at 16 days post Acanthamoeba sp. infection. Additionally, host immunosuppression affected the concentration of Fe, Cr, Zn, Cu, Mn, and Ca in urine.
Collapse
Affiliation(s)
- Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Dagmara Przydalska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Aleksandra Łanocha
- Department of Haematology and Transplantology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Iwona Wojciechowska-Koszko
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Danuta Izabela Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| |
Collapse
|
5
|
Yepes-Calderón M, Kremer D, Post A, Sotomayor CG, Seidel U, Huebbe P, Knobbe TJ, Lüersen K, Eisenga MF, Corpeleijn E, de Borst MH, Navis GJ, Rimbach G, Bakker SJ. Urinary Copper Excretion Is Associated with Long-Term Graft Failure in Kidney Transplant Recipients. Am J Nephrol 2023; 54:425-433. [PMID: 37231776 PMCID: PMC10687917 DOI: 10.1159/000531147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION In chronic kidney disease, proteinuria increases urinary copper excretion, inducing oxidative tubular damage and worsening kidney function. We investigated whether this phenomenon occurred in kidney transplant recipients (KTRs). In addition, we studied the associations of urinary copper excretion with the biomarker of oxidative tubular damage urinary liver-type fatty-acid binding protein (u-LFABP) and death-censored graft failure. METHODS This prospective cohort study was performed in the Netherlands between 2008 and 2017, including outpatient KTR with a functioning graft for longer than 1 year, who were extensively phenotyped at baseline. Twenty-four-hour urinary copper excretion was measured by inductively coupled plasma mass spectrometry. Multivariable linear and Cox regression analyses were performed. RESULTS In 693 KTR (57% men, 53 ± 13 years, estimated glomerular filtration rate [eGFR] 52 ± 20 mL/min/1.73 m2), baseline median urinary copper excretion was 23.6 (interquartile range 11.3-15.9) µg/24 h. Urinary protein excretion was positively associated with urinary copper excretion (standardized β = 0.39, p < 0.001), and urinary copper excretion was positively associated with u-LFABP (standardized β = 0.29, p < 0.001). During a median follow-up of 8 years, 109 (16%) KTR developed graft failure. KTR with relatively high copper excretion were at higher risk of long-term graft failure (hazard ratio [HR]: 1.57, 95% confidence interval [CI]: 1.32-1.86 per log2, p < 0.001), independent of multiple potential confounders like eGFR, urinary protein excretion, and time after transplantation. A dose-response relationship was observed over increasing tertiles of copper excretion (HR: 5.03, 95% CI: 2.75-9.19, tertile 3 vs. 1, p < 0.001). u-LFABP was a significant mediator of this association (74% of indirect effect, p < 0.001). CONCLUSION In KTR, urinary protein excretion is positively correlated with urinary copper excretion. In turn, higher urinary copper excretion is associated with an independent increased risk of kidney graft failure, with a substantial mediating effect through oxidative tubular damage. Further studies are warranted to investigate whether copper excretion-targeted interventions could improve kidney graft survival.
Collapse
Affiliation(s)
- Manuela Yepes-Calderón
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Camilo G. Sotomayor
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
- Clinical Hospital University of Chile, Independencia, Chile
| | - Ulrike Seidel
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Tim J. Knobbe
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Michele F. Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin H. de Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerjan J. Navis
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Stephan J.L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Kurlak LO, Scaife PJ, Briggs LV, Broughton Pipkin F, Gardner DS, Mistry HD. Alterations in Antioxidant Micronutrient Concentrations in Placental Tissue, Maternal Blood and Urine and the Fetal Circulation in Pre-eclampsia. Int J Mol Sci 2023; 24:3579. [PMID: 36834991 PMCID: PMC9958563 DOI: 10.3390/ijms24043579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Trace elements such as selenium and zinc are vital components of many enzymes, including endogenous antioxidants, and can interact with each other. Women with pre-eclampsia, the hypertensive disease of pregnancy, have been reported as having changes in some individual antioxidant trace elements during pregnancy, which are related to maternal and fetal mortality and morbidity. We hypothesised that examination of the three compartments of (a) maternal plasma and urine, (b) placental tissue and (c) fetal plasma in normotensive and hypertensive pregnant women would allow identification of biologically significant changes and interactions in selenium, zinc, manganese and copper. Furthermore, these would be related to changes in the angiogenic markers, placental growth factor (PlGF) and Soluble Fms-Like Tyrosine Kinase-1 (sFlt-1) concentrations. Venous plasma and urine were collected from healthy non-pregnant women (n = 30), normotensive pregnant controls (n = 60) and women with pre-eclampsia (n = 50) in the third trimester. Where possible, matched placental tissue samples and umbilical venous (fetal) plasma were also collected. Antioxidant micronutrient concentrations were measured by inductively coupled plasma mass-spectrometry. Urinary levels were normalised to creatinine concentration. Plasma active PlGF and sFlt-1 concentrations were measured by ELISA. Maternal plasma selenium, zinc and manganese were all lower in women with pre-eclampsia (p < 0.05), as were fetal plasma selenium and manganese (p < 0.05 for all); maternal urinary concentrations were lower for selenium and zinc (p < 0.05). Conversely, maternal and fetal plasma and urinary copper concentrations were higher in women with pre-eclampsia (p < 0.05). Differences in placental concentrations varied, with lower overall levels of selenium and zinc (p < 0.05) in women with pre-eclampsia. Maternal and fetal PlGF were lower and sFlt-1 higher in women with pre-eclampsia; maternal plasma zinc was positively correlated with maternal plasma sFlt-1 (p < 0.05). Because of perceptions that early- and late-onset pre-eclampsia have differing aetiologies, we subdivided maternal and fetal data accordingly. No major differences were observed, but fetal sample sizes were small following early-onset. Disruption in these antioxidant micronutrients may be responsible for some of the manifestations of pre-eclampsia, including contributing to an antiangiogenic state. The potential benefits of mineral supplementation, in women with deficient intakes, during pregnancy to reduce pre-eclampsia remain an important area for experimental and clinical research.
Collapse
Affiliation(s)
- Lesia O. Kurlak
- School of Medicine (Stroke Research), University of Nottingham, Nottingham NG7 2UH, UK
| | - Paula J. Scaife
- Clinical, Metabolic and Molecular Physiology Research Group, University of Nottingham, Derby DE22 3DT, UK
| | - Louise V. Briggs
- School of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Fiona Broughton Pipkin
- Department of Obstetrics & Gynaecology, University of Nottingham, Nottingham NG5 1PB, UK
| | - David S. Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK
| | - Hiten D. Mistry
- Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London SE1 1UL, UK
| |
Collapse
|
7
|
Menchikov LG, Shestov AA, Popov AV. Warburg Effect Revisited: Embodiment of Classical Biochemistry and Organic Chemistry. Current State and Prospects. BIOCHEMISTRY (MOSCOW) 2023; 88:S1-S20. [PMID: 37069111 DOI: 10.1134/s0006297923140018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The Nobel Prize Winner (1931) Dr. Otto H. Warburg had established that the primary energy source of the cancer cell is aerobic glycolysis (the Warburg effect). He also postulated the hypothesis about "the prime cause of cancer", which is a matter of debate nowadays. Contrary to the hypothesis, his discovery was recognized entirely. However, the discovery had almost vanished in the heat of battle about the hypothesis. The prime cause of cancer is essential for the prevention and diagnosis, yet the effects that influence tumor growth are more important for cancer treatment. Due to the Warburg effect, a large amount of data has been accumulated on biochemical changes in the cell and the organism as a whole. Due to the Warburg effect, the recovery of normal biochemistry and oxygen respiration and the restoration of the work of mitochondria of cancer cells can inhibit tumor growth and lead to remission. Here, we review the current knowledge on the inhibition of abnormal glycolysis, neutralization of its consequences, and normalization of biochemical parameters, as well as recovery of oxygen respiration of a cancer cell and mitochondrial function from the point of view of classical biochemistry and organic chemistry.
Collapse
Affiliation(s)
- Leonid G Menchikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander A Shestov
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman Center for Advanced Medicine, Philadelphia, PA 19104, USA
| | - Anatoliy V Popov
- University of Pennsylvania, Department of Radiology, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Beenken A. Trace Metaluria as a Biomarker of Acute Kidney Injury. Kidney Int Rep 2022; 7:1461-1462. [PMID: 35812289 PMCID: PMC9263401 DOI: 10.1016/j.ekir.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|