1
|
Bolat G, Yaman YT, Kuralay F, Abaci S. Ultrathin polypyrrole films on
self‐assembled
monolayers as an efficient ultramicroelectrode assay. J Appl Polym Sci 2020. [DOI: 10.1002/app.49313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gulcin Bolat
- Department of Chemistry, Faculty of ScienceHacettepe University Ankara Turkey
| | - Yesim T. Yaman
- Advanced Technologies Application and Research CenterHacettepe University Ankara Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of ScienceHacettepe University Ankara Turkey
| | - Serdar Abaci
- Department of Chemistry, Faculty of ScienceHacettepe University Ankara Turkey
- Advanced Technologies Application and Research CenterHacettepe University Ankara Turkey
| |
Collapse
|
2
|
Li D, Batchelor-McAuley C, Chen L, Compton RG. Band Electrodes in Sensing Applications: Response Characteristics and Band Fabrication Methods. ACS Sens 2019; 4:2250-2266. [PMID: 31407573 DOI: 10.1021/acssensors.9b01172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This Review surveys the fabrication methods reported for both single microband electrodes and microband electrode arrays and their uses in sensing applications. A theoretical section on band electrodes provides background information on the structure of band electrodes, their diffusional profiles, and the types of voltammetric behavior observed. A short section summarizes the currently available commercial microband electrodes. A section describing recent (10 years) sensing applications using band electrode is also presented.
Collapse
Affiliation(s)
- Danlei Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Lifu Chen
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
3
|
Ahmed MU, Hossain MM, Safavieh M, Wong YL, Abd Rahman I, Zourob M, Tamiya E. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Crit Rev Biotechnol 2015; 36:495-505. [PMID: 25578718 DOI: 10.3109/07388551.2014.992387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Screen printing technology provides a cheap and easy means to fabricate disposable electrochemical devices in bulk quantities which are used for rapid, low-cost, on-site, real-time and recurrent industrial, pharmaceutical or environmental analyses. Recent developments in micro-fabrication and nano-characterization made it possible to screen print reproducible feature on materials including plastics, ceramics and metals. The processed features forms screen-printed disposable biochip (SPDB) upon the application of suitable bio-chemical recognition receptors following appropriate methods. Adequacy of biological and non-biological materials is the key to successful biochip development. We can further improve recognition ability of SPDBs by adopting new screen printed electrode (SPE) configurations. This review covers screen-printing theory with special emphasis on the technical impacts of SPE architectures, surface treatments, operational stability and signal sensitivity. The application of SPE in different areas has also been summarized. The article aims to highlight the state-of-the-art of SPDB at the laboratory scale to enable us in envisaging the deployment of emerging SPDB technology on the commercial scale.
Collapse
Affiliation(s)
- Minhaz Uddin Ahmed
- a Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science , Universiti Brunei Darussalam , Gadong , Negara Brunei Darussalam
| | | | - Mohammadali Safavieh
- c Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology (MIT) , Cambridge , MA , USA
| | - Yen Lu Wong
- a Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science , Universiti Brunei Darussalam , Gadong , Negara Brunei Darussalam
| | - Ibrahim Abd Rahman
- a Biosensors and Biotechnology Laboratory, Chemical Science Programme, Faculty of Science , Universiti Brunei Darussalam , Gadong , Negara Brunei Darussalam
| | - Mohammed Zourob
- d Center of Biomedical Engineering, Cranfield University , Bedfordshire , UK , and
| | - Eiichi Tamiya
- e Nanobioengineering Laboratory, Department of Applied Physics , Graduate School of Engineering, Osaka University , Osaka , Japan
| |
Collapse
|
4
|
Chen WC, Li PY, Chou CH, Chang JL, Zen JM. A nonenzymatic approach for selective and sensitive determination of glycerol in biodiesel based on a PtRu-modified screen-printed edge band ultramicroelectrode. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Wang L, Liu J. Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. RSC Adv 2015. [DOI: 10.1039/c5ra10295b] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pressured liquid metal screen printing method for rapidly fabricating high resolution complex electronic patterns on varied substrates is demonstrated.
Collapse
Affiliation(s)
- Lei Wang
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jing Liu
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
6
|
Chen WC, Hsu YL, Venkatesan S, Zen JM. Disposable Screen-Printed Edge Band Ultramicroelectrodes for Use as Nitric Oxide Gas Sensor in Designing an Easily Applicable Method for Real Sample Analysis of Nitrite with Superior Selectivity and Sensitivity. ELECTROANAL 2014. [DOI: 10.1002/elan.201300548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Vagin MY, Sekretaryova AN, Reategui RS, Lundstrom I, Winquist F, Eriksson M. Arrays of Screen-Printed Graphite Microband Electrodes as a Versatile Electroanalysis Platform. ChemElectroChem 2014. [DOI: 10.1002/celc.201300204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Niu X, Lan M, Zhao H, Chen C, Li Y, Zhu X. Review: Electrochemical Stripping Analysis of Trace Heavy Metals Using Screen-Printed Electrodes. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.805416] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Metters JP, Kadara RO, Banks CE. Fabrication of co-planar screen printed microband electrodes. Analyst 2013; 138:2516-21. [DOI: 10.1039/c3an00268c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Honeychurch KC, Al-Berezanchi S, Hart JP. The voltammetric behaviour of lead at a microband screen-printed carbon electrode and its determination in acetate leachates from glazed ceramic plates. Talanta 2011; 84:717-23. [PMID: 21482273 DOI: 10.1016/j.talanta.2011.01.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/19/2011] [Accepted: 01/30/2011] [Indexed: 11/29/2022]
Abstract
Microband screen-printed carbon electrodes (μBSPCEs) without further modification have been investigated as disposable sensors for the measurement of lead in acetate leachates from ceramic glazed plates. Cyclic voltammetry was employed to elucidate the electrochemical behaviour of Pb(2+) at these electrodes in a variety of supporting electrolytes. The anodic peaks obtained on the reverse scans, showed that Pb had been deposited as a thin layer on the surface of the μBSPCE. The anodic peak of greatest magnitude was obtained in 0.1M pH 4.1 acetate buffer containing 13 mM Cl(-). The effect of chromium, copper, phosphate, sulphate and tin was examined and under the conditions employed, no significant change in current was found. The μBSPCEs were evaluated by carrying out lead determinations for acetate leachates from glazed ceramic plates. A highly decorated ornamental plate was found to leach 400 μg Pb(2+) (%CV=1.91%). A second plate, designed for dinnerware was found not to leach any detectable levels of Pb(2+). However, once fortified with 2.10 μg of Pb (equivalent to 100 ng/ml in the leachate), a mean recovery of 82.08% (%CV=4.07%) was obtained. The performance characteristics indicate that reliable data has been obtained for this application which could identify potentially toxic sources of lead.
Collapse
Affiliation(s)
- Kevin C Honeychurch
- Centre for Research in Biomedicine, Faculty of Health & Life Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | | | | |
Collapse
|
11
|
Metters JP, Kadara RO, Banks CE. New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 2011; 136:1067-76. [DOI: 10.1039/c0an00894j] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
|
13
|
A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples. Biosens Bioelectron 2009; 24:3008-13. [DOI: 10.1016/j.bios.2009.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 11/17/2022]
|
14
|
Fabrication of microband glucose biosensors using a screen-printing water-based carbon ink and their application in serum analysis. Biosens Bioelectron 2009; 24:1246-52. [DOI: 10.1016/j.bios.2008.07.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 11/20/2022]
|
15
|
Chou CH, Chang JL, Zen JM. Homogeneous Platinum-Deposited Screen-Printed Edge Band Ultramicroelectrodes for Amperometric Sensing of Carbon Monoxide. ELECTROANAL 2009. [DOI: 10.1002/elan.200804376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
CHANG J, ZEN J. A poly(dimethylsiloxane)-based electrochemical cell coupled with disposable screen printed edge band ultramicroelectrodes for use in flow injection analysis. Electrochem commun 2007. [DOI: 10.1016/j.elecom.2007.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|